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• Introduction to PGI Compilers and Tools

• Documentation.  Getting Help

• Basic Compiler Options

• Optimization Strategies

•Questions and Answers

Outline of Today’s Topics
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• Optimization – State-of-the-art vector, parallel, IPA, Feedback, …

• Cross-platform – AMD & Intel, 32/64-bit, Linux & Windows

• PGI Unified Binary for AMD and Intel processors

• Tools – Integrated OpenMP/MPI debug & profile, IDE integration

• Parallel – MPI, OpenMP 2.5, auto-parallel for Multi-core

• Comprehensive OS Support – Red Hat 7.3 – 9.0, RHEL 3.0/4.0,
Fedora Core 2/3/4/5, SuSE 7.1 – 10.1, SLES 8/9/10, Windows XP, 
Windows x64

PGI Compilers and Tools, features
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PGI Tools Enable Developers to:

View x64 as a unified CPU architecture 

Extract peak performance from x64 CPUs

Ride innovation waves from both Intel and AMD

Use a single source base and toolset across Linux and Windows

Develop, debug, tune parallel applications for
Multi-core, Multi-core SMP, Clustered Multi-core SMP
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PGI Documentation and Support

PGI provided documentation

PGI User Forums, at www.pgroup.com

PGI FAQs, Tips & Techniques pages

Email support, via trs@pgroup.com

Web support, a form-based system similar to email support

Fax support
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PGI Docs & Support, cont.

Legacy phone support, direct access, etc.

PGI download web page

PGI prepared/personalized training

PGI ISV program

PGI Premier Service program
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PGI Basic Compiler Options

Basic Usage

Language Dialects

Target Architectures

Debugging aids

Optimization switches
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PGI Basic Compiler Usage

A compiler driver interprets options and invokes pre-processors, 
compilers, assembler, linker, etc.
Options precedence: if options conflict, last option on command 
line takes precedence
Use -Minfo to see a listing of optimizations and transformations 
performed by the compiler
Use -help to list all options or see details on how to use a given 
option, e.g. pgf90 -Mvect -help
Use man pages for more details on options, e.g.    “man pgf90”
Use –v to see under the hood
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Flags to support language dialects

Fortran
• pgf77, pgf90, pgf95, pghpf tools
• Suffixes .f, .F, .for, .fpp, .f90, .F90, .f95, .F95, .hpf, .HPF
• -Mextend, -Mfixed, -Mfreeform
• Type size –i2, -i4, -i8, -r4, -r8, etc.
• -Mcray, -Mbyteswapio, -Mupcase, -Mnomain, -Mrecursive, etc.

C/C++
• pgcc, pgCC, aka pgcpp
• Suffixes .c, .C, .cc, .cpp, .i
• -B, -c89, -c9x, -Xa, -Xc, -Xs, -Xt
• -Msignextend, -Mfcon, -Msingle, -Muchar, -Mgccbugs



Cray Workshop, Oxford, 2007

Specifying the target architecture

Not an issue on XT.
Defaults to the type of processor/OS you are running 
on
Use the “tp” switch.
• -tp k8-64 or –tp p7-64 or –tp core2-64 for 64-bit code.
• -tp amd64e for AMD opteron rev E or later
• -tp x64 for unified binary
• -tp k8-32, k7, p7, piv, piii, p6, p5, px for 32 bit code
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Flags for debugging aids

-g generates symbolic debug information used by a 
debugger
-gopt generates debug information in the presence of 
optimization
-Mbounds adds array bounds checking
-v gives verbose output, useful for debugging system 
or build problems
-Mlist will generate a listing
-Minfo provides feedback on optimizations made by 
the compiler
-S or –Mkeepasm to see the exact assembly generated
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Basic optimization switches

Traditional optimization controlled through -O[<n>], n 
is 0 to 4.
-fast switch combines common set into one simple 
switch, is equal to -O2 -Munroll=c:1 -Mnoframe -Mlre
• For -Munroll, c specifies completely unroll loops with this loop count 

or less
• -Munroll=n:<m> says unroll other loops m times 

-Mnoframe does not set up a stack frame 
-Mlre is loop-carried redundancy elimination
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Basic optimization switches, cont.

fastsse switch is commonly used, extends –fast to 
SSE hardware, and vectorization
-fastsse is equal to -O2 -Munroll=c:1 -Mnoframe -Mlre
(-fast) plus -Mvect=sse, -Mscalarsse -Mcache_align,     
-Mflushz
-Mcache_align aligns top level arrays and objects on 
cache-line boundaries
-Mflushz flushes SSE denormal numbers to zero
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Node level tuning

