
September 20, 2007 Cray Workshop, Oxford, 2007 Slide 1

Compilers
Tools for Scientists and Engineers

Jason Beech-Brandt – jason@cray.com
Kevin Roy – kroy@cray.com

www.cray.com

September 2007

Cray Workshop, Oxford, 2007

• Introduction to PGI Compilers and Tools

• Documentation. Getting Help

• Basic Compiler Options

• Optimization Strategies

•Questions and Answers

Outline of Today’s Topics

Cray Workshop, Oxford, 2007

• Optimization – State-of-the-art vector, parallel, IPA, Feedback, …

• Cross-platform – AMD & Intel, 32/64-bit, Linux & Windows

• PGI Unified Binary for AMD and Intel processors

• Tools – Integrated OpenMP/MPI debug & profile, IDE integration

• Parallel – MPI, OpenMP 2.5, auto-parallel for Multi-core

• Comprehensive OS Support – Red Hat 7.3 – 9.0, RHEL 3.0/4.0,
Fedora Core 2/3/4/5, SuSE 7.1 – 10.1, SLES 8/9/10, Windows XP,
Windows x64

PGI Compilers and Tools, features

Cray Workshop, Oxford, 2007

PGI Tools Enable Developers to:

View x64 as a unified CPU architecture

Extract peak performance from x64 CPUs

Ride innovation waves from both Intel and AMD

Use a single source base and toolset across Linux and Windows

Develop, debug, tune parallel applications for
Multi-core, Multi-core SMP, Clustered Multi-core SMP

Cray Workshop, Oxford, 2007

PGI Documentation and Support

PGI provided documentation

PGI User Forums, at www.pgroup.com

PGI FAQs, Tips & Techniques pages

Email support, via trs@pgroup.com

Web support, a form-based system similar to email support

Fax support

Cray Workshop, Oxford, 2007

PGI Docs & Support, cont.

Legacy phone support, direct access, etc.

PGI download web page

PGI prepared/personalized training

PGI ISV program

PGI Premier Service program

Cray Workshop, Oxford, 2007

PGI Basic Compiler Options

Basic Usage

Language Dialects

Target Architectures

Debugging aids

Optimization switches

Cray Workshop, Oxford, 2007

PGI Basic Compiler Usage

A compiler driver interprets options and invokes pre-processors,
compilers, assembler, linker, etc.
Options precedence: if options conflict, last option on command
line takes precedence
Use -Minfo to see a listing of optimizations and transformations
performed by the compiler
Use -help to list all options or see details on how to use a given
option, e.g. pgf90 -Mvect -help
Use man pages for more details on options, e.g. “man pgf90”
Use –v to see under the hood

Cray Workshop, Oxford, 2007

Flags to support language dialects

Fortran
• pgf77, pgf90, pgf95, pghpf tools
• Suffixes .f, .F, .for, .fpp, .f90, .F90, .f95, .F95, .hpf, .HPF
• -Mextend, -Mfixed, -Mfreeform
• Type size –i2, -i4, -i8, -r4, -r8, etc.
• -Mcray, -Mbyteswapio, -Mupcase, -Mnomain, -Mrecursive, etc.

C/C++
• pgcc, pgCC, aka pgcpp
• Suffixes .c, .C, .cc, .cpp, .i
• -B, -c89, -c9x, -Xa, -Xc, -Xs, -Xt
• -Msignextend, -Mfcon, -Msingle, -Muchar, -Mgccbugs

Cray Workshop, Oxford, 2007

Specifying the target architecture

Not an issue on XT.
Defaults to the type of processor/OS you are running
on
Use the “tp” switch.
• -tp k8-64 or –tp p7-64 or –tp core2-64 for 64-bit code.
• -tp amd64e for AMD opteron rev E or later
• -tp x64 for unified binary
• -tp k8-32, k7, p7, piv, piii, p6, p5, px for 32 bit code

Cray Workshop, Oxford, 2007

Flags for debugging aids

-g generates symbolic debug information used by a
debugger
-gopt generates debug information in the presence of
optimization
-Mbounds adds array bounds checking
-v gives verbose output, useful for debugging system
or build problems
-Mlist will generate a listing
-Minfo provides feedback on optimizations made by
the compiler
-S or –Mkeepasm to see the exact assembly generated

Cray Workshop, Oxford, 2007

Basic optimization switches

Traditional optimization controlled through -O[<n>], n
is 0 to 4.
-fast switch combines common set into one simple
switch, is equal to -O2 -Munroll=c:1 -Mnoframe -Mlre
• For -Munroll, c specifies completely unroll loops with this loop count

or less
• -Munroll=n:<m> says unroll other loops m times

-Mnoframe does not set up a stack frame
-Mlre is loop-carried redundancy elimination

Cray Workshop, Oxford, 2007

Basic optimization switches, cont.

