

Cray and the Quad-Core Experience

HECToR Town User Meeting London 22 April 2009

2

Talk outline

- Upgrade details
 - Dual-Core versus Quad-Core nodes
 - Dual-Core versus Quad-Core
 - System details
- Dual-Core to Quad-Core upgrades at other sites
 - ORNL
 - NERSC
- Application issues
 - What are the issues?
 - Selected HECToR results
 - What can be done?

The Cray XT4 Processing Element: Providing a bandwidth-rich environment

Let's Review: Dual-Core v. Quad-Core

Dual-Core

• Core

- 2.8Ghz clock frequency
- SSE SIMD FPU (2flops/cycle = 5.6GF peak)
- Cache Hierarchy
 - L1 Dcache/Icache: 64k/core
 - L2 D/I cache: 1M/core
 - SW Prefetch and loads to L1
 - Evictions and HW prefetch to L2
- Memory
 - Dual Channel DDR2
 - 10GB/s peak @ 667MHz
 - 8GB/s nominal STREAMs

Quad-Core

- Core
 - 2.3Ghz clock frequency
 - SSE SIMD FPU (4flops/cycle = 9.2GF peak)
- Cache Hierarchy
 - L1 Dcache/Icache: 64k/core
 - L2 D/I cache: 512 KB/core
 - L3 Shared cache 2MB/Socket
 - SW Prefetch and loads to L1,L2,L3
 - Evictions and HW prefetch to L1,L2,L3
- Memory
 - Dual Channel DDR2
 - 12GB/s peak @ 800MHz
 - 10GB/s nominal STREAMs

What will HECToR look like?

- Cray XT4 Dual-Core Today
 - 63 TFlops
 - 5664 nodes
 - 11328 cores
 - 2-way SMP on the node
 - 6GB/node
 - 667 MHz memory

- Cray XT4 Quad-Core Tomorrow
 - 208 TFlops
 - 5664 nodes
 - 22656 cores
 - 4-way SMP on the node
 - 8GB/node
 - 800 MHz memory

Quad-Core upgrades at other sites

Jaguar – Cray XT4 Upgraded to 263 TeraFlops

- We have upgraded Jaguar from single-core to Dual-Core to Quad-Core Opteron processors
 - Replaced 7,832 processors and added 15,664 2GB DIMMS

Quad-Core Processors	7,832
Memory / Core	2 GB
System Memory	62 TB
Disk Bandwidth	44 GB/s
Disk Space	900 TB
Node Size	4-core, 35 GF

NERSC's Cray XT4

- "Franklin" (NERSC-5)
 - 102 Cabinets in 17 rows
 - 9,660 nodes (19,320 cores)
 - 39.5 TBs Aggregate Memory (4 x 1GB DIMMs per node)
- Sustained performance: discussed later
- Interconnect: Cray SeaStar2, 3D Torus
 - >6 TB/s Bisection Bandwidth
 - >7 GB/s Link Bandwidth
- Shared Disk: 400+ TBs
- Network Connections
 - 24 x 10 Gbps + 16 x 1 Gbps
 - 60 x 4 Gbps Fibre Channel

Franklin Quad-Core Upgrade

- In-place, no-interruption upgrade taking place between July and October, 2008.
- All 9,672 nodes change from 2.6-GHz AMD64 to 2.3-GHz Barcelona-64.
- QC nodes have 8 GB memory, same average GB/core as on DC Franklin.
- Memory from 667 MHz to 800 MHz.

Initial HECToR Application Results

Helium

- Solves time-dependent Schrodinger equation in full dimensionality
- Used to model interaction between an intense linearly polarized laser light and the Helium atom
- Highly optimized for HPCx
 - Six months were spent re-engineering the code specifically for this platform
- Largest problem on HPCx 1200 processors
 - 50% of time is spent on communication
- Initial simulations on HECTOR 2048 processors
 - 5% of time is spent on communication
- The code authors are now preparing to do simulations at the 800nm wavelength, which are not possible on HPCx

Performance Data

- Atomistic and molecular simulations of solid state, liquid and molecular systems
- Using the freely available version of the code from
 - http://cp2k.berlios.de/
- Using vendor benchmark input
 - Exercises a large number of kernels
 - Good balance of compute and communication
- Makes extensive use of numerical libraries
 - BLAS
 - ScaLAPACK
 - FFTW

CP2K

Casino

- Quantum Monte Carlo code used extensively on HECToR by Prof. Dario Alfe of UCL
- Approved for dCSE funding and supported by Lucian Anton, NAG.

