
CASTEP Quad Core Benchmarking and Optimisation

Asimina Maniopoulou, Chris Armstrong

CSE Team
NAG Ltd., support@hector.ac.uk

June 2009

1 Introduction

The following investigations have been made on the HECToR TDS (Test and Development System) which
is configured as the main system will be in phase 2a (aside from some differences in the IO system),
consisting of quad core AMD Opteron processors. The system has 64 nodes, giving 256 processing cores
in total.

2 Benchmarking CASTEP 4.4 as it stands

CASTEP 4.4 was compiled with the Pathscale 3.2 compiler on HECToR (dual core nodes) and the
HECToR TDS (quad core nodes). The flags used for the compilation for both cases were chosen to be
the ones prescribed in the CASTEP dCSE Project report [1]. The flags read:

-O3 -OPT:Ofast -OPT:recip=ON -OPT:malloc_algorithm=1 -inline -INLINE:preempt=ON

In addition a new module “xtpe-quadcore” was loaded during compilation, which appends a quadcore-
specific optimisation flag (for Pathscale -march=barcelona) and links to a quadcore-optimised version of
the Cray libsci library, if used.

On the quadcore system it was observed that the executable exited with a segmentation fault after
preforming all of the SCF calculations. The routine that was failing was basis sum recip grid in the
Fundamental/basis.F90 file. The problem was found to be related to the array “grid” in that routine.
We could overcome this issue by compiling the aforementioned file at lower optimization level. As the
executable was found to seg. fault even at level -O2, the optimization flags used were:

-O1 -OPT:Ofast -OPT:recip=ON -OPT:malloc_algorithm=1 -inline -INLINE:preempt=ON

It should be noted that this did not degrade the performance of the code at all. Alternatively maybe one
could use compiler optimization directives in basis.F90, so that lower optimization is applied only to the
problematic function and not the whole file.

Tables 1-3 below give the performance results for three benchmarks run on dual- and quad-core
systems. (Details about the benchmarks can be found in [1].) The times recorded in the tables are the
last SCF cycle in secs reported in the corresponding 〈benchmark〉.castep output file. In bold we point
out the cases where the performance on the quadcore is inferior to that of than the dual-core system.

1

nprocs dualcore quadcore speedup
8 398.31 327.16 1.22
16 231.60 218.77 1.06
32 174.02 218.91 0.79
64 194.57 301.10 0.65

Table 1: Performance of the al1x1 benchmark (last SCF cycle: 7). Time is given in secs.

2.0.1 Benchmark al1x1

For 32 and 64 cores we note that performance is worse on the quad-core system, although the multicore
option in the castep.param file yields better performance (See table 8 in Section 5.2). The improvement
is very small for this benchmark and certainly does not compensate for the 1.5 times increase in AU cost.
Our observation is that since al1x1 is a small case the inferior performance for > 16 procs is caused by
communication dominating more than for smaller job sizes, and with four cores there is more contention
on the path to the interconnect in each node (see Section 5 for an optimisation related to this problem).

2.0.2 Benchmark al3x3

nprocs dualcore quadcore speedup
32 5948 4759.03 1.25
64 3121.02 2500.48 1.25
128 1915.14 1696.30 1.13
256 1464.74 1526.11 0.96

Table 2: Performance of the al3x3 benchmark(last SCF cycle: 11). Time is given in secs.

In table 2 the measurements on 32 and 64 cores show a speedup of about 1.25 times, which is quite
close to the 1.5 expected. On 256 cores we note that scaling degrades when compared with the old dual
core system (0.96 slowdown), which agrees with the observation made for al1x1.

2.0.3 Benchmark TiN-mp

nprocs dualcore quadcore speedup
64 785.09 (42) 654.33 (42) 1.20
128 572.12 (39) 422.02 (39) 1.35
256 370.71 (42) 404.35(42) 0.92

Table 3: Performance of the TiN-mp benchmark (Number of last SCF cycle depends on the number of
processors and is the number in brackets next to the SCF timing). Time is given in secs.

The speedup here (table 3) is 1.2 on 64 cores and 1.35 on 128. Scaling deterioration is evident on
256 cores.