Vectorization – packed SSE instructions maximize performance

Interprocedural Analysis (IPA) – use it!  motivating examples

Function Inlining – especially important for C and C++ 

Parallelization – for Cray XT CNL and multi-core processors

Miscellaneous Optimizations – hit or miss, but worth a try
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350 !
351 !   Initialize vertex, similarity and coordinate arrays
352 !
353     Do Index = 1, NodeCount
354        IX = MOD (Index - 1, NodesX) + 1
355        IY = ((Index - 1) / NodesX) + 1
356        CoordX (IX, IY) = Position (1) + (IX - 1) * StepX
357        CoordY (IX, IY) = Position (2) + (IY - 1) * StepY
358        JetSim (Index)  = SUM (Graph (:, :, Index) * &
359     &                    GaborTrafo (:, :, CoordX(IX,IY), CoordY(IX,IY)))
360        VertexX (Index) = MOD (Params%Graph%RandomIndex (Index) - 1, NodesX) + 1
361        VertexY (Index) = ((Params%Graph%RandomIndex (Index) - 1) / NodesX) + 1
362     End Do

Vectorizable F90 Array Syntax 
Data is REAL*4

Inner “loop” at line 358 is vectorizable, can used packed SSE instructions



September 20, 2007 Cray Workshop, Oxford, 2007 Slide 16

% ftn -fastsse -Mipa=fast -Minfo -S graphRoutines.f90
…
localmove: 

334, Loop unrolled 1 times (completely unrolled) 
343, Loop unrolled 2 times (completely unrolled) 
358, Generated an alternate loop for the inner loop 

Generated vector sse code for inner loop 
Generated 2 prefetch instructions for this loop 
Generated vector sse code for inner loop
Generated 2 prefetch instructions for this loop

…

–fastsse to Enable SSE Vectorization
–Minfo to List Optimizations to stderr
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Vectorizable C Code Fragment?

217    void func4(float *u1, float *u2, float *u3, …
…

221    for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222          u3[i] += clz * (p1[i] + p2[i]);
223    for (i = -NI+1, i < nx+NE-1; i++) {
224          float vdt = v[i] * dt;
225          u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226    } 

% pgcc –fastsse –Minfo functions.c
func4:

221, Loop unrolled 4 times
221, Loop not vectorized due to data dependency
223, Loop not vectorized due to data dependency
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Pointer  Arguments Inhibit Vectorization 

% pgcc –fastsse –Msafeptr –Minfo functions.c
func4:

221, Generated vector SSE code for inner loop
Generated 3 prefetch instructions for this loop

223, Unrolled inner loop 4 times

217    void func4(float *u1, float *u2, float *u3, …
…

221    for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222          u3[i] += clz * (p1[i] + p2[i]);
223    for (i = -NI+1, i < nx+NE-1; i++) {
224          float vdt = v[i] * dt;
225          u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226    } 
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C Constant Inhibits Vectorization 

% pgcc –fastsse –Msafeptr –Mfcon –Minfo functions.c
func4:

221, Generated vector SSE code for inner loop
Generated 3 prefetch instructions for this loop

223, Generated vector SSE code for inner loop
Generated 4 prefetch instructions for this loop     

217    void func4(float *u1, float *u2, float *u3, …
…

221    for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222          u3[i] += clz * (p1[i] + p2[i]);
223    for (i = -NI+1, i < nx+NE-1; i++) {
224          float vdt = v[i] * dt;
225          u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226    } 
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-Msafeptr Option and Pragma

–M[no]safeptr[=all | arg | auto | dummy | local | static | global] 

all All pointers are safe

arg Argument pointers are safe

local local pointers are safe

static static local pointers are safe

global global pointers are safe

#pragma [scope] [no]safeptr={arg | local | global | static | all},…

Where scope is global, routine or loop
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Common Barriers to SSE Vectorization

Potential Dependencies & C Pointers – Give compiler more 
info with –Msafeptr, pragmas, or restrict type qualifer

Function Calls – Try inlining with –Minline or –Mipa=inline

Type conversions – manually convert constants or use flags

Large Number of Statements  – Try –Mvect=nosizelimit

Too few iterations – Usually better to unroll the loop

Real dependencies – Must restructure loop, if possible
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Barriers to Efficient Execution of Vector SSE 
Loops

Not enough work – vectors are too short

Vectors not aligned to a cache line boundary

Non unity strides

Code bloat if altcode is generated
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Vectorization – packed SSE instructions maximize performance

Interprocedural Analysis (IPA) – use it!  motivating example

Function Inlining – especially important for C and C++ 

Parallelization – for Cray XD1 and multi-core processors

Miscellaneous Optimizations – hit or miss, but worth a try
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What can Interprocedural Analysis and Optimization with –Mipa
do for You?

