
A Research Councils UK High End Computing Service

Numerical Algorithms Group Ltd, HECToR CSE

XT6 Workshop

13th October 2010

Using the XT6: case studies

Outline

• Micro-benchmarking

• CASINO

• GloMAP mode MPI

• CABARET and Incompact3D

• DL_POLY

• CASTEP

Micro-benchmarking tests

Chris Armstrong

Questions

1. What is the performance penalty for accessing data
stored in non-local memory?

2. What is the effect of having a single link (which is the
same as in the XT4) to the interconnect?

Micro-benchmarking tests to help understand the
architecture...

Testing non-local memory accesses

• Looked at two ways of accessing non-local memory:

• MPI

• Cray’s MPI library performs intra-node communications
using shared memory.

• Indicates the performance of accessing fixed-size chunks
of data.

• Should say something about latency and bandwidth of HT
links within the node.

• OpenMP

• Data is moved as needed by the application.

• No direct control over “message” size.

• Should say something about the performance of direct
memory addressing.

MPI Test

• Time 100 MPI_Sendrecvs for a range of message
lengths using the hierarchy of intra-node
communication:

• In die 0:

• 2 sendrecv messages to a core in the neighbouring die.

• 2 sendrecv messages to a core in the counterpart die (of
the neighbouring socket).

• 2 sendrecv messages to a core in the diagonally opposite
die.

• All cores not involved in one of the above
communications send messages to self (i.e. timing local
memory accesses).

MPI Test: ping-pong transfer rates (averages)

• Clear benefits to accessing data locally.

• Non-local differences comparatively small.

• Results roughly follow the hierarchy of HT
links.

• If it’s not possible to keep comms local it is not hugely
significant which non-local memory location data comes
from.

• Not worth creating complex intra-node topologies, in
either bandwidth or latency dominated regimes.

OpenMP test

• Perform 24 matrix multiplications in parallel

1. Each thread initialises 2 matrices to use in a
3000x3000 matrix multiplication.

• This places the data locally – sets affinity.

2. Each thread calculates a separate 3000x3000 matrix
multiplication. In each die...

• 3 threads work on data initialised by themselves;

• 1 thread works on data init in neighbouring die;

• 1 thread works on data init in counterpart die;

• 1 thread works on data init in diagonally opposite die.

• How do you know where threads run?

• By default, threads are placed sequentially...

Thread ID Data Init Thread ID Time

1 1 22.517

8 8 22.519

12 12 22.521

13 13 22.523

7 7 22.523

14 14 22.525

20 20 22.525

6 6 22.527

19 19 22.529

0 0 22.536

2 2 22.538

18 18 22.561

3 9 22.824

21 15 22.832

22 10 22.836

15 21 22.837

9 3 22.843

4 16 22.845

16 4 22.845

10 22 22.855

11 17 22.879

17 11 22.890

5 23 22.896

23 5 22.900

OpenMP test: ordered results

• We get roughly the
ordering expected from
the hierarchy of HT links.

• It’s always best to work
on local data.

• Working on neighbouring
data same as working on
counterpart data.

• It’s always worst to work
on “diagonally opposite”
data.

OpenMP Test: Levels of optimisation, XT4 Results

Compile XT4 XT6 local data XT6 non-local data XT6 non-local – local

worst case cost

Min Med Max Min Med Max

PGI –O0 120.35 116.71 116.89 116.91 117.09 117.12 117.14 0.43

PGI –O 21.46 22.52 22.53 22.56 22.82 22.84 22.90 0.38

PGI -fast 7.52 7.94 7.95 7.97 8.25 8.28 8.39 0.45

• Comparing with XT4:

• Un-optimised: memory bound. Higher memory bandwidth of XT6 wins, even
when working on non-local data.

• Local optimisations: working from cache more. Higher clock speed of XT4
wins.

• Aggressive optimisations: vectorized code. XT4 wins again.

• Non-local cost is constant (final column)

• The same amount of data is being retrieved

• For optimised code this becomes a more significant ratio.

Questions

1. What is the performance penalty for working data
stored in non-local memory?

2. What is the effect of having a single link (which is the
same as in the XT4) to the interconnect?

Micro-benchmarking tests...

Inter-node communications

• The easiest way to stress this is with MPI_Alltoall.