In a summary large benchmarks show a speedup between 1.2 and 1.35 times. Evidently though,
CASTEP scales much worse on the quad core system than the dual core system on more than 128
processors for large jobs (al3x3 and TiN-mp benchmarks), while for smaller jobs scaling issues become
evident even on 32 cores (al1x1 benchmark). This scaling deterioration is partly addressed in Section 5.

2

3 CASTEP Tuning on the quadcore system

3.1 Compiler Optimization

A number of different compilation flags were tried on top of the existing ones, but no further optimization
was achieved. Some of these flags were

-ipa, -LNO:blocking=ON, -LNO:prefetch=3, -LNO:prefetch_ahead=3, -LNO:prefetch_ahead=4,

-LNO:full_unroll_outer=ON, -LNO:full_unroll_size=10000, -LNO:fu=12,

-OPT:unroll_times_max=16, -LNO:fission=2

It should be noted that when we tried to enforce more aggressive vectorization using the flag -LNO:simd2
the compilation failed with a segmentation fault. One could use this flag only when the optimization
level was reduced to -O2, but the combination lead to inferior performance.

3.2 Optimization via Environment Variables

We experimented with various MPICH environment variables, including huge page file support1. Out of
these we found particularly beneficial for CASTEP the MPICH RANK REORDER METHOD. When the
scaling deteriorates (i.e. on 256 processors for the benchmarks al3x3 and TiN-mp) it is also beneficial to
change the ALLTOALLV algorithm used by setting MPICH ALLTOALLVW RECVWIN =1 (the details
of what this does are not clear, but it has the effect of using a different algorithm for MPI Alltoallv).

3.2.1 MPICH RANK REORDER METHOD

The default MPI rank placement scheme is SMP-style placement. Experimenting with different schemes
yielded that the folded-rank placement can provide a speedup of 1.15 times over the default placement
for large jobs. When the folded rank placement is enforced ranks are placed on the next node in the list
and once every node has been used, the rank placement folds from the last node, going back to the first.
Further investigations should be made, but the following results show that castep users should set this
environment variables in their job scripts always.

nprocs default-smp folded speedup
8 327.16 325.87 1.00
16 218.77 219.44 1.00
32 218.91 214.78 1.02
64 301.10 294.05 1.02

Table 4: Performance of the al1x1 benchmark (last SCF cycle: 7). Time is given in secs.

For the small benchmark al1x1, there seems to be little benefit of enforcing the folded-rank placement.

3.2.2 MPICH ALLTOALLVW RECVWIN

In the following table we compare the default performance on quadcore to the performance obtained when
both MPICH RANK REORDER=2 and MPICH ALLTOALLVW RECVWIN =1. It should be noted

1From the Cray XT Programming Environment User’s Guide, “Cray XT systems support 2 MB huge pages and 4 KB

base pages for CNL applications. Previous versions of CNL supported only base pages. For applications that use a large

amount of virtual memory, 4 KB pages can put a heavy load on the virtual memory subsystem. Huge pages can provide a

significant performance increase for such applications. The 4 KB base pages remain the default.”

3

nprocs default-smp folded speedup
32 4759.03 4539.56 1.05
64 2500.48 2402 1.04
128 1696.30 1620.38 1.05
256 1526.11 1405.14 1.09

Table 5: Performance of the al3x3 benchmark (last SCF cycle: 11) with folded rank order. Time is given
in secs

nprocs default-smp folded speedup
64 654.33 (42) 606.37 1.08
128 422.02 (39) 376.66 1.12
256 404.35 350.48 1.15

Table 6: Performance of the TiN-mp benchmark with folded rank order. (Number of last SCF cycle
depends on the number of processors). Time is given in secs.

that the effect of MPICH ALLTOALLVW RECVWIN=1 is greater with the default-smp rank order, but
the optimal performance is obtained when both MPICH environment variables are set.

benchmark nprocs default dualcore default quadcore folded folded + RECVWIN
al3x3 256 1464.74 1526.11 1405.14 1344.12
TiN-mp 256 370.71 404.35 350.48 344.03

Table 7: Optimal Performance with MPICH environment variables set. Timings are given for the last
SCF cycle.

