
CP2K:
HIGH PERFORMANCE
ATOMISTIC SIMULATION
Iain Bethune
ibethune@epcc.ed.ac.uk

Outline
• CP2K Overview
• HECToR dCSE Timeline
• Key Achievements of dCSE Projects

•  Improved MPI scaling & load balancing
•  Hybrid MPI/OpenMP
•  DBCSR

• Other Ongoing Work

CP2K Overview

“CP2K is a program to perform atomistic and molecular
simulations of solid state, liquid, molecular, and biological
systems. It provides a general framework for different
methods such as e.g., density functional theory (DFT) using
a mixed Gaussian and plane waves approach (GPW) and
classical pair and many-body potentials.”

From www.cp2k.org (2004!)

CP2K Overview •  Many force models:
•  Classical
•  DFT (GPW)
•  Hybrid Hartree-Fock
•  LS-DFT
•  post-HF (MP2, RPA)
•  Combinations (QM/MM, mixed)

•  Simulation tools
•  MD (various ensembles)
•  Monte Carlo
•  Minimisation (GEO/CELL_OPT)
•  Properties (Spectra, excitations …)

•  Open Source
•  GPL, www.cp2k.org
•  1m loc, ~2 commits per day
•  ~10 core developers

CP2K Overview •  Many force models:
•  Classical
•  DFT (GPW)
•  Hybrid Hartree-Fock
•  LS-DFT
•  post-HF (MP2, RPA)
•  Combinations (QM/MM, mixed)

•  Simulation tools
•  MD (various ensembles)
•  Monte Carlo
•  Minimisation (GEO/CELL_OPT)
•  Properties (Spectra, excitations …)

•  Open Source
•  GPL, www.cp2k.org
•  1m loc, ~2 commits per day
•  ~10 core developers

CP2K Overview
• HECToR Phase 3 code usage (Nov 2011-Mar 2014)

• CP2K usage £1.6m notional cost
•  (+ £2.4m on Phase 2)

Rank Code Node
hours

Fraction of
total

Method

1 VASP 5,822,878 19.34% DFT
2 CP2K 2,222,059 7.38% DFT
3 GROMACS 1,594,218 5.29% Classical
4 DL_POLY 1,359,751 4.52% Classical
5 CASTEP 1,351,163 4.49% DFT

CP2K Overview
• QUICKSTEP DFT: Gaussian and Plane Waves Method

(VandeVondele et al, Comp. Phys. Comm., 2005)
•  Advantages of atom-centred basis (primary)

•  Density, KS matrices are sparse
•  Advantages of plane-wave basis (auxiliary)

•  Efficient computation of Hartree potential
•  Efficient mapping between basis sets

•  -> Computation of the KS Matrix is O(nlogn)

• Orbital Transformation Method (VandeVondele & Hutter, J. Chem.
Phys., 2003)
•  Replacement for traditional diagonalisation to orthogonalise wave

functions
•  Cubic scaling but ~10% cost

CP2K Overview
•  (A,G) – distributed

matrices
•  (B,F) – realspace

multigrids
•  (C,E) – realspace data

on planewave
multigrids

•  (D) – planewave grids

•  (I,VI) – integration/
collocation of
gaussian products

•  (II,V) – realspace-to-
planewave transfer

•  (III,IV) – FFTs
(planewave transfer)

HECToR dCSE Timeline
•  3 dCSE projects during the HECToR service:

•  Improving the performance of CP2K on HECToR
•  Jul 08 – Jul 09, 6 PMs

•  Improving the scalability of CP2K on multi-core systems
•  Sep 09 – Sep 10, 6 PMs

• CP2K – Sparse Linear Algebra on 1000s of cores
•  Oct 10 – Dec 11, 6 PMs

•  Joint proposals with Dr. Ben Slater (UCL), Prof. Joost
VandeVondele (U. Zurich, ETHZ)

Key Achievements of dCSE Projects
• Optimised communication scheme for ‘halo swap’ in

realspace-to-planewave transfer routine
•  Reduction in halo data volume
•  Non-blocking communication
•  -> 14% speedup on 256 cores (HECToR Phase 1)

Key Achievements of dCSE Projects
•  3D FFT can be expensive in many calculations

•  2D or 1D decomposition depending on process count
•  CrayPAT analysis showed repeated mpi_cart_sub calls
•  Introduced caching of re-used variables in FFT scratch space
•  Also FFT plan (allowing FFTW_MEASURE, FFTW_PATIENT etc.)
•  OpenMP added to parallelise on-node 1D FFT operation