Percentage Gain by Moving to Quad Core

UM

Quad-Core, More to the Point

- Doubled flops/clock, only if you use SSE128
 - Very-Short-Vector Instructions
- Clock reduced from 2.8GHz 2.3 GHz
 - 18% clock speed reduction
- L2 Cache size has been reduced per-core, but shared L3 has been added
 - Essentially, more cache visible to the cores
- DDR2-800 memory has replaced DDR2-667
 - 10.6GB/s -> 12.8GB/s (21% improvement)
 - More total memory bandwidth and 2X as many memory controllers, also 2X as many cores to use the BW.
 - Symmetrical memory 8GB/node provides full memory interleaving, whereas 6GB/node does not

What can be done?

- MPI is optimized for intra-node communication; however, message off the node will contend for bandwidth requirements off the node
- OpenMP across the cores on the node will help
 - Shared Cache is designed to help OpenMP reduce the applications memory requirements
 - Reduces the message traffic off the node
- Watch out for Libraries are they Quad-Core enabled?

What about those SSE instructions

- The Quad-Core is capable of generating 4 flops/clock in 64 bit mode and 8 flops/clock for 32 bit mode
 - Assembler must contain SSE instructions
 - Compilers only generate SSE instructions when it can vectorize the DO loops
 - Libraries must be Quad-Core enabled

• Vectorize

SBLI – Direct Numerical Simulation of Turbulence at Scale on Cray XT4

•Finite difference code for turbulent boundary layers

•Higher-order central differencing, shock preserving advection scheme from the TVD family, entropy splitting of the Euler terms

•Application areas include noise production from wing sections - critical in modern aircraft design

Code scales to largest job queue on HECToR – 8192 cores -> 5.4 TFlops
HPCx scaling stops at around 1200 processors

•Cray Centre of Excellence for HECToR have improved single CPU performance of this code on HECToR – 20% speedup over original version

GFlops

APA analysis of code

- module load xt-craypat
- Create the instrumented executable
 - make hector
 - Use compiler listings with –Minfo and -Mneginfo
 - pat_build –O apa pdns3d.x
- Run the experiment
 - Run your simulation aprun –n \$NPROCS ./pdn3d.x+pat
- Create your report
 - pat_report –o sample.txt *.xf

Sample information

86.2% 17474 USER
39.2% 7953 rhs_
4 23.2% 4704 1000.00 10.0%
4 3.1% 029 03.90 9.4% 10.70
4 2.3% 332 33.00 0.0% e.103 4 2.7% 530 20.10 3.7% ine.100
4 2.7% 3.59 20.19 3.7% 100
411 - 1.8% - 371 - 24.86 - 6.4% lline 214
411 + 1.8% + 356 + 32.34 + 8.5% lline 260
1111

USER / rhs_

Time% 39.5% Time 128.658205 Imb Time 19.624435 Imb.Time% 13.4% Calls 150 DATA CACHE MISSES 18.130M/sec 2260790340 misses PAPI TOT INS 1445.103M/sec 180203670533 instr PAPI_L1_DCA 757.287M/sec 94433319644 refs PAPI FP OPS 842.208M/sec 105022916627 ops User time (approx) 124.700 secs 324218781250 cycles Cycles 124.700 secs 324218781250 cvcles User time (approx) 124.700 secs 324218781250 cycles Utilization rate 96.9% 0.56 inst/cvcle Instr per cycle 0.32 ops/cycle HW FP Ops / Cycles HW FP Ops / User time 842.208M/sec 105022916627 ops 16.2%peak HW FP Ops / WCT 816.294M/sec HW FP Ops / Inst 58 3% Computation intensity 1.11 ops/ref MIPS 92486.59M/sec 53901.30M/sec **MFLOPS** Instructions per LD ST 1.91 inst/ref LD & ST per D1 miss 41.77 refs/miss D1 cache hit ratio 97.6% LD ST per Instructions 52.4%

Large loop, which is not vectorizing

```
do k=1,nzp
  do j=1,nyp
                          413, Loop not vectorized: data dependency
     do i=1,nxp
      wy(8) = wx(i,j,k,8)
      wy(9) = wx(i,j,k,9)
      wy(11) = wx(i,j,k,11)
      wy(12) = wx(i,j,k,12)
      wy(18) = wx(i,j,k,18)
      dxidx = dxi_dx(i,j,IK)
      dxidy = dxi_dy(i,j,IK)
       detadx = deta_dx(i,j,IK)
       detady = deta_dy(i,j,IK)
       q22 = wy(18)^*((wy(11)^*dxidx))
  $
$
$
              -wy(12)*detadx)
                 +(-wy(8)*dxidy
                   +wy(9)*detady))
       etc...
```

Try the Cray (X1/X2) compiler...