• How does the performance compare with the XT4 for
various job sizes, message lengths?

MPI_Alltoall performance: XT4, XT6 (4/node), XT6 (24/node)

Micro-benchmarking summary

• On-node memory:

• Accessing die-local memory faster than non-local

• OpenMP: More significant for highly optimised code.

• Differences between non-local times small.

• Either restrict SMP to a die or a whole node – no benefit to
creating more complex hierarchies.

• Off-node collective communication disastrous due to same link
to the interconnect as XT4

• Gemini should hopefully fix this!

• Let’s look at some real codes...

CASINO

Lucian Anton

Mixed Mode

►Reduce network traffic

►Load balancing, parallelism based on tasks

►Additions of new levels of parallelism.

CASINO mixed mode

OPO kernel OpenMP scaling for three system sizes

Jastrow kernel OpenMP scaling for three system sizes

EWALD kernel OpenMP scaling for three system sizes

Update D kernel OpenMP scaling for three system sizes

R
ee

kernel OpenMP scaling for three system sizes

CASINO mixed mode performance

GloMAP Mode MPI

Mark Richardson

Background

What is GLOMAP

Aerosol process simulation

MPI version regular use on HECToR

Open MP version used on fat nodes (32)

Hybrid version was subject of DCSE

Focus of the talk is placement of MPI tasks

XT6: Naive placement is packed (N24)

Will look at 32, 64 and 128 MPI task configurations

In pure MPI mode can look at “balanced” placements

With hybrid version can look at spreading out

n32N4S1d4 n64N12S3d2 (i.e. 128 cores)

Note the final node is not balanced

N16S4 N12S3d2 N8S2d3

N4S1d4 N4S1d6 N2S1d12

MPI task and OMP master thread

OMP thread

Idle core

Diagrams of nodal arrangements

PBS script to run hybrid on phase2b

#!/bin/bash --login

#PBS -N n32N4S1d6

this is 8 nodes x 24 cores

#PBS -l mppwidth=192

we say we will use 24 per node to get 8 nodes

#PBS -l mppnppn=24

#PBS -l walltime=0:20:00

#PBS -A z03

#PBS -m abe

cd $PBS_O_WORKDIR

export GMM=${HOME}/Projects/GMH_build

export MPICH_PTL_UNEX_EVENTS=80000

export MPICH_MAX_SHORT_MSG_SIZE=8000

export MPICH_UNEX_BUFFER_SIZE=400M

date > StartedJob.${PBS_JOBNAME}

export OMP_STACKSIZE=1000M

export OMP_NUM_THREADS=6

export PSC_OMP_AFFINITY=FALSE

this is what we want to do on the nodes

aprun -n 32 -N 4 -S 1 -d ${OMP_NUM_THREADS} ${GMM}/src_32/xtgmm.exe

end of script

Utilisation considerations

OMP costs skewed by modulus 24

Table shows number of nodes in use and utilisation

This an average due to end node under-utilisation

MPI 32 64 128

N24 2, 0.67 32/48 3, 0.89 64/72 6, 0.89 128/144

N4d6 8, 1.00 192 16, 1.00 384 32, 1.00 768

N4d4 8, 0.67 128 16, 0.67 256 32, 0.67 512

N8d3 4, 1.00 96 8, 1.00 192 16, 1.00 384

N12d2 3, 0.89 64/72 6, 0.89 128/144 11, 0.97 256/264

0.000

0.500

1.000

1.500

2.000

2.500

0 20 40 60 80 100 120 140

ti
m

e
 p

e
r

it
e

ra
ti

o
n

,
s

e
c

o
n

d
s

Number of MPI tasks, (32, 64, 128)

GMMN24

GMM N16

GMH N4S1d4

GMH N4S1d6

GMH N8S2d3

GMH N12S3d2

XT4 GMM N4

Scaling including Open MP

Effect of Open MP

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

0 100 200 300 400 500 600 700 800 900

A
u

 c
o

s
t

p
e
r

it
e
ra

ti
o

n
 ,
 N

O
T

E
 c

h
a
rg

e
d

 p
e
r

n
o

d
e

Number of cores in use (N*d), N=number of MPI tasks, S=MPI tasks per NUMAnode, d=OMP_NUM_THREAD

