
Combined-Multicore Parallelism
for the UK electron-atom

scattering Inner Region R-matrix
codes on HECToR

Andrew Sunderland, Cliff Noble, Martin Plummer
Advanced Research Computing and Atomic and Molecular Physics

Groups
STFC Daresbury Laboratory

Co-Investigators: HW van der Hart and MP Scott
The Queen’s University of Belfast

Summary
• Background to R-matrix approach

– Electron atom collisions and other applications
– R-matrix division of configuration space

• Background to PRMAT inner region codes
– RMATRXII: PG Burke, VM Burke and KM Dunseath, J

Phys B 27 (1994) 5341-5373: ‘BBD’)
– Hamiltonian construction

• ANG, RAD and HAM
– ANG developments
– RAD developments
– Xstream and filehand

Electron-Atom Collisions
• Detailed electron-atom collision data

is essential for understanding the
behaviour of plasmas such as

– Identifying forbidden lines such
as those corresponding to the
excitation of Ni+ seen in
observations of the Orion nebula
(NGC 1976).

– Plasma diagnostics of impurities
in plasma fusion. JET, ITER:
calculations of ionized tungsten
underway.

– Tin ions in next-generation
nanolithography tools.

• R-matrix theory provides efficient
computational methods for
investigating electron-atom and
electron-molecule collisions (cf talk
by M Lysaght), also laser
atom/molecule interactions (cf talk by
L Moore)

Results: Collision
Strengths

The collision strength as a
function of energy in the below-
threshold region for the optically
forbidden transition from the
ground state to the first excited
state for the 3Fe partial wave in
electron scattering by NiIV. The
short lines along the energy axis
indicate the target thresholds.

Partition of Configuration
Space

The parallelization of the overall code maps closely to this partitioning. A previous
dCSE developed the outer region code PFARM: PFARM has since been very recently
adapted for use by the molecular R-matrix codes UKRmol (work by UK-RAMP and

DL core support)
In this dCSE we are developing/parallelizing the inner region codes. These are core
codes which are needed by all the atomic R-matrix code-packages, for scattering

and laser interactions (RMT, TDRM (RMF))

• Whereas PFARM was a high-scaling parallel code
to begin with, the inner region codes are serial
apart from an option for ScaLapack parallel
diagonalization of the final Hamiltonian (in
practice, a separate code: one of the aims of the
current dCSE is to unify the diverse inner region
sub-packages into a coherent ‘guaranteed’
package, in addition to parallelizing the
Hamiltonian (and dipole matrix) construction.

• To understand the complexity of the codes, we
quote liberally from ‘BBD’.

R-matrix theory (atomic)
We look for solutions of the TISE inside the sphere: we construct a
Hamiltonian and diagonalize it. The basis functions include bound

orbitals and continuum orbitals (non-zero on the boundary):

• Note the two expansions, the second expansion appears
because the continuum orbitals in the first expansion are
orthogonal to the bound orbitals in the N-electron target
states.

• The N-electron target states are themselves full ‘CI’ expansions
• The Hamiltonian matrix consists of three distinct types,

‘CC’, ‘BC’ and ‘BB’
• Components are made up from 1-electron integrals and

2-electron integrals (1 / r_ij), by ‘Slater’s rules’. The 2-
electron integrals have ‘direct’ and ‘exchange’
components.

• Because of the spherical symmetry, extensive use is made
of spherical tensor theory.

• (representations of the 3d rotation-inversion group combined with
antisymmetry, transformations of spherical harmonics and spinors)

Note: ‘R’ is purely radial, the rest are angular factors

• There are similar but more complicated expressions for
the exchange CC integrals (eg involving ‘9j’ symbols), and
similar expressions for the BC and BB integrals, and
corresponding dipole matrices.

• The introduction of the ‘surfacing coefficients’ by BBD was
a major performance enhancement for the CC integrals, as
angular integrals are recoupled to minimize recalculation
of existing components.