411.	1<	do k=1,nzp	ftr
412.	1 2<	do j=1,nyp	
413.	1 2 V<	do i=1,nxp	
414.	1 2 V	wy(8) = wx(i,j,k,8)	F
415.	1 2 V	wy(9) = wx(i,j,k,9)	es
416.	1 2 V	wy(11) = wx(i,j,k,11)	ອ for
417.	1 2 V	wy(12) = wx(i,j,k,12)	101
418.	1 2 V	wy(18) = wx(i,j,k,18)	ftr
419.	1 2 V		
420.	1 2 V	dxidx = dxi_dx(i,j,k)	- 4
421.	1 2 V	$dxidy = dxi_dy(i,j,k)$	F
422.	1 2 V	detadx = deta_dx(i,j,k	()
423.	1 2 V	detady = deta_dy(i,j,k	()

ftn-6383 ftn: VECTOR File = rhs_3d.f, Line = 413

A loop starting at line 413 requires an estimated 56 vector registers at line 941; 24 of these have been preemptively forced to memory.

tn-6204 ftn: VECTOR File = rhs_3d.f, Line = 413

A loop starting at line 413 was vectorized.

Why is PGI not vectorizing this loop???

```
do k=1,nzp
    do j=1,nyp
    do i=1,nxp
    wy(8) = wx(i,j,k,8)
    wy(9) = wx(i,j,k,9)
    wy(11) = wx(i,j,k,11)
    wy(12) = wx(i,j,k,12)
    wy(18) = wx(i,j,k,18)
    dxidx = dxi_dx(i,j,IK)
```

 $dxidx = dxi_dx(i,j,iK)$ $dxidy = dxi_dy(i,j,IK)$ $detadx = deta_dx(i,j,IK)$ $detady = deta_dy(i,j,IK)$

q22 =	$wy(18)^{*}((wy(11)^{*}dxidx))^{*}$
\$	-wy(12)*detadx)
\$	+(-wy(8)*dxidy
\$	+wy(9)*detady))

etc...

After much looking around at this, the only unusual thing I could see is the use of the array wy() for loop temporaries. This was done as a single declaration of wy(50) was more compact then wy1, wy2, wy3, etc...

```
Sample code to test this...
subroutine vect test
 implicit none
                                  jason@nid00004:~/src/vect_test> ftn -fast -Minfo -
                                  Mneginfo -c vect test.f90
 integer :: i
                                  /opt/xt-asyncpe/1.0a/bin/ftn: INFO: linux target is being
 real*8 :: wy(4),wx(100,4)
                                  used
 real*8 :: wy1,wy2,wy3,wy4,q11
                                  vect test:
                                      8, Loop not vectorized: data dependency
 do i=1,100
                                     16, Generated vector sse code for inner loop
  wy(1)=wx(i,1)
                                       Generated 4 prefetch instructions for this loop
  wy(2)=wx(i,2)
  wy(3)=wx(i,3)
  wy(4) = wx(i,4)
  q11 = q11 + wy(1) * wy(2) * wy(3) * wy(4)
 end do
 do i=1,100
  wy1=wx(i,1)
  wy2=wx(i,2)
  wy3=wx(i,3)
  wy4=wx(i,4)
  q11 = q11 + wy1 + wy2 + wy3 + wy4
 end do
```