We suggest further experiments with MPICH ALLTOALLVW RECVWIN and the corresponding
SEND environment variable for different number of processors.

Table 7 shows that with these environment variables set the performance of CASTEP for al3x3 and
TiN-mp on the quadcore machine is now superior to the dualcore machine, although it should be noted
that the dual core machine has not been tested with the environment variables mentioned in this section
set.

4

4 Profiling

We profiled the code on the quadcore system (using TiN-mp) to examine mainly vectorization and cache
utilization (which are extremely important on the quadcore system).

4.1 User functions

The most time consuming user functions when the code ran on 64 cores were found to be:

|| Time% | Time | D1 Cache hit, miss ratio | Function

|| 56.0% | 419.238296 | 94 % | main

|| 9.7% | 72.656015 | 94 % | POT_NONGAMMA_APPLY_SLICE.in.POT

|| 6.3% | 46.856810 | 96.6% | COMMS_TRANSPOSE_N.in.COMMS

|| 3.7% | 27.553444 | 78.9% | WAVE_INITIALISE_SLICE.in.WAVE

|| 1.4% | 10.700597 | 88.5% | ION_Q_RECIP_INTERPOLATION.in.ION

|| 1.1% | 8.429017 | 89.6% | ION_APPLY_AND_ADD_YLM.in.ION

This shows a fairly low cache hit:miss ratio. Also, vectorization was found to be an issue for the
functions ION Q RECIP INTERPOLATION.in.ION and ION APPLY AND ADD YLM.in.ION. Using
the Pathscale flags

-FLIST:=on -LNO:simd_verbose

during compilation, one finds that non-contiguous access to arrays is a very common occurrence and this
prohibits both cache utilization and vectorization. It was found that the compiler failed to vectorized in
many locations where mixed type operations (double complex and double precision) are used. We find
this a surprising outcome and suggest further tests should be performed to verify that this is the case.

4.2 MPI functions

4.2.1 64 cores

When TiN-mp is run on 64 cores here are the most time consuming MPI functions. Before each MPI collec-
tive a barrier is set and the time needed for the synchronization is recorded as MPI function name (sync).
The time needed to complete the collective is given separately.

Time % | Time | Imb. Time | Imb. | Calls |Function

|| 16.1% | 119.638932 | -- | -- | 285344.2 |MPI

||--

|| 13.9% | 103.655824 | 6.980603 | 6.4% | 207187.5 |mpi_alltoallv_

|| 1.1% | 8.160020 | 1.956344 | 19.6% | 622.3 |mpi_recv_

||==

| 5.2% | 39.001770 | -- | -- | 284091.5 |MPI_SYNC

||--

|| 2.2% | 16.375367 | 4.858887 | 23.2% | 207187.5 |mpi_alltoallv_(sync)

|| 2.2% | 16.000521 | 4.925778 | 23.9% | 58403.2 |mpi_allreduce_(sync)

5

4.2.2 256 cores

100.0% | 1161.156466 | -- | -- | 1788338.6 |Total

|--

| 58.8% | 682.655539 | -- | -- | 513017.7 |MPI

||---

|| 54.9% | 636.979240 | 89.855737 | 12.4% | 392235.5 |mpi_alltoallv_

|| 2.0% | 23.695335 | 5.885210 | 20.0% | 87424.8 |mpi_allreduce_

|| 1.4% | 16.091737 | 1.547607 | 8.8% | 1317.8 |mpi_recv_

||===

||===

| 18.8% | 217.732094 | -- | -- | 510374.0 |MPI_SYNC

||---

|| 9.3% | 107.482739 | 82.866435 | 43.7% | 87424.8 |mpi_allreduce_(sync)

|| 7.8% | 90.137755 | 68.867932 | 43.5% | 392235.5 |mpi_alltoallv_(sync)

|| 1.0% | 11.947095 | 10.972329 | 48.1% | 7.0 |mpi_barrier_(sync)

Comparing the MPI communication time for the same benchmark run on 64 and 256 cores, we can see
that MPI communication prevails over the execution time. Special attention is paid to mpi alltoallv, as
used for the 3D FFT operations, in sections 5 and 6. The location and purpose of these MPI calls should
be determined and understood. Load balancing issues come up as now almost 19 % of the execution time
is spent on synchronization.

