next up previous contents
Next: Periodicity Up: Practical implementation Previous: Electrostatics   Contents


Quantities of interest

Once at self-consistency the bandstructure energy can be calculated by occupying the energy levels corresponding to $ E^b = \sum_nf_n\varepsilon_n$ or expanded in the implicit basis:

$\displaystyle E^b = \rho S^{-1} H = Zf\Lambda Z^*$ (22)

where the quantities without indices are matrices to be multiplied as such.

A more smoothly varying quantity is the first order energy:

$\displaystyle E_1 = Tr(\rho H^0) = \sum_{RLR'L'} \rho_{RLR'L'} H^0_{RLR'L'} = \rho : H^0$ (23)

Together with the second order energy,

$\displaystyle E^U_2 = \frac{1}{2}\sum_R \left( (U_R -\frac{1}{2}I_R)\delta q_R^2 - \frac{1}{2}I_Rm_R^2 \right)$ (24)

the classical term $ E_{class} = \frac{1}{2}\sum_{RR'} V^{class}_{RR'}(R'-R)$ and the electrostatics contribution combine to form the total energy.

The corresponding forces are given by:

$\displaystyle F_R = -2 \sum_{LR'L'} H'_{RLR'L'} \rho_{RLR'L'} + 2\sum_{LR'L'} S'_{RLR'L'} E^b_{RLR'L'} - \sum_{R'} V'^{class}_{RR'}(\vert R'-R\vert)$ (25)

Where $ F_R$, $ H'_{RLR'L'} = \partial H_{RLR'L'} /\partial R $ and $ S'_{RLR'L'} = \partial S_{RLR'L'} /\partial R $ are 3D vectors. Additionally the pressure may be obtained through the radial derivatives:

$\displaystyle P = -\sum_{RLR'L'} H^{'r}_{RLR'L'} \rho_{RLR'L'} + \sum_{RLR'L'} S^{'r}_{RLR'L'} E^b_{RLR'L'} = - H^{'r} : \rho + S^{'r}:E^b$ (26)

NB There is no magnetic contribution to the forces.


next up previous contents
Next: Periodicity Up: Practical implementation Previous: Electrostatics   Contents
DP 2013-08-01