GMH N4S1d6

GMH N4S1d4

GMH N8S2d3

GMH N12S3d2

Table 1: phase2a Cray PAT results for fully populated nodes GLOMAP
mode purely MPI version and three configurations

M32 % of
whole sim

M32 % of
GMM
only

M64 % of
whole sim

M64 % of
GMM
only

M128 %
of whole
sim

M128 %
of GMM
only

ADVX2 4.2 5.7 2.8 5.5 1.3 5.7

ADVY2 11 14.9 7.1 13.9 2.2 9.7

ADVZ2 4.9 6.6 3.2 6.3 1.4 6.2

CONSOM 5.4 7.3 3.6 7.1 1.1 4.8

CHIMIE 40.9 55.3 27.4 53.7 12.4 54.6

MAIN 7.7 10.4 7 13.7 4.4 19.4

TOTAL FOR
GMM 74 100 51 100 22.7 100

MPI 13.3 - 28.3 - 47.4 -

MPI_SYNC 12.7 - 20.7 - 29.9 -

Phase 2a is one quad core per node, will use the fully packed pure MPI version for

comparisons (i.e. Production version)

Summary and Conclusions

Glomap mode has been converted to hybrid and tested on XT6

The performance of the pure MPI production code on phase2b has
improved 30% over phase2a timings

Activating the OpenMP directives allows the code to use more cores per
MPI task

Reduced number of MPI tasks keeps the code in the “good” scaling region
(64 MPI tasks)

Filling nodes in a “balanced” manner has little effect on performance

Except when considering the AU usage

Open MP is limited

can only be as effective as the loop count

CABARET and Incompact 3D

Phil Ridley

What is CABARET?

 High resolution scheme for CFD problems suited to
 Shock capturing

 Linear wave propagation

 Compact Accurately Boundary Adjusting High
REsolution Technique (CABARET)

 General purpose Implicit Large Eddy Simulation (ILES)
 Removes all scales smaller than the grid scale from the solution

 No effect on the large eddies that are directly simulated

What is different about CABARET

 Extra evolutionary variable

 Preserves small phase and amplitude error

 Non linear flux correction

 Removes under-resolved fine scales from solution

 Balance between numerical dissipation and
dispersion error

What is Incompact3D?

 Direct Numerical Simulation of turbulent CFD
applications
 Suitable for flows passing through fractal geometries

 Turbulence resolved over entire spatial grid scale

 Billions of grid points are required to resolve fine scales

 Implicit finite difference scheme

 Spectral method used to solve the pressure equation

 FFTs require use of multi-dimensional data
decomposition

Improving Scalability of Incompact3D

 Ongoing HECToR dCSE project

 Turbulence, Mixing and Flow Control group at Imperial

 Opportunities identified to develop reusable software components for a wider range of
applications

 Parallel library development

 A general-purpose 2D decomposition library

 For applications based on 3D Cartesian data structures

 Result - a distributed 3-dimensional FFT library

 Very useful for distributed spectral-based Poisson solvers

Summary of CABARET and Incompact3D codes

 Fortran 90 / MPI

 CABARET unstructured grid

 Incompact3D structured grid

 Structured multi-dimensional data decompositions

 Preprocessing for grid decomposition

 Postprocessing for output

 At least 106 grid points for CABARET

 At least 109 grid points for Incompact3D

Main loops

CABARET

DO I=1,NSIDE

NCF=GEMSIDECELL(I,1)

IF(NCF/=0)THEN

CALL TAKESTENCIL1F(I)

IF (ABS(CHAR3B)<DEPS) CHAR3B=0

IF (ABS(CHAR3F)<DEPS) CHAR3F=0

IF(CHAR3B+CHAR3F.LE.0)THEN... ENDIF

ENDIF

IF(NCF<0) THEN ... ENDIF

END DO

Not surprisingly these

won't vectorise with any

compiler!

BUT main loops in

Incompact3D arise from

a regular cartesian grid

structure and vectorise

extremely well!