While some effort needs to be dedicated to improving vectorization and utilizing the cache more
efficiently, the 1.2 to 1.3 factor speedup on the quadcore is quite good. Scaling is the issue that should
be addressed in a dCSE project that aims to improve performance of CASTEP on the quadcore.

The next two sections investigate the effect of two suggested optimisations.

6

Figure 1: Domain decomposition for 3D parallel FFT. Step 1: perform FFTs in x-direction.

5 Introducing a shared memory buffer for MPI Alltoallv com-

munication

5.1 Background

The strategy CASTEP uses to perform 3D FFTs (Fast Fourier Transform) in parallel is to have each
process perform separate 1D transforms in the x, y and z directions on a subset of the grid using a
“pencil” distribution. We will illustrate this procedure using a simple case consisting of 9 processors.

Figure 1 illustrates the domain decomposition when each process is performing a number of transforms
in the x-direction. The data on each process is represented by a different colour. There are ngx, ngy, ngz
points in the x, y and z directions respectively. Thus, each process will perform ngy

nprocy
· ngz

nprocz
transforms in

the x-direction in Figure 1. The next step is to rotate (or “transpose”) the data so that each process can
perform transforms in the y-direction. The resulting data distribution is given in Figure 2. This process
is then repeated, transposing data so that each process is able to perform transforms in the z-direction
(Figure 3).

5.2 Implementation

The most expensive aspect to this operation on HECToR is transposing data between calculating the 1D
FFTs. This is implemented using MPI Alltoallv. CASTEP has two options for performing the transposes.
The default mode of operation is to have every process participate in the MPI Alltoallv call. The other
option is for multicore systems whereby a single process per node makes the call to MPI Alltoallv. This
is achieved by using MPI Gather within a node to collect data to be sent into a single send buffer. The
nominated participating processes then take part in the MPI Alltoallv call, thus minimising contention

7

Figure 2: Domain decomposition for 3D parallel FFT. Step 2: transpose data as shown in Figure 1 and
perform FFTs in y-direction.

Figure 3: Domain decomposition for 3D parallel FFT. Step 3: transpose data as shown in Figure 2 and
perform FFTs in z-direction.

8

on the interconnect. Data received by the participating processes is then scattered to the other processes
in the node.

The main cost of using the multicore option is associated with gathering data within a node, then
marshalling it into the correct order for the MPI Alltoallv call, and unmarshalling then scattering after
the MPI Alltoallv call. For example, running the al1x1 benchmark on 16 processors in multicore mode
gives an overall run time of 292.1s versus 222.9s in default mode. In default mode, 68.6s were spent in
the routine that performs the transpose (comms transpose exchange) compared with 115.8s in multicore
mode. Gathering and marshalling took 17.5s, MPI Alltoallv took 57.5s, and unmarshalling and scattering
took 58.9s (timings averages across processors).

Introducing a shared memory (System V shm) buffer provides the opportunity to merge the costly
gather/marshal and unmarshal/scatter tasks into one loop either side of the MPI Alltoallv call since
every process within a node can directly pack or unpack its data. Doing so reduces the gather/marshal
time to 8.7s and the unmarshal/scatter time to 7.2s. The overall run time when using the shared memory
buffer reduces to 207.6s.

Tables 8-10 below give the performance results for three benchmarks. The default mode of operation
tends to be faster when fewer processes are used because the overhead of packing and unpacking the
send/recv buffers is greater. The shm optimisation pays off well for long jobs using more processes. For
example, we see a 1.44 times speedup in the performance of al3x3 on 128 processes. The most spectacular
result is the 1.78 times speedup for al1x1 running on 32 processes. It is noted that the introduction of
the shm buffer has improved the scaling of the code in all cases.

nprocs default multicore shm default:shm
8 334.9 545.3 387.9 0.86
16 222.9 292.1 207.6 1.07
32 223.5 157.3 125.5 1.78