fastsse switch is commonly used, extends –fast to
SSE hardware, and vectorization
-fastsse is equal to -O2 -Munroll=c:1 -Mnoframe -Mlre
(-fast) plus -Mvect=sse, -Mscalarsse -Mcache_align,
-Mflushz
-Mcache_align aligns top level arrays and objects on
cache-line boundaries
-Mflushz flushes SSE denormal numbers to zero

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 14

Node level tuning

Vectorization – packed SSE instructions maximize performance

Interprocedural Analysis (IPA) – use it! motivating examples

Function Inlining – especially important for C and C++

Parallelization – for Cray XT CNL and multi-core processors

Miscellaneous Optimizations – hit or miss, but worth a try

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 15

350 !
351 ! Initialize vertex, similarity and coordinate arrays
352 !
353 Do Index = 1, NodeCount
354 IX = MOD (Index - 1, NodesX) + 1
355 IY = ((Index - 1) / NodesX) + 1
356 CoordX (IX, IY) = Position (1) + (IX - 1) * StepX
357 CoordY (IX, IY) = Position (2) + (IY - 1) * StepY
358 JetSim (Index) = SUM (Graph (:, :, Index) * &
359 & GaborTrafo (:, :, CoordX(IX,IY), CoordY(IX,IY)))
360 VertexX (Index) = MOD (Params%Graph%RandomIndex (Index) - 1, NodesX) + 1
361 VertexY (Index) = ((Params%Graph%RandomIndex (Index) - 1) / NodesX) + 1
362 End Do

Vectorizable F90 Array Syntax
Data is REAL*4

Inner “loop” at line 358 is vectorizable, can used packed SSE instructions

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 16

% ftn -fastsse -Mipa=fast -Minfo -S graphRoutines.f90
…
localmove:

334, Loop unrolled 1 times (completely unrolled)
343, Loop unrolled 2 times (completely unrolled)
358, Generated an alternate loop for the inner loop

Generated vector sse code for inner loop
Generated 2 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetch instructions for this loop

…

–fastsse to Enable SSE Vectorization
–Minfo to List Optimizations to stderr

Cray Workshop, Oxford, 2007

Vectorizable C Code Fragment?

217 void func4(float *u1, float *u2, float *u3, …
…

221 for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222 u3[i] += clz * (p1[i] + p2[i]);
223 for (i = -NI+1, i < nx+NE-1; i++) {
224 float vdt = v[i] * dt;
225 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226 }

% pgcc –fastsse –Minfo functions.c
func4:

221, Loop unrolled 4 times
221, Loop not vectorized due to data dependency
223, Loop not vectorized due to data dependency

Cray Workshop, Oxford, 2007

Pointer Arguments Inhibit Vectorization

% pgcc –fastsse –Msafeptr –Minfo functions.c
func4:

221, Generated vector SSE code for inner loop
Generated 3 prefetch instructions for this loop

223, Unrolled inner loop 4 times

217 void func4(float *u1, float *u2, float *u3, …
…

221 for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222 u3[i] += clz * (p1[i] + p2[i]);
223 for (i = -NI+1, i < nx+NE-1; i++) {
224 float vdt = v[i] * dt;
225 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226 }

Cray Workshop, Oxford, 2007

C Constant Inhibits Vectorization

% pgcc –fastsse –Msafeptr –Mfcon –Minfo functions.c
func4:

221, Generated vector SSE code for inner loop
Generated 3 prefetch instructions for this loop

223, Generated vector SSE code for inner loop
Generated 4 prefetch instructions for this loop

217 void func4(float *u1, float *u2, float *u3, …
…

221 for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222 u3[i] += clz * (p1[i] + p2[i]);
223 for (i = -NI+1, i < nx+NE-1; i++) {
224 float vdt = v[i] * dt;
225 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226 }

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 20

-Msafeptr Option and Pragma

–M[no]safeptr[=all | arg | auto | dummy | local | static | global]

all All pointers are safe

arg Argument pointers are safe

local local pointers are safe

static static local pointers are safe

global global pointers are safe

#pragma [scope] [no]safeptr={arg | local | global | static | all},…

Where scope is global, routine or loop

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 21

Common Barriers to SSE Vectorization

Potential Dependencies & C Pointers – Give compiler more
info with –Msafeptr, pragmas, or restrict type qualifer

Function Calls – Try inlining with –Minline or –Mipa=inline

Type conversions – manually convert constants or use flags

Large Number of Statements – Try –Mvect=nosizelimit

Too few iterations – Usually better to unroll the loop

Real dependencies – Must restructure loop, if possible

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 22

Barriers to Efficient Execution of Vector SSE
Loops

Not enough work – vectors are too short

Vectors not aligned to a cache line boundary

Non unity strides

Code bloat if altcode is generated

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 23

Vectorization – packed SSE instructions maximize performance

Interprocedural Analysis (IPA) – use it! motivating example

Function Inlining – especially important for C and C++

Parallelization – for Cray XD1 and multi-core processors

Miscellaneous Optimizations – hit or miss, but worth a try

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 24

What can Interprocedural Analysis and Optimization with –Mipa
do for You?