CABARET XT4/XT6 Performance

Figure 1 : Performance for 276 CABARET

timesteps using 6.4M grid points (no I/O and

fully populated nodes)

CABARET Simulation

Figure 2 : Backward facing step, Re=5000,

M=0.1, laminar flow bcs,10000 iterations

Incompact3D Strong Scaling on XT4

Figure 3 : Comparison of scaling for 3 Incompact3D

test cases on the XT4

Incompact3D XT4/XT6 Results

Figure 4 : Comparison of scaling for Incompact3D

test cases on the XT4/XT6 and Jaguar

Summary

 CABARET

 General purpose Implicit Large Eddy Simulation (ILES)

 Non vectorisable loops mean that computation and communication has to be ordered
optimally

 Incompact3D

 Direct Numerical Simulation of fractal generated geometries

 Highly scalable, user-friendly 2D decomposition library and distributed FFT library

Useful Information

 HECToR distributed CSE

 The applications codes discussed today have benefited from software development in
order to help improve their performance under this scheme

http://www.hector.ac.uk/cse/distributedcse/

 The data decomposition Library developed within the Incompact3D project is an excellent
framework for scalability for similar application based algorithms

 Source code available for all HECToR users

ning.li@nag.co.uk or phil.ridley@nag.co.uk

DL_POLY

Valene Pellissier

Agenda

 DL_POLY

 Running Jobs on XT6

 Intro

Time

Cost

 Summary

DL_POLY

 DL_POLY :

 Molecular dynamics simulations of macromolecules,
polymers, ionic systems and solutions on a distributed
memory parallel computer

 Developed at Daresbury Laboratory by W.Smith and I.T.
Todorov

 DL_POLY_3 : based on Domain Decomposition, suits to
large computer systems, 2N procs, 103 to 109 atoms

 DD : division of simulated systems into equi-geometrical
spatial blocks or domains

 Test case 8 :

 16 gramicidin A molecules in aqueous solution

 792,960 atoms

Running Jobs on XT6 - Intro

 Aprun parameters :

 -n : total number of processes

 -N : number of processes per node

 -S : number of processes per hex-core die

 Number of nodes involved for the different aprun
configurations :

Procs Naive S1 N4 S2 N8 S3 N12 S4 N4 S4 N16 S5 N20

16 1 4 2 2 4 1 1

32 2 8 4 3 8 2 2

64 3 16 8 6 16 4 4

128 8 32 16 11 32 8 7

256 11 64 32 22 64 16 13

512 22 128 64 43 128 32 26

Running Jobs on XT6 – Time (1/3)

Running Jobs on XT6 – Time (2/3)

Running Jobs on XT6 – Time (3/3)

Procs XT4 Naive S4N16 S4N4 S1N4 S2N8 S3N12 S5N20

16 199.15 228.67 217.72 223.91 205.59 210.89 219.27 223.86

32 106.79 101.34 102.25 95.99 88.22 87.33 109.80 105.73

64 63.13 79.69 70.47 57.59 56.80 57.37 74.01 80.48

128 42.04 74.32 55.98 49.93 41.84 49.19 54.77 63.45

256 27.42 55.86 49.75 42.47 34.88 43.68 46.87 52.45

512 22.14 57.62 47.99 41.39 31.29 38.31 47.31 51.00

Diff XT4 (%) X 62.73 41.33 25.65 7.27 21.27 40.79 51.86

Diff Naive (%) -30.69 X -11.29 -20.01 -29.79 -23.12 -10.53 -4.83

Time depending on number of processes for different aprun

configurations

Best

Best on XT6

Running Jobs on XT6 – Cost (1/3)

Running Jobs on XT6 – Cost (2/3)

Running Jobs on XT6 – Cost (3/3)

AUs depending on number of processes for different aprun

configurations

Best

Best on XT6

Procs XT4 Naive S4N16 S4N4 S1N4 S2N8 S3N12 S5N20

16 6.64 5.75 5.47 22.51 20.67 10.60 11.02 5.63

32 7.12 5.09 5.14 19.30 17.74 8.78 8.28 5.31

64 8.42 6.01 7.08 23.16 22.84 11.16 11.16 8.09

128 11.21 14.94 11.26 40.16 33.65 15.14 15.14 11.16

256 14.65 15.44 20.01 68.32 56.10 25.92 25.92 17.14

512 23.61 31.86 38.60 133.17 100.65 51.13 51.13 33.33

Diff XT4 (%) X 0.52 6.54 278.98 223.54 82.87 57.24 2.20

Diff Naive (%) 6.56 X 6.68 280.86 232.07 83.68 61.62 4.53

Summary (1/2) - Results

 On average :

