
Developing hybrid OpenMP/MPI

parallelism for Fluidity/ICOM

Xiaohu Guo, Gerard Gorman, Andrew Sunderland

ARC, CSE Department, STFC

AMCG, Department of Earth Science and Engineering,

Imperial College London

Contents

• Introduction of current dCSE project

• A overview of the Implementation

• Case Study: Experiences and Results

analysis

• Conclusions and Future work

Fluidity

• General purpose fluid dynamics framework

• Ocean modelling (Fluidity-ICOM)

• Features:
– Unstructured mesh

– Multiple discretisations, CG,DG,CV

– MPI parallelized
• Optimised for HECToR in previous dcse project

– Adaptive mesh

– User friendly interface

– Fortran 90, C++, Python

Involved Groups

• The Applied Modelling and Computation

Group(AMCG), Imperial College London

• Advance Research Computing Group(ARC), CSE

Department, STFC.

• EPCC, Edinburgh

• NAG

Project Objectives

• Further develop Fluidity-ICOM in order to run efficiently on

supercomputers comprised of NUMA nodes.

• Hybrid OpenMP/MPI decreases the total memory footprint per

compute node (the total size of mesh halos increases with

number of partitions) and provides memory bandwidth

optimization opportunities.

• The use of hybrid OpenMP/MPI will decrease the total volume of

data to write to disk, and the total number of metadata

operations based on the files-per-process I/O strategy.

• Reduced number of domain partitions benefits many algorithms,

e.g. AMG, mesh adaptivity.

• Previous dCSE

project has

showed that the

computational

costs within

Fluidity-ICOM are

dominated by

– sparse matrix

assembly

– the sparse linear

preconditioners/so

lvers

Fluidity ICOM Sparse Matrix Assembly

• Using element by element approach

• Sparse matrix storage formats:

– CSR + diagonal

– PETSC csr format

• Block assembly

• 30-40% of total computation due to higher order and

DG integrations.

An overview of the Implementation

• Working out sparse patterns (element adjacency matrix) for

different numerical discretisation method, eg, DG, CG and CV

• Parallelize matrix assembly with colouring method, colouring

elements according to their sparse patterns, a loop over colours

is added around the main assembly loop.

• The main assembly loop over elements is parallelised using the

OpenMP parallel do directive with a static schedule.

• This divides the loop into chunks of size ceiling

(number_of_elements/number_of_threads) and assigns a

thread to a separate chunk.

• !! generate the dual graph of the mesh

• p0_mesh = piecewise_constant_mesh(parent_mesh, "P0Mesh”)

• !! the sparse pattern of the dual graph

• dependency_sparsity => get_csr_sparsity_XXX(state, p0_mesh, p0_mesh)

• !! colouring dual graph according the sparsity pattern with greedy colouring algorithm

• call colour_sparsity(dependency_sparsity, p0_mesh, node_colour, no_colours)

• !$OMP PARALLEL DEFAULT(SHARED) PRIVATE(clr, nnid, ele, len)

• colour_loop: do clr = 1, no_colours

• len = key_count(clr_sets(clr))

• !$OMP DO SCHEDULE(STATIC)

• element_loop: do nnid = 1, len

• ele = fetch(clr_sets(clr), nnid)

• call construct_momentum_element_dg(long parameter lists………..)

• end do element_loop

• !$OMP END DO

• !$OMP BARRIER

• end do colour_loop

• !$OMP END PARALLEL

Pseudo Algorithm for Momentum DG assembly

Greedy Colouring Algorithm

1. Give an arbitrary ordering of the nodes

2. Find the maximum degree of the nodes, the

maximum number of colours is maxdgr+1

3. Set the colouring number of the first point as 1

4. Colouring the remaining nodes with lowest unused

colours

1) Select some uncolored vertices and colour it with the new colour.

2) Scan the list of uncoloured vertices. For each uncoloured vertex,

determine whether it has an edge to any vertex already coloured with the

new colour.

3) If there is no such edge, colour the present vertex with the new colour.

Note:
• Generally, the above colouring method tries to colour as many

vertices as possible with the first colour, then as many as

possible of the uncoloured vertices with the second colour, and

so on

• Therefore the number of elements is not balanced between

each colour group.

• For OpenMP, it’s not a problem as long as each thread has

enough work load.

• The performance is not sensitive to the total number of colour

groups

Gyre Case Study

• The wind-driven baroclinic gyre benchmark: A gyre in

oceanography is a large system of rotating ocean currents,

particularly those involved with large wind movements

• Velocity Assembly: DG

• Temperature Assembly: CG

• Mesh nodes:

– 10 million, resulting in 200 million degrees of freedom for velocity due

to the use of DG

– 28560

Local assembly v.s. non local assembly

• PETSC Matrix stashing: The stash is used to temporarily store

inserted vec values that belong to another processor. During the

assembly phase the stashed values are moved to the correct

processor -- not thread safe

• When MAT_IGNORE_OFF_PROC_ENTRIES is set, any

MatSetValues calls to rows that are off-process will be

discarded. This makes matrix assembly much faster as no

communications are needed -- recompute rather than

communicate

Local assembly v.s. nonlocal assembly

Thread Safe Issues of Memory Reference Counting

• Any defined type objects in fluidity being allocated or

deallocated, the reference count will be plus one or

minus one.

• If the objects counter equals zero, the objects should

then be deallocated.

• In the element loop, the element-wise physical

quantities should not do allocation or deallocation.

(But they do, which causes racing conditions for the

reference counter.)

• Solutions for the above,

– add critical directives around reference counter.

– Move allocation or deallocation outside of element loop

Pure MPI v.s. Pure OpenMP within node

Tools for Thread error detecting

• DRD v.s. Helgrind

– They both have a lot of false positives, also take very long

time to generate results for fluidity typical runs(at least ten

hours for gyre node performance test case).

– Need pay a lot of attention to “store” operation, start with

“Conflicting Store by…”

– Very helpful for detecting racing conditions.

• Intel Thread Checker.

• Initial value for variables in a subroutine

– Integer :: counter =0 --- acquire the save attribute automatically

– Integer :: counter

Counter=0

A variable with save attribute in a recursive

subprogam is shared by all instances of the

subprogram, be careful ! Hard to detect !

• We have focused on assembly.

– Regarding Matrix stashing, local assembly performance is

better than non local assembly, This makes assembly an

inherently local process.

– Thus focus is on optimizing local (to the compute node)

performance, try to avoid use mutual synchronization

directives: eg. critical

– Above performance results indicate that node optimization

can be done mostly using OpenMP with efficient colouring

method

Conclusions

• We also noticed that the code performance is not sensitive
to number of colour groups.

• Work for the future includes improving memory bandwidth
usage through NUMA optimisations(eg: first touch) to
investigate if we can get best performance using pure
openmp within nodes.

• Colouring mesh instead of colouring sparsity.

– There are only 4 possible stencils for different numerical
discretized methods for each topological mesh.

– It’s better to have a 4 element array to save colouring
information for each topological mesh

• More work on solvers.

Acknowledgements

• The authors would like to acknowledge the support of a

HECToR distributed Computational Science and Engineering

award.

• The authors would also like to thank the HECToR and NAG

support team for their help throughout this work.

• The authors would also like to thank the EPCC collaborators for

their valuable contribution

THANKS !