end subroutine vect_test

USER / rhs_

Time%	38.1%	
Time	106.324202	
Imb.Time	11.409116	
Imb.Time%	9.8%	
Calls	150	
DATA_CACHE_MISS	ES 21.902M/sec 2242750389 mis	ses
PAPI_TOT_INS	699.101M/sec 71588386163 instr	
PAPI_L1_DCA	537.188M/sec 55008430462 refs	
PAPI_FP_OPS	673.327M/sec 68949134785 ops	
User time (approx)	102.401 secs 266241828125 cycles	
Cycles 102	2.401 secs 266241828125 cycles	
User time (approx)	102.401 secs 266241828125 cycles	
Utilization rate	96.3%	
Instr per cycle	0.27 inst/cycle	
HW FP Ops / Cycles	0.26 ops/cycle	
HW FP Ops / User tim	ne 673.327M/sec 68949134785 ops	12.9%peak
HW FP Ops / WCT	648.480M/sec	
HW FP Ops / Inst	96.3%	
Computation intensity	1.25 ops/ref	
MIPS 447	42.43M/sec	
MFLOPS 4	3092.91M/sec	
Instructions per LD ST	1.30 inst/ref	
LD & ST per D1 miss	24.53 refs/miss	
D1 cache hit ratio	95.9%	
LD ST per Instructions	s 76.8%	

• Vectorize

• Cache Block/Make efficient use of cache

SBLI – Direct Numerical Simulation of Turbulence at Scale on Cray XT4

•Finite difference code for turbulent boundary layers

•Higher-order central differencing, shock preserving advection scheme from the TVD family, entropy splitting of the Euler terms

•Application areas include noise production from wing sections - critical in modern aircraft design

Code scales to largest job queue on HECToR – 8192 cores -> 5.4 TFlops
HPCx scaling stops at around 1200 processors

•Cray Centre of Excellence for HECToR have improved single CPU performance of this code on HECToR – 20% speedup over original version

GFlops

APA analysis of code

- module load xt-craypat
- Create the instrumented executable
 - make hector
 - pat_build –O apa pdns3d.x
- Run the experiment
 - Run your simulation aprun –n \$NPROCS ./pdn3d.x+pat
- Create your report
 - pat_report –o sample.txt *.xf

Sampling experiment output

Table 1: Profile by Group, Function, and Line

Samp % Samp I Samp S 	Imb. Imb. Group Samp % Function Source Line PE='HIDE'
100.0% 20270	Total
86.2% 17474 ·	USER
12.3% 2488 - 3	
4 12.1% 2455 9	90.88 3.6% line.1824

 deriv_d1eta_2_:cent2.f:line.1824 – a triple nested loop with a difference calculation

deriv_d1eta_2 original


```
do k=1-zhalo,nzp+zhalo
  do j=1,nyp
    do i=1-xhalo,nxp+xhalo
    dfn(i,j,k) = ( fn(i,j-2,k) - fn(i,j+2,k)
    & +8.0d0*(fn(i,j+1,k) - fn(i,j-1,k)) )*facty
    & * hyr(j)
    end do
    end do
end do
```

USER / deriv_d1eta_2_

Time%	12.2%
Time	39.830899
Imb.Time	2.933972
Imb.Time%	7.0%
Calls	2854
DATA_CACHE_MISSE	S 46.294M/sec 1508451014 misses
PAPI_TOT_INS	656.987M/sec 21407421197 instr
PAPI_L1_DCA	452.621M/sec 14748311652 refs
PAPI_FP_OPS	440.116M/sec 14340835118 ops
User time (approx)	32.584 secs 84718968750 cycles
Cycles 32.5	584 secs 84718968750 cycles
User time (approx)	32.584 secs 84718968750 cycles
Utilization rate	81.8%
Instr per cycle	0.25 inst/cycle
HW FP Ops / Cycles	0.17 ops/cycle
HW FP Ops / User time	e 440.116M/sec 14340835118 ops 8.5%peak
HW FP Ops / WCT	360.043M/sec
HW FP Ops / Inst	67.0%
Computation intensity	0.97 ops/ref
MIPS 4204	7.19M/sec
MFLOPS 28	167.42M/sec
Instructions per LD ST	1.45 inst/ref
LD & ST per D1 miss	9.78 refs/miss
D1 cache hit ratio	89.8%
LD ST per Instructions	68.9%

• Cache behaviour is quite poor

Why was original so bad?


```
do k=1-zhalo,nzp+zhalo
  do j=1,nyp
    do i=1-xhalo,nxp+xhalo
    dfn(i,j,k) = ( fn(i,j-2,k) - fn(i,j+2,k)
    & +8.0d0*(fn(i,j+1,k) - fn(i,j-1,k)) )*facty
    & * hyr(j)
    end do
    end do
  end do
```

- Natural loop order above seems OK to me...
- Let's see what the compiler thinks

d1eta_2:

1820, Interchange produces reordered loop nest:

1822, 1820, 1824

1824, Generated 4 alternate loops for the inner loop Generated vector sse code for inner loop Generated 4 prefetch instructions for this loop Generated vector sse code for inner loop Generated vector sse code for inner loop Generated 4 prefetch instructions for this loop Generated 4 prefetch instructions for this loop Generated vector sse code for inner loop Generated 4 prefetch instructions for this loop

Loop interchange ruins the cache behaviour – compiler thought it was helping with hyr, but didn't seem to consider fn accesses

lo j=1,nyp
do k=1-zhalo,nzp+zhalo
do i=1-xhalo,nxp+xhalo
dfn(i,j,k) = (fn(i,j-2,k) - fn(i,j+2,k))
& +8.0d0*(fn(i,j+1,k) - fn(i,j-1,k)))*facty
& * hyr(j)
end do
end do
end do

Rewrite the loop?

d1eta_2:

1822, Generated 4 alternate loops for the inner loop Generated vector sse code for inner loop Generated 4 prefetch instructions for this loop Generated vector sse code for inner loop Generated vector sse code for inner loop Generated 4 prefetch instructions for this loop Generated 4 prefetch instructions for this loop Generated vector sse code for inner loop Generated 4 prefetch instructions for this loop

```
do k=1-zhalo,nzp+zhalo
do j=1,nyp
hyrj = hyr(j)
do i=1-xhalo,nxp+xhalo
dfn(i,j,k) = ( fn(i,j-2,k) - fn(i,j+2,k)
& +8.0d0*(fn(i,j+1,k) - fn(i,j-1,k)) )*facty
& * hyrj
end do
end do
end do
```

Stopped the loop interchange, and still getting inner loop vectorization

USER / deriv_d1eta_2_

	7.00/		
Time%	1.2%		
lime	22.156190		
Imb.Time	2.450521		
Imb.Time%	10.1%		
Calls	2854		
DATA_CACHE_MISSES	S 36.943M/sec 594335578 mis	ses	
PAPI_TOT_INS	1342.373M/sec 21596266950 instr		
PAPI L1 DCA	921.836M/sec 14830620040 refs		
PAPI FP OPS	892.677M/sec 14361505154 ops		
User time (approx)	16.088 secs 41829125000 cvcles		
Cycles 16.0	88 secs 41829125000 cvcles		
User time (approx)	16.088 secs 41829125000 cvcles		
Utilization rate	72.6%		
Instr per cycle	0.52 inst/cvcle		
HW FP Ons / Cycles	0.34 ops/cycle		
HW/EP Ons / User time	892.677M/sec 14361505154 ons	17.2% neak	
HW/ EP Ops / W/CT	6/8 19/M/sec		
HW/ED Ops / Inst	66 5 ⁰ /		
Computation intensity	0.5%		
MIPS 85911			
MFLOPS 5/1	131.35M/sec		
Instructions per LD ST	1.46 inst/ref		
LD & ST per D1 miss	24.95 refs/miss		
D1 cache hit ratio	96.0%		
LD ST per Instructions	68.7%		

- Vectorize
- Cache Block
- Don't stride through memory

Bad Striding


```
5)
              COMMON A(8,8, IIDIM, 8), B(8,8, iidim, 8)
(
    59) DO 41090 K = KA, KE, -1
    60)
                DO 41090 J = JA, JE
    61)
                  DO 41090 I = IA, IE
   62)
                   A(K,L,I,J) = A(K,L,I,J) - B(J,1,i,k) * A(K+1,L,I,1)
   63)
         * - B(J,2,i,k)*A(K+1,L,I,2) - B(J,3,i,k)*A(K+1,L,I,3)
   64)
         * - B(J,4,i,k)*A(K+1,L,I,4) - B(J,5,i,k)*A(K+1,L,I,5)
   65) 41090 CONTINUE
    66)
  PGI
   59, Loop not vectorized: loop count too small
   60, Interchange produces reordered loop nest: 61, 60
      Loop unrolled 5 times (completely unrolled)
   61, Generated vector sse code for inner loop
 Pathscale
 (Ip41090.f:62) Non-contiguous array "A(_BLNK__.0.0)" reference exists. Loop was
 not vectorized.
 (lp41090.f:62) Non-contiguous array "A(_BLNK__.0.0)" reference exists. Loop was
 not vectorized.
 (lp41090.f:62) Non-contiguous array "A(_BLNK__.0.0)" reference exists. Loop was
 not vectorized.
 (lp41090.f:62) Non-contiguous array "A(BLNK .0.0)" reference exists. Loop was
 not vectorized.
                                                                   5/11/2009
```