FFT Performance on HECToR (Phase 2a)

10

100

1000

10 100 1000 10000

Cores

P
e

rf
 (

1
/t

im
e

)

MPI

2 threads

4 threads

Linear

Figure 2: Performance of 1253 FFT on HECToR Phase 2a

FFT Performance on Rosa

10

100

1000

10 100 1000 10000

Cores

P
e

rf
 (

1
/t

im
e

)

MPI

2 threads

6 threads

12 threads

Linear

Figure 3: Performance of 1253 FFT on Rosa

2.2 Realspace to Planewave transfer

Realspace to Planewave transfer (or rs2pw) is responsible for the halo swap and alltoall
communication necessary for transforming between the realspace (replicated or 1D, 2D,
3D distributed) grids and the corresponding (1D or 2D distributed) planewave grids

7

1253 FFT performance on
HECToR Phase 2a

1x Dual-core CPU per node

Key Achievements of dCSE Projects
•  Load balancing by re-ordering multi-grids

grids are allocated on each process corresponding to their virtual ranks. There are a
number of changes required in the realspace to planewave transfer routines to ensure
that the reordered grid data is sent to the correct process for transferring to the plane
wave grid, but this is facilitated by the use of a pair of mapping arrays real2virtual

and virtual2real which are members of the real space grid data structure and are used
to convert between the two orderings as needed.

For the same problem as above, using the new load balancing scheme, the load on
the most overloaded process is reduced by 30%, and this is now only 3.5 times the load
of the least loaded process. For this particular problem it is not possible to find a perfect
load balance, as there is a single grid level block which has more load associated with
it than then total average load. It is possible to overcome this by setting up the grid
levels so that they are more closely spaced, and thus there is less load on each grid level.
However, this comes at an increased memory cost for the extra grid levels and also affects
the numerics of the calculation slightly (1 in 106). As shown in figures 5 and 6 if it is
possible to balance the load perfectly, then this algorithm will succeed.

After load_balance_distributed

Maximum load: 1165637

Average load: 176232

Minimum load: 0

After load_balance_replicated

Maximum load: 1165637

Average load: 475032

Minimum load: 317590

Figure 5: W216 load balance on 16 cores - perfect load balance achieved

14

Key Achievements of dCSE Projects

Figure 8: Overall performance gains on W216

7 Further Work

During the dCSE project, further data on CP2K’s performance was gathered from Cray-
PAT profiles, as well as CP2K’s own timing routines. This highlighted a number of other
regions of the code that were not addressed in this project, but are still barriers to im-
proved scalability of the code.

1. Dense matrix algebra (ScaLAPACK). CP2K makes use of a number of ScaLAPACK
routines, principally PDGEMM (matrix multiplication) and PDSYEVD (solving
an eigenvalue problem). These have been measured to have a parallel efficiency of
around 20-30% on 2048 cores compared with 512 cores, which is the worst of all
the major regions of the code. Currently these scale up to the point where there
is about one atom per core. At this point communication costs dominate over
computation, as shown by CrayPAT profiles.

2. Sparse matrix algebra. Several of the important matrices in CP2K (Kohn-Sham,
overlap, density matrices) are sparse. CP2K has it’s own routines for multiplication
of sparse and full matrices, but these also scale poorly in the same way as the dense
matrix routines above. Work is already underway by the CP2K development group
at the University of Zurich to rewrite these routines for better scalability and
performance.

It is believed that the scalability of the code can be further improved by introducing
OpenMP ‘hybrid’ parallelism within a multi-core node while retaining the existing MPI
communication between nodes. For a fixed number of processes, this will reduce the
number of off-node messages to be sent, and is a better ‘fit’ to the increasingly wide-
SMP nodes currently available on the Cray XT series. A proposal for further dCSE
funding to implement this has been funded.

17

Key Achievements of dCSE Projects
• Hybrid MPI/OpenMP parallelisation

•  Loop-level OpenMP added to performance-critical regions
•  FFT (planewave grids)
•  Realspace grid <-> Sparse Matrix mapping
•  Realspace <-> planewave transfer
•  XC Functional Evaluation (PBE)

•  Efficient OpenMP implementation (GNU >= 4.5, Cray, Intel)
•  Allows micro-OpenMP regions
•  Minimal code restructuring

•  Result – Better scalability on medium/large core counts

Key Achievements of dCSE Projects
achieved is 2.5 times that of the pure MPI code. This does come at a premium in terms of
e�ciency however, as to achieve the speedup 16 times as many cores are used. However,
using 2 threads per task it is possible to achieve a genuine speedup of 20% on 576 cores.

