
Optimise HYPO4D on HECToR X2 machine

by Ning Li
HECToR CSE Team

Background Information:

HYPO4D is a computational code developed at UCL using Lattice Boltzmann method to solve the
governing equations of fluid flows for turbulence studies.

The code is written in C language and has been used extensively on the XT4 part of HECToR and is
reported to scale extremely well (linearly) to up to 4096 cores. The developer has taken part in our X2
early-user programme aiming to port this code onto X2 vector machine to take advantage of the large
amount of shared memory available.

The developer approached the CSE team after what he described as “completely unsuccessful” initial
attempt to port the code with “segmentation fault right at the beginning with no clear origin”. The bug
was traced to an undefined reference caused by the developer accidentally deleting some source code
when porting the code. Efforts were then dedicated to improve the performance of the code on X2.

Utilities Used:

The following utilities were used when assessing the performance of this code:

 Cray compiler's reporting function:
Cray C compiler 'cc' has an excellent 'loopmark listing' function that at compile-time generates
annotated source code together with information regarding code optimisations. To turn on this,
pass '-h list=a' flag to the compiler. An equivalent feature in Cray Fortran compiler is '-R a'.

 Cray 'explain' utility:
Under X2 programming environment, type 'explain CC-????' for more details related to certain
error/warning/information messages. Here ???? is a message ID given by the compiler.

 CrayPat:
The Cray Performance Analysis Tools is first used to locate the most time-consuming routines.
Only 'sampling' experiment is needed for this purpose. More detailed 'tracing' experiment is
needed at later stage to study performance-specific issues such as cache usage and vector
register usage of the code.

Base Case:

The original source code compiled using standard '-O3' level optimisation is considered as the base
case for comparison. A 256*128*128 mesh is used for all tests running on 8 cores – this is a suitable
problem size as it contains sufficient workload and completes in a couple of minutes on TDS, the
internal testing system. The timing results reported here are from the code's internal timing routine.
These results are seen to show very small variations.

The base case completed in about 448 seconds. According to the developer, this is almost twice the
XT4 runtime for the same configuration. Clearly there are plenty of rooms for improvement. A second
performance measurement widely used in Lattice Boltzmann codes is called site-updates-per-second

(SUPS). The SUPS value for the base case is 1.87E+06.

A set of Cray recommended options '-O3 -h fp3 -h cache2' gave no obvious performance gains.

Pointers Inhibiting Vectorisation :

First of all the two most time-consuming routines (according to user's experience on XT4) were
examined and a major problem was identified. The code consistently uses C pointers to operate big
data arrays. This may be a very elegant programming approach (or not elegant at all depending on your
perspective), however it is a major problem for vector compilers if not using properly. The compiler
repeatedly reported messages like the following (try 'explain CC-6290' for more information):

CC-6290 CC: VECTOR File = hypo4d_advection.c, Line = 31
 A loop was not vectorized because a recurrence was found between "lattice"
 and "lattice2" at line 35.

Here 'lattice' and 'lattice2' are two multiple-dimensional arrays of certain data type occurring in a loop.
When they are referenced using pointers, the compiler has no way to know if their memory spaces
overlap therefore the loop containing them doesn't get vectorised. A simple code snippet demonstrate
the above problem looks like:

void pntr(int *a, int *b) {
 int i;
 for (i=0;i<64;i++)
 b[i] = i * a[i];
}

If one calls the above function using something like pntr(&caller[0], &caller[10]) then the result
would be incorrect if the loop operations are performed in parallel. The Cray compiler can spot this
danger and simply generate scalar code to avoid potential problems.

Luckily in practice, it rarely programmers' intention to use overlapped memory space and the two
pointers are often accessing independent arrays, as it is the case in this code. One way to inform the
compiler that there are no data dependencies is to use 'restrict' keywords as defined by C99 standard,
i.e. the above function definition becomes void pntr(int * restrict a, int * restrict b). To
avoid excessive source-code changes, one can pass '-h restrict=a' flag to the Cray C compiler to
instruct that all pointers used in this manner can be safely vectorised.

