CSE Update

Mike Dewar NAG Ltd

CSE Service: Overview

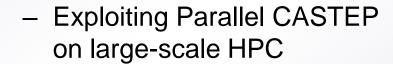
- Core Support
 - Technical assessments
 - Helpdesk queries
 - Assistance with porting/tuning etc
- Training
- Distributed Support
 - Dedicated resources for projects

Training

- Train HECToR users and researchers under BBSRC, EPSRC & NERC remits
- Most training happens at user sites
 - Bath, Belfast, Birmingham, Bristol, Cambridge, Exeter, Imperial, Leeds, Nottingham, Oxford, Southampton, Warwick
 - Summer schools, doctoral training programmes, training for grant holders ...
- Over 800 attendees so far

Current Courses

HECToR Specific


- Introduction to HECToR
- Programming the X2 Vector System

Programming

- Fortran 95
- Parallel Programming with MPI
- OpenMP
- Parallel I/O

Application Specific

DL_POLY

Other

- Debugging Profiling and Optimisation
- Multicore
- Core Algorithms for High Performance Scientific Computing
- Best Practice in HPC
 Software Development
- Scientific Visualisation

Distributed CSE

- Dedicated support for specific codes
- Awarded by an independent panel
- Current status
 - 23 projects completed
 - 18 projects running
 - 7 projects waiting to start
- 558 months (46.5 years!) effort allocated to date
- Next deadline for proposals December 6th
 - New time limit of one year (elapsed)

DCSE Example: CASINO

- Quantum Monte-Carlo calculations on condensed matter
- DCSE delivered
 - better memory utilisation using shared data between tasks on the same processor
 - accelerated computation speed (60-80%) via second level parallelism
 - faster input of large data sets
- Benefits
 - CASINO able to exploit larger machines (JaguarPF, HECToR 2b) to solve bigger problems
 - 12m AU savings in one year on HECToR
 - Code improvements fed back to developers

DCSE Example: CP2K

- Atomistic and molecular simulations of solid state, liquid, molecular and biological systems
- DCSE delivered
 - improved MPI communications and load balancing (particularly for FFTs)
 - 30% speedup in typical cases (300% in extreme cases)
 - improved scaling (factor of 8 in some cases)
- Benefits
 - Researchers now able to routinely model cells with over 1000 atoms
 - 4.5m AU savings for one year on HECToR
 - Code improvements fed back to developers

DCSE Example: DL_POLY_3

- Molecular dynamics code
- DCSE Delivered
 - improved I/O by large-scale data reorganisation and by parallelisation
 - improved scaling to thousands of cores for real examples
 - reduced storage requirements for output files (typically by a factor of 3)

Benefits

- 20x improvement in performance made it feasible to use DL_POLY_3 to study eggshell formation
- Code improvements fed back to developers

Summary

- Core CSE team available to assist with migration issues 2a→2b →3
- Training proving popular
 - suggestions for venues, tailored courses, application codes etc. welcome
- DCSE very successful
 - has enabled improved science
 - has saved resources

Questions?

