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The  code  "SoFTaR"  (Simulations  of  Flames:  Turbulence  and  Reaction)  was  based  on  the  direct 
numerical simulation (DNS) code for jet flow turbulence and combustion simulations developed at 
Brunel University, which is in the process of being linked with the database of flamelet-generated 
manifolds for combustion chemistry developed at  TU/e (Eindhoven University of Technology, The 
Netherlands) for DNS of flames with realistic chemistry. The SoFTaR code is used for the ongoing 
research  of  an  EPSRC  grant  EP/G062714/1  "Clean  Coal  Combustion:  Burning  Issues  of  Syngas 
Burning" (PI: Dr Xi Jiang; PDRA: Dr George Siamas).

The research group contacted the CSE team hoping to have the code optimised before running large-
scale simulations on HECToR. A site visit by the CSE team was arranged and hands-on training was 
given to  the research staffs involved.  The CSE team subsequently worked on the application code 
directly. Performance bottlenecks were identified and new communication routines were implemented 
by the CSE team, making the code 5 times faster in one realistic test case. Other suggestions regarding 
proper parallel I/O were given. These optimisation details are documented in this report. 

Optimising Communication Code

The application is based on structured-mesh finite-difference method using a form of compact scheme. 
Naturally, one-dimensional decomposition is used together with global data transposition strategy so 
that  expensive  calculations  can  be  done  using  established  fast  algorithms  in  local  memory. 
Unfortunately  the  communication  routines  in  this  code  is  not  in  a  great  shape  for  modern 
supercomputers like HECToR, as demonstrated by the following Cray PAT report. 

Time % |       Time |  Imb. Time |   Imb. |      Calls |Group 
      |            |            | Time % |            | Function 
      |            |            |        |            |  PE='HIDE' 

100.0% | 622.380772 |         -- |     -- | 10590767.6 |Total 
|------------------------------------------------------------------- 
|  76.5% | 475.970683 |         -- |     -- | 10213591.6 |MPI 
||------------------------------------------------------------------ 
||  58.4% | 363.761574 | 149.615814 |  29.4% |  5084341.8 |mpi_send_ 
||  17.6% | 109.648667 | 283.128510 |  72.7% |  5084341.8 |mpi_recv_ 
||================================================================== 
|  13.2% |  82.433108 | 324.558243 |  80.4% |    44904.0 |MPI_SYNC 
|        |            |            |        |            | mpi_barrier_(sync) 
|  10.3% |  63.976981 |         -- |     -- |   332272.0 |USER 
||------------------------------------------------------------------ 
||   2.5% |  15.512290 |   0.743604 |   4.6% |     1347.0 |rhs_ 
||   1.7% |  10.337003 |   1.738476 |  14.5% |    22453.0 |swapdat_ 
||   1.6% |  10.099456 |   1.762906 |  15.0% |    17511.0 |swapinv_ 
||   1.2% |   7.647495 |   0.311883 |   3.9% |    38614.0 |dx_ 
|=================================================================== 



As can be seen, the communication part of the code (MPI + MPI_SYNC) takes 89.7% of the total time 
to run. Closer examination of the code revealed that the global transposition of data is done via explicit 
MPI blocking send and receive calls, rather than ALLTOALL type of communication. The application 
user effectively implemented MPI_ALLTOALL by himself. This is very inefficient on HECToR where 
highly  optimised ALLTOALL routines are available. By rewriting the two communications routines 
(swapdat  and  swapinv in above table) using MPI_ALLTOALL, significant better performance was 
achieved as shown in the following Cray PAT report.

Time % |       Time |Imb. Time |   Imb. |    Calls |Group 
      |            |          | Time % |          | Function 
      |            |          |        |          |  PE='HIDE' 

100.0% | 113.863253 |       -- |     -- | 519839.6 |Total 
|--------------------------------------------------------------- 
|  44.2% |  50.355772 |       -- |     -- | 102699.6 |MPI 
||-------------------------------------------------------------- 
||  33.0% |  37.576854 | 2.345243 |   5.9% |  39964.0 |mpi_alltoall_ 
||   9.0% |  10.273081 | 9.488242 |  48.4% |   8913.8 |mpi_recv_ 
||   2.1% |   2.441814 | 0.093033 |   3.7% |  44904.0 |mpi_barrier_ 
||============================================================== 
|  40.5% |  46.121814 |       -- |     -- | 332272.0 |USER 
||-------------------------------------------------------------- 
||  13.5% |  15.378509 | 0.663161 |   4.2% |   1347.0 |rhs_ 
||   6.7% |   7.639985 | 0.350639 |   4.4% |  38614.0 |dx_ 
||   3.8% |   4.339009 | 4.312641 |  50.2% |      1.0 |exit 
||   3.3% |   3.742230 | 0.134771 |   3.5% |   8082.0 |d2x_ 
||   1.4% |   1.614176 | 0.063646 |   3.8% |  40410.0 |dz_ 
||   1.4% |   1.608269 | 0.073636 |   4.4% |  46696.0 |thomax3d_ 
||   1.3% |   1.509728 | 0.035236 |   2.3% |   8082.0 |d2z_ 
||   1.3% |   1.456928 | 0.175116 |  10.8% |  22453.0 |swapdat_new_ 
||   1.2% |   1.400617 | 0.077870 |   5.3% |  38165.0 |dy_ 
||   1.2% |   1.309752 | 0.009497 |   0.7% |  48492.0 |thomaz3d_ 
||   1.1% |   1.249496 | 0.025782 |   2.0% |      1.0 |MAIN_ 
||   1.1% |   1.243370 | 0.013231 |   1.1% |  46247.0 |thomay3d_ 
||   1.0% |   1.169883 | 0.174941 |  13.1% |  17511.0 |swapinv_new_ 
||============================================================== 
|  15.3% |  17.385667 |       -- |     -- |  84868.0 |MPI_SYNC 
||-------------------------------------------------------------- 
||  11.6% |  13.243273 | 2.823314 |  17.7% |  44904.0 |mpi_barrier_(sync) 
||   3.6% |   4.142394 | 0.951367 |  18.8% |  39964.0 |mpi_alltoall_(sync) 
|=============================================================== 