CP2K - W216 benchmark

10

100

1000

10 100 1000 10000

Cores

P
e

rf
o

rm
a

n
c

e MPI Only

MPI(Original)

2 threads

6 threads

12 threads

linear

Figure 11: Performance of W216 on Rosa

19

Benchmark on
CSCS Monte Rosa
XT5

2x Hexa-core CPU
per node

Similar to HECToR
Phase 2b

3 DBCSR Optimisation

DBCSR (Distributed Block Compressed Sparse Row) is a library embedded within CP2K
which had been developed to provide a storage format and multipication operation for
the sparse block-structured matrices used within CP2K. Many of the large matrices
stored in CP2K (density matrix, overlap matrix, Kohn-Sham matrix etc.) are naturally
sparse due to the localisation of the Gaussian basis set in space. The block structure
arises from the fact that each atom may be represented by a number of basis functions.
Thus for a system with N atoms, typical matrices would have N rows (or columns) of
blocks, where each block itself comprises multiple rows (or columns) e.g. 1 for Hydrogen
with a minimal basis set (SZV-GTH-MOLOPT), or 13 for Oxygen with a larger basis
set (DZV-GTH-MOLOPT). Thus the entire matrix is composed of rows and columns
of small dense blocks of varying size. Blocks are addressed using a CSR storage format
where an indivdual block can be accessed via a pointer to the start of it’s row, plus an
o↵set into the row for that block. The matrices are distributed across MPI processes in
a 2D grid.

Matrix multiplication is performed using Cannon’s algorithm[8]. Briefly, to perform
the multiplication C = A ⇤ B where the matrices are distributed on a square grid of
P processes, there are

p
P steps in the algorithm. At each step the local data area is

multiplied and acculumated into the result matrix, then row-wise and column-wise shifts
(for matrix A and B respectively) are performed using non-blocking MPI. This operation
is illustrated in figure 3.

! !

!"##$#%&'()*$+,-./

! 012'*+,34'56'&-78&4'")9":&;

Figure 3: Example of Cannon’s algorithm in DBCSR for 9 processes (Image courtesy
Urban Borstnik)

The communication is performed using double-bu↵ering - with calc and comm bu↵ers
to hold current and next matrix data and index - as illustrated by the following pseu-
docode:

5

Key Achievements of dCSE Projects
• DBCSR – Distributed Block Compressed Sparse Row

•  Developed in collaboration with Uni. Zurich

Key Achievements of dCSE Projects
• Communication

•  Double-buffering comm. and calc. buffers
•  Non-blocking MPI communication
•  Optionally underload thread 0 to account for MPI overhead

• Computation
•  Local multiplication via cache-oblivious recursive multiplication
•  Auto-tuned matrix multiplication kernels for small block DGEMMs

 e.g. 4x4, 4x7, 4x13, 7x13, 13x13 …
•  Libsmm (idea now implemented in Cray libsci)

Key Achievements of dCSE Projects

from a compilation on the XE6 TDS system. Especially for small block sizes (or blocks
where one or more dimensions is small) we find that libsmm outperforms the BLAS in
Cray’s libsci by up to 10 times. Similar results have been found comparing with e.g.
MKL on an Intel platform. For larger block sizes, the performance tends towards Libsci
BLAS indicating that a faster method could not be found. It should be noted that in the
limit of very large blocks (1000x1000), DGEMM achieves around 12.8 GLOP/s, which is
around 5.5 FLOPs/cycle, indicating that the library is making use of the AMD Bulldozer
architecture’s FMA4 instructions since for these tests only a single thread is running.

0"

1"

2"

3"

4"

5"

6"

7"

8"

1,1
,1"

1,9
,9"

1,2
2,2
2"

4,9
,6"

4,2
2,1
7"

5,9
,5"

5,2
2,1
6"

6,9
,4"

6,2
2,1
3"

9,9
,1"

9,2
2,9
"

13
,6,
22
"

13
,22
,6"

16
,6,
17
"

16
,22
,5"

17
,6,
16
"

17
,22
,4"

22
,6,
13
"

22
,22
,1"

GF
LO

P/
s(

M,N,K(

Libsmm(vs.(Libsci(DGEMM(Performance(

SMM"(Gfortran"4.6.2)"

Libsci"BLAS"(11.0.04)"

Figure 5: Comparing performance of SMM and Libsci BLAS for block sizes up to 22,22,22

Libsmm is distributed with the CP2K source package, and a version of the library
optimised for the current HECToR Phase 3 ‘Interlagos’ processors can be found in
/usr/local/packages/cp2k/2.3.15/libs/libsmm/.