Interprocedural constant propagation

Pointer disambiguation

Alignment detection, Alignment propagation

Global variable mod/ref detection

F90 shape propagation

Function inlining

IPA optimization of libraries, including inlining
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Effect of IPA on 
the WUPWISE Benchmark

91.72–fastsse –Mipa=fast,inline

121.65–fastsse –Mipa=fast

156.49–fastsse

Execution Time in 
Seconds PGF95 Compiler Options

–Mipa=fast => constant propagation => compiler sees complex
matrices are all 4x3 => completely unrolls loops

–Mipa=fast,inline => small matrix multiplies are all inlined
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Using Interprocedural Analysis

Must be used at both compile time and link time

Non-disruptive to development process – edit/build/run

Speed-ups of 5% - 10% are common

–Mipa=safe:<name> - safe to optimize functions which
call or are called from unknown function/library name

–Mipa=libopt – perform IPA optimizations on libraries

–Mipa=libinline – perform IPA inlining from libraries
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Vectorization – packed SSE instructions maximize performance

Interprocedural Analysis (IPA) – use it!  motivating examples

Function Inlining – especially important for C and C++ 

SMP Parallelization – for Cray XD1 and multi-core processors

Miscellaneous Optimizations – hit or miss, but worth a try
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Explicit Function Inlining

–Minline[=[lib:]<inlib> | [name:]<func> | except:<func> |
size:<n> | levels:<n>] 

[lib:]<inlib> Inline extracted functions from inlib

[name:]<func> Inline function func

except:<func> Do not inline function func

size:<n> Inline only functions smaller than n 
statements (approximate)

levels:<n> Inline n levels of functions

For C++ Codes, PGI Recommends IPA-based
inlining or –Minline=levels:10!
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Other C++ recommendations

Encapsulation, Data Hiding  - small functions, inline!

Exception Handling – use –no_exceptions until 7.0

Overloaded operators, overloaded functions - okay

Pointer Chasing - -Msafeptr, restrict qualifer, 32 bits?

Templates, Generic Programming – now okay

Inheritance, polymorphism, virtual functions – runtime 
lookup or check, no inlining, potential performance penalties
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Vectorization – packed SSE instructions maximize performance

Interprocedural Analysis (IPA) – use it!  motivating examples

Function Inlining – especially important for C and C++ 

SMP Parallelization – for Cray XT CNL and multi-core 
processors

Miscellaneous Optimizations – hit or miss, but worth a try
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SMP Parallelization
–mp=nonuma to enable OpenMP 2.5 parallel programming 

model

See PGI User’s Guide or OpenMP 2.5 standard

OpenMP programs compiled w/out –mp=nonuma “just work”

Supported on Cray XT
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Vectorization – packed SSE instructions maximize performance

Interprocedural Analysis (IPA) – use it!  motivating examples

Function Inlining – especially important for C and C++ 

SMP Parallelization – for Cray XT CNL and multi-core 
processors

Miscellaneous Optimizations – hit or miss, but worth a try



September 20, 2007 Cray Workshop, Oxford, 2007 Slide 33

Miscellaneous Optimizations (1)

–Mfprelaxed – single-precision sqrt, rsqrt, div performed
using reduced-precision reciprocal approximation 

–Mprefetch=d:<p>,n:<q> – control prefetching distance, 
max number of prefetch instructions per loop

–tp k8-32 – can result in big performance win on some 
C/C++ codes that don’t require > 2GB addressing; 
pointer and long data become 32-bits
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Miscellaneous Optimizations (2)

–O3 – more aggressive hoisting and scalar replacement; 
not part of –fastsse, always time your code to make sure 
it’s faster

For C++ codes: ––no_exceptions –Minline=levels:10

–M[no]movnt – disable / force non-temporal moves

–V[version] to switch between PGI releases at file level

–Mvect=noaltcode – disable multiple versions of   
loops
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Pathscale programming environment

Pathscale module available
• module load pathscale

Use standard compiler driver: ftn
• ftn -O3 -OPT:Ofast …
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Pathscale compilers

Pathscale compiler flags for a first start
• Preprocessor Options:

-cpp runs cpp on source files
-ftpp runs the fortran source preprocessor

• Optimisation Options:
-LNO: specify transformations performed on loop nests by the Loop Nest 
Optimizer
-OPT: controls miscellaneous optimizations
-ipa Inter Procedural Analysis
-Ofast Equivalent to
-O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math

• Default: -O2 -mcpu=opteron -m64 -msse -msse2 -mno-sse3 -mno-3dnow
• Start: -O3 –OPT:Ofast

More info: man eko, man pathf95