Interprocedural constant propagation

Pointer disambiguation

Alignment detection, Alignment propagation

Global variable mod/ref detection

F90 shape propagation

Function inlining

IPA optimization of libraries, including inlining

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 25

Effect of IPA on
the WUPWISE Benchmark

91.72–fastsse –Mipa=fast,inline

121.65–fastsse –Mipa=fast

156.49–fastsse

Execution Time in
Seconds PGF95 Compiler Options

–Mipa=fast => constant propagation => compiler sees complex
matrices are all 4x3 => completely unrolls loops

–Mipa=fast,inline => small matrix multiplies are all inlined

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 26

Using Interprocedural Analysis

Must be used at both compile time and link time

Non-disruptive to development process – edit/build/run

Speed-ups of 5% - 10% are common

–Mipa=safe:<name> - safe to optimize functions which
call or are called from unknown function/library name

–Mipa=libopt – perform IPA optimizations on libraries

–Mipa=libinline – perform IPA inlining from libraries

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 27

Vectorization – packed SSE instructions maximize performance

Interprocedural Analysis (IPA) – use it! motivating examples

Function Inlining – especially important for C and C++

SMP Parallelization – for Cray XD1 and multi-core processors

Miscellaneous Optimizations – hit or miss, but worth a try

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 28

Explicit Function Inlining

–Minline[=[lib:]<inlib> | [name:]<func> | except:<func> |
size:<n> | levels:<n>]

[lib:]<inlib> Inline extracted functions from inlib

[name:]<func> Inline function func

except:<func> Do not inline function func

size:<n> Inline only functions smaller than n
statements (approximate)

levels:<n> Inline n levels of functions

For C++ Codes, PGI Recommends IPA-based
inlining or –Minline=levels:10!

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 29

Other C++ recommendations

Encapsulation, Data Hiding - small functions, inline!

Exception Handling – use –no_exceptions until 7.0

Overloaded operators, overloaded functions - okay

Pointer Chasing - -Msafeptr, restrict qualifer, 32 bits?

Templates, Generic Programming – now okay

Inheritance, polymorphism, virtual functions – runtime
lookup or check, no inlining, potential performance penalties

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 30

Vectorization – packed SSE instructions maximize performance

Interprocedural Analysis (IPA) – use it! motivating examples

Function Inlining – especially important for C and C++

SMP Parallelization – for Cray XT CNL and multi-core
processors

Miscellaneous Optimizations – hit or miss, but worth a try

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 31

SMP Parallelization
–mp=nonuma to enable OpenMP 2.5 parallel programming

model

See PGI User’s Guide or OpenMP 2.5 standard

OpenMP programs compiled w/out –mp=nonuma “just work”

Supported on Cray XT

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 32

Vectorization – packed SSE instructions maximize performance

Interprocedural Analysis (IPA) – use it! motivating examples

Function Inlining – especially important for C and C++

SMP Parallelization – for Cray XT CNL and multi-core
processors

Miscellaneous Optimizations – hit or miss, but worth a try

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 33

Miscellaneous Optimizations (1)

–Mfprelaxed – single-precision sqrt, rsqrt, div performed
using reduced-precision reciprocal approximation

–Mprefetch=d:<p>,n:<q> – control prefetching distance,
max number of prefetch instructions per loop

–tp k8-32 – can result in big performance win on some
C/C++ codes that don’t require > 2GB addressing;
pointer and long data become 32-bits

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 34

Miscellaneous Optimizations (2)

–O3 – more aggressive hoisting and scalar replacement;
not part of –fastsse, always time your code to make sure
it’s faster

For C++ codes: ––no_exceptions –Minline=levels:10

–M[no]movnt – disable / force non-temporal moves

–V[version] to switch between PGI releases at file level

–Mvect=noaltcode – disable multiple versions of
loops

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 35

Pathscale programming environment

Pathscale module available
• module load pathscale

Use standard compiler driver: ftn
• ftn -O3 -OPT:Ofast …

September 20, 2007 Cray Workshop, Oxford, 2007 Slide 36

Pathscale compilers

Pathscale compiler flags for a first start
• Preprocessor Options:

-cpp runs cpp on source files
-ftpp runs the fortran source preprocessor

• Optimisation Options:
-LNO: specify transformations performed on loop nests by the Loop Nest
Optimizer
-OPT: controls miscellaneous optimizations
-ipa Inter Procedural Analysis
-Ofast Equivalent to
-O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math

• Default: -O2 -mcpu=opteron -m64 -msse -msse2 -mno-sse3 -mno-3dnow
• Start: -O3 –OPT:Ofast

More info: man eko, man pathf95