Table 8: Performance of the al1x1 benchmark (SCF cycle 7)

nprocs default multicore shm default:shm
64 2260.6 3102.7 2665.3 0.85
128 1788.1 1783.9 1571.5 1.14
256 1563.9 1191.3 1086.6 1.44

Table 9: Performance of the al3x3 benchmark (SCF cycle 11)

nprocs default multicore shm default:shm
32 1324.53 1931.1 1404.9 0.94
64 655.0 993.5 748.9 0.87
128 431.3 550.1 415.6 1.04

Table 10: Performance of the TiN-mp benchmark (SCF cycle 39)

5.3 Suggestions for further (possible dCSE) work

The current shm shared memory implementation makes use of calls to C in order to allocate and attach
the shm memory segments. In order to incorporate this work into the CASTEP code base the C routines
should be interfaced to Fortran in a standard way, for example using the Fortran 2003 standard.

9

The current implementation assumes an SMP-style rank placement, as is the default on HECToR.
However, Section 3.2.1 has shown that CASTEP can benefit from a folded placement strategy. The C
code used to interface to shm does contain a function to determine placement, based on reading a Cray
system file. A further challenge is to find a portable way of determining rank placement at runtime in
order to investigate the effect of different strategies on the shm optimisations.

In order to enable the multicore option described above the option num proc in smp was set to 4 in
the .param files (i.e. group all 4 cores within a node into a single SMP group), but experience on HPCx
has shown that there are situations in which it is beneficial to set this value lower than the maximum
number of cores available in a node in order to optimise the size of the MPI Alltoallv message. It has been
suggested that an empirical algorithm be investigated for optimising message size in this way, mirroring
what had been used on HPCx.

6 Investigating the effect of bands blocking FFTs

The 3D FFT operation described in Section 5.1 is performed consecutively on an independent sequence
of geometrically identical 3D domains, each of which is called a band. Since the transpose in a particular
direction is the same for all bands, there is the opportunity to pack together multiple bands into a single
MPI Alltoallv call in order to hide latency.

This investigation has concentrated on implementing this optimisation for a single instance where such
“bands blocking” is available: in subroutine basis real recip reduced many. This subroutine contains a
loop of the form:

do nb=1,nblock

call basis_fft_wrapper(ngx,ngy,ngz,grid(1,nb),-1,’W’)

which performs a 3D FFT over nblock bands. Each band is stored in a column of the grid array.
This loop has been changed to loop over bandblock bands as follows:

do nb=1,nblock/bandblock

call basis_fft_wrapper_bb(ngx,ngy,ngz,grid(1,(nb-1)*bandblock+1),&

-1,’W’,max_grid_points)

(along with a loop to tidy up the remaining bands).
The new FFT wrapper routine (implemented in the FFTW3 wrapper only) performs bandblock

dfftw execute dft calls before transposing in a single call the data for bandblock bands. The new trans-
pose operation packs bandblock bands into the shm send buffer, performs MPI Alltoallv and unpacks
bandblock bands from the recv buffer. Packing and unpacking the send and recv buffers is done with an
adapted indexing scheme to ensure the correct placement of data.

Figures 4-6 show the performance of this bands blocking for the three benchmarks with timings taken
from CASTEP’s own tracing. In all cases performance degrades with the number of bands blocked. Figure
7 shows why this performance degradation occurs: while the cost of the MPI Alltoallv call decreases up
to 12 bands, the cost of packing and unpacking the shared memory buffers increases with number of
bands (timings here taken from MPI Wtime on a separate run). This shows that the idea behind bands
blocking – packing more data into send buffers to mitigate latency – is sound, but the new memory
access pattern used to pack and unpack the buffers tends to dominate. In order to make effective use of
bands blocking it is essential to optimise the way in which data is copied to and from the shared memory
buffers.

Table 11 shows gives the performance figures for 5 bands divided by the same figures for 1 band (i.e.
a value < 1 indicates superior performance for 5 bands; a value > 1 indicates inferior performance).