The runtime was reduced to about 390 seconds after using the above compiler flag, giving a SUPS
value of 2.15E+06, a speed-up of 115%.

At this stage, a CrayPat report was generated to identify the most expensive routines for the next stage
of optimisation. The results are:

 Samp % | Samp | Imb. | Imb. |Experiment=1
 | | Samp | Samp % |Group
 | | | | Function
 | | | | PE='HIDE'

 100.0% | 36558 | -- | -- |Total
|---
| 93.8% | 34297 | -- | -- |USER

||--
|| 47.0% | 17181 | 669.00 | 4.3% |lbe_step
|| 35.5% | 12993 | 2829.88 | 20.4% |uniform_ABC_force
|| 6.5% | 2379 | 97.62 | 4.5% |advection
|| 2.5% | 897 | 1180.25 | 64.9% |ForceABC
|| 1.4% | 498 | 548.75 | 59.9% |LBForceTerm
||==
| 5.9% | 2151 | -- | -- |ETC
||--
|| 5.4% | 1973 | 888.25 | 35.5% |__cis
|===

Clearly, function lbe_step and uniform_ABC_force should get more attention next.

I/O Statements Inhibiting Vectorisation :

The lbe_step routine is very time-consuming because it goes through 4-dimensional loops doing
floating-point calculations. It contains a non-desirable feature – it checks some sort of stability
condition of the numerical algorithm within the loops. According to the developer, once the code is set
up properly the unstable conditions are seldom met. By removing these frequent checks, some
calculations also become unnecessary (therefore removed from the machine code generated by the
compiler), making the code significantly faster (252 seconds, SUPS=3.32E+06, a 178% speed-up from
the base case).

The developer is advised to change the way stability checking is performed (possibly less frequent
check in the scope of an outer loop). If the checks are seldom needed in production runs, the developer
is then advised to use preprocessor directives so that the checking part of the code can be conditionally
filtered out at compile time to aid the run-time performance.

A related issue is that using any I/O statements in the inner-most loop will inhibit the vectorisation of
that loop on X2. When this happens, a warning message like the following is issued by the compiler.

CC-6287 CC: VECTOR File = hypo4d_fequilibrium.c, Line = 39
 A loop was not vectorized because it contains a call to function "printf"
on line 114.

These I/O statements, even not located within the inner-most loop to prevent vectorisation directly,
may have other negative impact on code performance. For example:

CC-6205 CC: VECTOR File = hypo4d_advection.c, Line = 518
 A loop was vectorized with a single vector iteration.

CC-6004 CC: SCALAR File = hypo4d_advection.c, Line = 529
 A loop was fused with the loop starting at line 518.

Here the first loop at line 518 is properly vectorised by the compiler. Because the second loop at line
529 has the same loop count, it can be fused (meaning the bodies of the two loops merged into a single
bigger loops). Larger loop body may give the compiler better opportunities to perform optimisation. By
adding unnecessary I/O statements in between the two loops, these additional opportunities get lost.

A second CrayPat report shows that the lbe_step routine is no longer the most expensive function
after the above optimisation.

 Samp % | Samp | Imb. | Imb. |Experiment=1
 | | Samp | Samp % |Group
 | | | | Function
 | | | | PE='HIDE'

 100.0% | 23879 | -- | -- |Total
|---
| 83.1% | 19838 | -- | -- |USER
||--
|| 42.8% | 10212 | 6849.75 | 45.9% |uniform_ABC_force
|| 19.3% | 4602 | 621.62 | 13.6% |lbe_step
|| 10.2% | 2432 | 342.12 | 14.1% |advection
|| 4.7% | 1121 | 715.88 | 44.5% |ForceABC
|| 4.6% | 1101 | 779.62 | 47.4% |LBForceTerm
|| 1.3% | 303 | 49.38 | 16.0% |halo_exchange
||==
| 16.6% | 3971 | -- | -- |ETC
||--
|| 16.0% | 3825 | 4636.00 | 62.6% |__cis
|===

Similar unnecessary checks are performed in other part of the code, particularly in expensive functions
such as uniform_ABC_force function. The developer was advised to properly change these too.