43

Rewrite

(6)	COMMON AA(IIDIM,8,8,8),BB(IIDIM,8,8,8)
(95)	DO 41091 K = KA, KE, -1
(96)	DO $41091 J = JA, JE$
(97)	DO 41091 I = IA, IE
(98)	AA(I,K,L,J) = AA(I,K,L,J) - BB(I,J,1,K)*AA(I,K+1,L,1)
(99)	* - BB(I,J,2,K)*AA(I,K+1,L,2) - BB(I,J,3,K)*AA(I,K+1,L,3)
(100)	* - BB(I,J,4,K)*AA(I,K+1,L,4) - BB(I,J,5,K)*AA(I,K+1,L,5)
(101)	41091 CONTINUE

PGI

95, Loop not vectorized: loop count too small

96, Outer loop unrolled 5 times (completely unrolled)

97, Generated 3 alternate loops for the inner loop Generated vector sse code for inner loop Generated 8 prefetch instructions for this loop Generated vector sse code for inner loop Generated 8 prefetch instructions for this loop Generated vector sse code for inner loop Generated 8 prefetch instructions for this loop Generated 8 prefetch instructions for this loop Generated 8 prefetch instructions for this loop

Pathscale

(lp41090.f:99) LOOP WAS VECTORIZED.

- Vectorize
- Cache Block
- Don't stride through memory
- Use Quad-Core enabled Libraries
 - Loading xtpe-quadcore module ensures you get the Quad-Core enabled versions of libsci, and the appropriate compiler flags to generate code for Quad-Core

- Vectorize
- Cache Block
- Don't stride through memory
- Use Quad-Core enabled Libraries
- Pre-post Receives

- Vectorize
- Cache Block
- Don't stride through memory
- Use Quad-Core enabled Libraries
- Pre-post Receives
- Investigate OpenMP

• Vectorize

- Cache Block
- Don't stride through memory
- Use Quad-Core enabled Libraries
- Pre-post Receives
- Investigate OpenMP
- Memory per core decrease

CASINO

- Quantum Monte Carlo (QMC) electronic structure calculations for finite and periodic systems
- Fortran 90 + MPI
 - Note: No OpenMP
- Over 100,000 lines of code
- One of EPSRC's HECToR benchmark codes
 - Now used heavily in production

Casino – The Problems

- 1. Memory
- User wants to use VERY LARGE wavefunction data sets
 - 2 copies (~4GB each) do not fit on HECToR's 6GB (dual core) nodes
 - Effective performance is HALF (since must run in single core mode)
- Solution:
 - Array is read only (once loaded) so only 1 copy is really needed
 - Use a single SHARED array (between MPI tasks on node)
 - Note: Too big a job to re-implement whole code in OpenMP

Casino – shared memory

- Method
 - Establish configuration (PEs on each node, and Master PE for each node)
 - Use Posix or System V shared memory to allocate large array on each node
 - Map this space onto the users array (Fortran 90 Pointer)
- Shared memory issues
 - Can't use Posix as /dev/shm is not user writeable
 - => Use System V shared memory
 - BUT: System V shared memory uses int (32 bits) for size
 - => Build up full size out of Sys V blocks of 1 GByte each
 - and map successive blocks to address of previous + 1
 Gbyte
 - Keep track of all blocks allocated, so they can be 'DE-allocated'
 - Delete all blocks (once mapped on all PEs) so that the shared segments disappear on program termination or failure/crash.

Get help with all of this!

- HECToR webpage documentation, etc
 - http://www.hector.ac.uk/
- CSE training courses and support
 - http://www.hector.ac.uk/cse/
- Upcoming Cray Centre of Excellence Workshop
 - Specifically targeted at Quad-Core
 - Dates still to be finalized
 - Will be advertised on the HECToR webpage
- Cray <u>http://www.cray.com/</u>
 - Documentation <u>http://docs.cray.com/</u>

Concerned about your codes performance on Quad-Core?

- Give it to us!
 - Jason Beech-Brandt jason@cray.com
 - Kevin Roy <u>kroy@cray.com</u>
- We can run your code on Quad-Core today to give you some advance notice on how your code will perform – and some pointers for improving that performance
- Source, makefile, and dataset