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16 18 20

se
co

nd
s

bands blocked

al1x1

8 basis
8 trans

16 basis
16 trans
32 basis
32 trans

Figure 4: Performance of al1x1 for 8, 16, 32 processors. “basis” indicates time traced from ba-
sis real recip reduced many; “trans” indicates time traced in comms transpose.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2 4 6 8 10 12 14 16 18 20

se
co

nd
s

bands blocked

al3x3

64 basis
64 trans

128 basis
128 trans

Figure 5: Performance of al3x3 for 64, 128 processors. “basis” indicates time traced from ba-
sis real recip reduced many; “trans” indicates time traced in comms transpose.

11

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

se
co

nd
s

bands blocked

TiN-mp

32 basis
32 trans

128 basis
128 trans

Figure 6: Performance of TiN-mp for 32, 128 processors. “basis” indicates time traced from ba-
sis real recip reduced many; “trans” indicates time traced in comms transpose.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

m
ax

 c
um

ul
at

iv
e

tim
e

ov
er

 a
ll

pr
oc

es
so

rs
 (

se
co

nd
s)

bands blocked

al1x1 transpose breakdown

pack send buffer
mpi alltoallv

unpack receive buffer

Figure 7: Profile of time spent inside comms transpose for al1x1, 16 processors.

12

Table 12 gives the same performance ratios when huge page files are enabled, still comparing against base
pages.

Table 12 indicates that using huge pages has the effect of decreasing the number of TLB misses to
be comparable with using 1 band with base pages. However, the timing results show no significant
performance gains, and the poor L2 and L3 cache figures remain. That enabling huge pages has no effect
on performance is reinforced by running with 1 band and huge pages: the ratios of TLB misses for the
pack and unpack loops compared to 1 band with base pages are reduced to 0.09 and 0.10, respectively,
but the timing ratios are both very close to 1.

This indicates that TLB misses are not the limiting performance factor, and that the aim should be
to minimise L2 and L3 cache misses (it is interesting to note that the number of L1 cache misses actually
decreases for 5 bands).

Time L1 misses L2 misses L3 misses TLB misses
pack 1.07 0.78 5.83 3.65 1.63
unpack 1.26 0.77 3.17 7.67 2.22

Table 11: Performance slowdown factors for 5 bands compared with 1 band

Time L1 misses L2 misses L3 misses TLB misses
pack 1.00 0.78 5.73 3.72 1.08
unpack 1.24 0.77 3.15 7.59 1.02

Table 12: Performance slowdown factors for 5 bands with huge page files compared with 1 band with
base page files

6.1 Suggestions for further (possible dCSE) work

Change the way in which data is copied to and from shared memory buffers. The present approach
relies on existing indexing arrays, which appear to step over memory and make poor use of locality.
Some analysis of the current memory access pattern is required and an investigation into more effective
packing/unpacking.

Figure 7 shows that bands blocking can improve the performance of MPI Alltoallv and, given improved
memory copies, applying the idea to the rest of the code (i.e. not just basis real recip reduced many) will
multiply the improvement.

Acknowledgments

Thank you to David Tanqueray for supplying the code for managing System V shared memory and to
Keith Refson for his input on CASTEP.

References

[1] Bands parallelism in CASTEP http://www.hector.ac.uk/cse/distributedcse/reports/castep/

13

	1 Introduction
	2 Benchmarking CASTEP 4.4 as it stands
	2.0.1 Benchmark al1x1
	2.0.2 Benchmark al3x3
	2.0.3 Benchmark TiN-mp

	3 CASTEP Tuning on the quadcore system
	3.1 Compiler Optimization
	3.2 Optimization via Environment Variables
	3.2.1 MPICH_RANK_REORDER_METHOD
	3.2.2 MPICH_ALLTOALLVW_RECVWIN

	4 Profiling
	4.1 User functions
	4.2 MPI functions
	4.2.1 64 cores
	4.2.2 256 cores

	5 Introducing a shared memory buffer for MPI_Alltoallv communication
	5.1 Background
	5.2 Implementation
	5.3 Suggestions for further (possible dCSE) work

	6 Investigating the effect of bands blocking FFTs
	6.1 Suggestions for further (possible dCSE) work