First of all the MPI calls in the new code is 8.2 times faster than the old code, down from 558 seconds 
to  only  68 seconds.  Most  computational  intensive  routines (shown in  USER section of  the  above 
tables),  such  as  rhs  (for  assembling  the  right  hand  side  of  equations  being  solved)  and  dx (for 
evaluating derivatives), spent nearly same amount of time to run. However additional savings were 
obtained  from the  non-MPI  part  of  the  communication  routines  (swapdat_new  and  swapinv_new) 
because  of  much  better  memory  access  patterns  are  used  when  packing  and  unpacking  the 
MPI_ALLTOALL send and receive buffers – a further saving of 18 seconds was achieved. Here is an 
example of the old code in which the send buffer  fsend is filled using big memory stride  (fastest 
changing index k being the 2nd dimension) therefore poor cache usage:

        do i=1,nx 
          do j=1,nyblk 
            jj=j+jshift 



            do k=1,nzblk 
              fsend(i,k,j)=f(i,k,jj) 
            end do 
          end do 
        end do

Here is an example of the new code where the MPI_ALLTOALL send buffer send_buf is assembled in 
a better manner (continuous memory space being updated):

      do j=1,nyblk 
        do k=j1,j2 
          do i=1,nx+2 
            send_buf(pos)=f(i,k,j) 
            pos=pos+1 
          enddo 
        enddo 
      enddo

As shown by these examples, coding details can be very important in HPC term but indeed not directly 
relevant to the scientific study. Luckily it was possible to make these changes in a black-box manner so 
that the user could simply replace two communication subroutines with new ones having identical user 
interface.  

Timing Result and Quad-core Performance

The timing results shown in this section is based on two medium-size simulations: one using 128^3 
mesh and running on 128 cores; the other using 128*256^2 mesh and running on 256 cores. Although 
these two cases take only minutes to run on HECToR, they can represent a typical production run of 
the code as the per-core workload is very similar to that of a production run.

The following table1 shows that the new code, with optimised communication routines, is more than 5 
times faster than the old code. As the number of cores increase, the benefit becomes more obvious as 
the ALLTOALL communication is more dominant. It worthy mentioning that at the time of this writing 
(October 2009), the quadcore programming environment is not loaded by default on HECToR. It is 
therefore  important  to  'module  load  xtpe-barcelona'  before  compiling  any  applications  to  get  the 
optimisation for the quadcore hardware and slightly better performance. 

No. core Old code New code New code 
(xtpe-barcelona 

module)

speed-up

128 622 112 105 5.9
256 4301 662 6.5

As the application is communication intensive, it is also possible to further improve the performance by 
using only 2 cores from each quad-core node, reducing the wall-clock-time by another 20% or so. 
However this is not recommended due to the current AU-charging policy.

1 Problem size of the two test cases arbitrary so only the speed-up values meaningful.



Other Suggestions

• As  can  be  seen  from the  second  Cray  PAT  report,  the  new  code  spends  9% of  time  in 
MPI_RECV. The data exchange there is not for computation but for collecting data onto a sub-
set of processors to perform I/O. This has been poorly implemented. As the data structure of 
this application is extremely simple (3D Cartesian mesh), it would be very easy to implement a 
MPI-IO solution that both improves the I/O performance and clean up the I/O logic. 

• The constraint posed by the existing communication algorithm is that the total number of cores 
that can be used in any simulation must be equal to or smaller than the number of mesh points 
in both y and z direction.  If the group is to perform large-scale Direct Numerical Simulations in 
the  future,  it  may  be  necessary  to  update  the  communication  algorithm  to  use  2D 
decomposition. One such library is being developed by the author of this report in an ongoing 
Distributed CSE project to support another CFD application. So this group is very likely to 
benefit from the dCSE work in the near future. 