 S1 N4 is the fastest and the most expensive

• 30% faster than Naive (up to 45%)

• 3 times more Aus than Naive

 S4 N16 /S5 N20 : best compromise

• Comp. to XT4 for 16,32, 64 procs :

• -20% Aus for 5% more time

 Selectively :

 Quickest : S1N4 for 512 procs :

• 45% faster than Naive but 3 times more AUs

 Cheapest : S4N16 for 128 procs :

• 25% less Aus and 25% faster than Naive

Rel.Diff. Comp to Naive (%) S4N16 S5N20

Time -11.29 -4.83

AUs 6.68 4.53

Summary (2/2) – What to do ?

 Actual XT6 is faster when populating the nodes more sparsely, but
can be more expensive (due to the Seastar interconnect, same as in
XT4, more cores per interconnect)

 To make the best of XT6 :

 Run your code with different aprun configurations and different
nb of processes for a small nb of steps

 New Gemini interconnect should enable faster interconnection

Summary Graph

CASTEP

Chris Armstrong

CASTEP

• Important HECToR code:

• Lots of HECToR users; used in official benchmarking.

• Simulates materials and molecules at the atomic level.

• 3D FFT transpose, involving MPI_Alltoall, is a major
bottleneck.

• Using 144 MPI processes (24*6), al3x3 benchmark.

• Benchmarked 2 versions of the code:

1. Vanilla, main branch.

2. SHM-MPI_Alltoall optimisation: one call per node.

CASTEP: XT6 performance, different configurations

• XT4, Vanilla = 1351s (4 procs/node)

• XT4, SHM = 1235s

ID XT6 Config. Vanilla SHM

A -n 144 -N 24 –S 6 2559 1815

B -n 144 -N 12 –S 3 2095 1357

C -n 144 -N 8 –S 2 1636 1134

D -n 144 -N 4 –S 1 1236 1099

E -n 144 -N 4 –S 4 1283 1081

• A-C: Packing procs into a node causes performance degradation

• More contention on memory and off-node link.

• D: Best “vanilla” performance (than XT4): least contention on memory. Even better

performance with SHM.

• E: Closest to 4procs/node XT4 config: 4 procs sharing a die, better performance due

to increased memory bandwidth.

• E: SHM: The best performance: always working from die 0 memory.

Nodes more sparsely

populated

CASTEP users: “what’s the cost?”

• Users have to spend a lot more AUs to match the same kind of performance...

• Under-populating nodes => using more nodes.

• Users are charged for whole compute nodes, even if not all cores are actually used.

ID XT6 Config. Vanilla XT6/XT4 AUs* SHM XT6/XT4 AUs*

A -n 144 -N 24 –S 6 2559 0.95 1815 0.74

B -n 144 -N 12 –S 3 2095 1.56 1357 1.10

C -n 144 -N 8 –S 2 1636 1.83 1134 1.38

D -n 144 -N 4 –S 1 1236 2.76 1099 2.68

E -n 144 -N 4 –S 4 1283 2.86 1081 2.64

*Based on current figures of 7.5 AU/core/hour XT4, 3.77 AU/core/hour XT6

Probably the most attractive, but we’re still getting

inferior performance at increased cost.

CASTEP: Threaded BLAS/LAPACK

• Can we make the idle cores do some work?

• Threaded BLAS.

• XT4 Target: 1235s, utilising 144 cores (6 XT6 nodes).

XT6 Config. SHM XT6/XT4 AUs

-n 24 -N 4 –S 1 –d 6 2086 0.85

-n 48 –N 8 –S 2 –d 3 1767 0.72

-n 36 –N 4 –S 1 –d 6 1221 0.75

• Using threaded BLAS allows users to improve cost AND performance.

Summary

• AMD Magny-Cours processor is a “many core” CPU.

• Will become more common away from supercomputing.

• There are performance benefits:

• More cores available.

• More scope for shared-memory & mixed-mode parallelism.

• Increased memory bandwidth.

• Greater L3 cache.

• But these are only attainable if users understand:

• The NUMA architecture.

• The correct configuration/placement for a job.

• That multithreading may be the only cost-effective way to run jobs –
codes may need to invest more in OpenMP and/or make use of threaded
libraries.