3.1.3 Threading

Recall that DBCSR matrices are decomposed by rows, which each row being ‘owned’
by a specific OpenMP thread. The current load balancing strategy (rows are assigned
weighted by the block size of each row) results in some load imbalance since it does not
take account of the sparsity of each row.

When investigating how to improve the load balance it was discovered that thread 0
was consistently taking longer than the other threads by up to 20% (even for artificial in-
puts which are perfectly load balanced). Careful inspection of the code revelead this was
due to timing routines called by every thread which contained !$omp master directives.

10

Key Achievements of dCSE Projects
• Research Outputs:

•  3 HECToR dCSE reports
•  Including user guidelines for achieving good scalability
•  Centrally-installed code with all optimisations

•  dCSE Workshop report (2009)
•  CUG Papers (2010, 2014)
•  Posters at CAMD, CCP5 Summer Schools (2012), Exascale

Applications and Software Conference (2013)

• User feedback:
•  “Using the optimized version of CP2K we were able to routinely

model cells containing over 1000 atoms. The CSE investment into
CP2K was crucial to making the study tractable.”, Dr. Ben Slater

Other Ongoing Work
• PRACE Application Enabling Projects

•  ~3 person-years effort from PRACE 1-IP, 2-IP, 3-IP
•  Porting and testing on

•  IBM BlueGene/P
•  Intel Clusters
•  Intel Xeon Phi (native mode)

•  Further OpenMP:
•  24 functionals fully parallelised
•  Threaded 3D FFT for MP2 calculations
•  QS neighbour list operations

•  First-touch memory optimisation for realspace grids
•  Auto-tuned grid and matrix-multiplication kernels

Other Ongoing Work
• CP2K-UK: EPSRC Software for the Future

•  £500,000, 2013-2018
•  EPCC, UCL, KCL + 7 supporting groups

• Aims
•  Grow and develop existing CP2K community in UK
•  Lower barriers to usage and development of CP2K
•  Long-term sustainability of CP2K
•  Extend ability of CP2K to tackle challenging systems

•  First user meeting in Jan 2014
•  55 attendees, good feedback!

Other Ongoing Work

 10

 100

 1000

 1 10 100

Ti
m

e
(s

ec
on

ds
)

Number of nodes used

Performance comparison of the H2O-64 benchmark

MPI

MPI

MPI

MPI 2TH
2TH 4TH

2TH

MPI

MPI

MPI

MPI

MPI MPI
6TH

6TH

1.87

1.84

1.84

1.69

2.03 2.56
2.03

2.73

ARCHER
HECToR

Other Ongoing Work

 10

 100

 1000

 10 100 1000 10000

Ti
m

e
(s

ec
on

ds
)

Number of nodes used

Performance comparison of the LiH-HFX benchmark

2TH

2TH

4TH
8TH

4TH

6TH

6TH

6TH

6TH
6TH

2.30

2.60

2.55
2.37

ARCHER
HECToR

Other Ongoing Work

 10

 100

 1000

 10 100 1000 10000

Ti
m

e
(s

ec
on

ds
)

Number of nodes used

Performance comparison of the H2O-LS-DFT benchmark

2TH

2TH

4TH
8TH 4TH

4TH 8TH

6TH

6TH

6TH

6TH

2TH
2TH 4TH

2.00

2.06

2.20

3.30

4.66
3.68 3.45

ARCHER
HECToR

Some Final Thoughts

•  CP2K has made huge strides in capability and performance
•  Key performance improvements under HECToR dCSE
•  dCSE projects were a key enabler for further funding

•  Usability remains an issue
•  Although steadily improving (tutorials, training, support…)

•  Long-term funding for user support now in place
•  Looking to spin-off new focused development projects under ARCHER

eCSE

•  Expect growing usage on ARCHER

Acknowledgement
This work made use of the facilities of HECToR, the UK's
national high-performance computing service, which is
provided by UoE HPCx Ltd at the University of Edinburgh,
Cray Inc and NAG Ltd, and funded by the Office of Science
and Technology through EPSRC's High End Computing
Programme.

Thanks for your attention, and…
…any questions?