Inlining and Vectorisation:

There are calls to smaller functions such as ForceABC within the nested loops in function
uniform_ABC_force. These functions have to be 'inlined' in order for the nesting loop to be vectorised.
Cray compilers' default setting is not particularly convenient when inlining functions. The smaller
functions have to be defined in the same source file as the calling function for them to be picked up by
the compiler. Or users must use '-h ipafrom=' flag for C code (or '-O ipafrom=' for Fortran) to
explicitly specify the files containing the functions to be inlined. A third options is to use compiler
directives to fine-tune the inlining behaviour, which isn't quite straight-forward.

The optimisation earlier using '-h restrict=a' flag actually has a negative impact in term of inlining.
The compiler reported the following:

CC-3148 CC: INLINE File = hypo4d_advection.c, Line = 496
 Routine ForceABC was not inlined because a formal parameter is a restricted
 pointer and its corresponding actual argument is not a restricted pointer.

In order to fix this problem, a new build script was created which doesn't apply '-h restrict=a' flag to
this one particular source file. As a result, the compiler reported:

CC-3001 CC: INLINE File = hypo4d_advection.c, Line = 496
 The call to ForceABC was textually inlined.

This change to source file hypo4d_advection.c actually slowed down the code to 305 seconds
initially. The restrict keyword had to be added explicitly to some pointer definitions to instruct the
compiler to safely vectorise certain loops, reducing the time to 231 seconds. Commenting out a few
more I/O statements further brought down the run-time to 163 seconds, or SUPS= 5.14E+06, a 275%
speed-up in comparison to the base case.

Unrolling the inner-most loop:

The most time-consuming part of the code often involves 4-dimensional loops. The 3 levels of outer
loops are over spatial indices which are normally quite large (128 and 256 in the test case); and the
inner-most loop is over a relatively small number of 'lattice vectors' and this number is fixed (=19) at
compile time for this particular application. By default the inner-most loop gets vectorised unless the
compiler is smart enough to swap the loops. Because in X2 hardware the vector registers can hold up to
128 words at a time, it makes sense to completely unroll the inner-most loop so that the larger nesting
loop gets the chance to be vectorised. This proved to be very helpful in this case. For example, the
source code hypo4d_fequilibrium.c contains several such loops. By default the compiler vectorise
the inner-most loop, generating information like:

CC-6315 CC: VECTOR File = hypo4d_fequilibrium.c, Line = 35
 A loop was not vectorized because the target array (f_eq) would require
rank expansion.

CC-6315 CC: VECTOR File = hypo4d_fequilibrium.c, Line = 37
 A loop was not vectorized because the target array (f_eq) would require
rank expansion.

CC-6315 CC: VECTOR File = hypo4d_fequilibrium.c, Line = 39
 A loop was not vectorized because the target array (f_eq) would require
rank expansion.

CC-6205 CC: VECTOR File = hypo4d_fequilibrium.c, Line = 42
 A loop was vectorized with a single vector iteration.

Here line 42 is the inner-most loop getting vectorised into a single vector iteration but did not take
advantage of the full vector length of the hardware. By adding a directive '#pragma _CRI unroll 19'
in the source code before the inner-most loop, the compiler completely unrolled it (also called
unwound by the compiler), i.e. making 19 copies of the loop body and deleting the loop itself. The
'loopmark listing' then gave:

CC-6294 CC: VECTOR File = hypo4d_fequilibrium.c, Line = 35
 A loop was not vectorized because a better candidate was found at line 39.

CC-6294 CC: VECTOR File = hypo4d_fequilibrium.c, Line = 37
 A loop was not vectorized because a better candidate was found at line 39.

CC-6204 CC: VECTOR File = hypo4d_fequilibrium.c, Line = 39
 A loop was vectorized.

CC-6008 CC: SCALAR File = hypo4d_fequilibrium.c, Line = 44
 A loop was unwound.

It can be seen that the larger loop at line 39 was vectorised instead, generating much more efficient
code because more capacity of the hardware can be used. This improved the code performance
significantly. With similar changes made in several other key functions (uniform_ABC_force,
advection, LBForceTerm) through out the code, the run-time was reduced to only 99 seconds
(SUPS=8.49E+06). Now the code is 454% faster than the base case.

Using CrayPat to examine the code performance again (tracing experiment this time), one can see two
major areas of improvement. Because of the vectorisation of bigger outer loop, the average vector

length in use has increased from 8.91 to 64, indicating much effective use of the hardware. A bonus is
that the data cache usage has also improved significantly, from 83% to 100%.

==
USER / lbe_step
--
 PAPI_VEC_INS 127.314M/sec 7969178998 instr
......
 Utilization rate 100.0%
 Instr per cycle 0.36 inst/cycle
 HW FP Ops / Cycles 1.07 ops/cycle
 HW FP Ops / User time 857.580M/sec 41313895012 ops 3.3%peak
 HW FP Ops / WCT 857.580M/sec
 HW FP Ops / Inst 297.8%
 Avg VL 8.91 ops
 Data cache refs 0.001M/sec 54998 refs
 D cache hit ratio 83.3%
 MIPS 2303.97M/sec
 MFLOPS 6860.64M/sec
 Instructions per LD ST 252268.21 inst/ref
 LD & ST per D1 miss 6.00 refs/miss

==
USER / lbe_step
--
 PAPI_VEC_INS 127.314M/sec 819199998 instr
......
 Utilization rate 100.0%
 Instr per cycle 0.20 inst/cycle
 HW FP Ops / Cycles 9.05 ops/cycle
 HW FP Ops / User time 7242.970M/sec 46604654208 ops 28.3%peak
 HW FP Ops / WCT 7242.970M/sec
 HW FP Ops / Inst 4425.6%
 Avg VL 64.00 ops
 Data cache refs 12.548M/sec 80738192 refs
 D cache hit ratio 100.0%
 MIPS 1309.29M/sec
 MFLOPS 57943.76M/sec
 Instructions per LD ST 13.04 inst/ref
 LD & ST per D1 miss 5877.37 refs/miss

Before unrolling the inner-most loops, the compiler generates a mixture of vector and scalar operations,
therefore the average vector length recorded by CrayPat (8.91) is much smaller than the loop count
(19); after unrolling the inner-most loops, every operations are in vector mode, so the average vector
length is identical to the loop count (64). The total number of vector instructions are also seen to be
reduced by nearly 90% - from roughly 8 billion to 800 million.

Because the vector registers in the hardware can hold up to 128 words, it is natural to extend the above
idea further by changing the order of the spatial loops so that the inner-most dimension corresponds to
the largest mesh count. Recall that the problem size of the test case is 256*128*128 (or 128*64*64 for
each core) and the third dimension doesn't have the largest loop count. In a further test of a different
case over a mesh of 128*128*256 was performed (although this represents a different problem
physically, the computational cost is the same), the total computational time has been reduced to 93
seconds (SUPS=9.03E+06, 483% speedup). The developer has since confirmed that the domain

decomposition routine by default partitions the computational domain assuming nx >= ny >= nz. This
is an arbitrary choice and nz should indeed be given the largest possible number. A slight change of the
domain decomposition routine should benefit all future applications of this code on vector machines.

Summary:

The performance of HYPO4D code on HECToR X2 vector machine was significantly improved by

 instructing the compiler of data dependency issues.
 removing unnecessary stability checks and I/O statements within loops.
 explicitly instructing the compiler to inline key functions.
 manually unrolling loops to facilitate vectorisation of larger outer loop.

A 483% performance gain was achieved. Further study of the compiler 'loopmark listing' messages
revealed additional opportunities for code improvement. One example is a more complex data
dependency issue which can possibly be solved by restructuring of the source-code.