• The BB integrals are speeded up to a lesser extent by the
surfacing coefficients: for modern calculations with large
sets of bound orbitals they have become the most time
consuming part of the angular part of the program

• Hamiltonian construction is thus split into three separate
stages: ANG, RAD and HAM.

• HAM may contain the diagonalization, otherwise PDG is
used.

Package structure

ANG
• Plan: parallelize construction of ‘surfacing tables’ using

shared memory. Then parallelize ‘angbb’ in particular
(and angcc, angbc etc).

• eg: a serial ANG run for a complex Fe+ calculation took
~16 hours on an IBM Power7 of which angbb took up
~80%: in general angbb and surfacing tables dominate
timing.

• At the same time improve commenting in the code so that
it clearly relates to the BBD and other references.

• New coding in F95+F2003 (generally following ‘Coding
Standards for the UKRmol Project’ by MP, JM Carr and JD
Gorfinkiel) with low-lying C modules:

• Parallelization to be attempted using both MPI with shared
memory segments for the surfacing tables and OpenMP.

• ANG work performed by CJN (~4.5 months effort over 9
months)

• New multi-node MPI code with sms written (to ‘beta+’
standard) and currently under a severe testing/ bug-fixing
regime to reach ‘release’ standard: inter-node and intra-node
communicators defined and introduced.

• A relatively compact sms-communicator derived-type (very
suitable for ANG) is being checked against the NAG-developed
software used in CASTEP.

• Technical difficulty: we don’t know the size of the surfacing
table in advance: it is calculated by constructing the
coefficients locally and storing them in linked lists until the
final size is known by a ‘group leader’. We can then form a
shared array of coefficients and a shared array of indices.

• Some re-writing for sms required (Fortran->C does ‘not’ allow allocatable
arrays to be C structures)

• Performance results to follow once code is declared ‘fully’
bug-free.

New ‘sms’ type
type sms ! shared memory segment type

private
integer(c_int) :: keygen_id = -1 ! project id of segment
integer(c_int) :: id = -999 ! segment IPC id
type(c_ptr) :: ptr ! c-pointer to segment
integer(c_int) :: num_els ! # datatype elements
integer(c_int) :: datatype ! type of data
integer, pointer :: iptr(:) ! integer fortran ptr to SMS
real(wp), pointer :: rptr(:) ! real fortran ptr to SMS

contains
procedure :: attach => attach_sms
procedure :: kid => getId
procedure :: shm => getShmid
procedure :: detach => detach_sms
procedure :: getiValue
procedure :: getrValue
generic :: get => getiValue, getrValue

end type sms

interface sms
procedure constructor

end interface

• OpenMP tests
– An OpenMP coding of surfacing coefficients and angbb existed which

apparently worked on HPCx (factor of 4 performance for 8 threads) with
coarse-grained parallelism (ie upper loops). However it seems that IBM’s
interpretation of OpenMP was ‘faulty’.

– Testing on HECToR shows evidence of a data race in ‘surfce’. The likely
causes of this are under investigation but hampered by the lack of
thread-checking tools on HECToR: the F95 coding with ‘out-of-scope’
module variables is very complex to analyze otherwise.

– OpenMP allows orphaned threadprivate directives. One cannot declare
out of scope variables to be ‘shared’: out-of-scope . A restructuring of
the code is possible but would undermine the logical modular structure
of the code and future maintenance. It’s possible to put in simple fine
grained OpenMP at lower levels of the structure, but the MPI/FIPC/sms
approach is more wide-ranging and exciting.

– Tools such as ‘Intel Parallel Inspector’ would be very helpful.
– Temporary conclusion: limited potential gains of OpenMP parallelism

should be bypassed with combined MPI/FIPC approach. The coarse grain
parallelism of the earlier OpenMP code is better handled by high-level
MPI communicators which are fitting ‘naturally’ onto the finer grained
sms communicator.

– If necessary, we’ll remove ‘surfce’ OpenMP and continue with angbb etc.

RAD
• Essentially RAD constructs the ‘R’ and other 1-2 electron

radial integrals for bound and continuum orbitals.
• Again there are two parts: it first ‘creates’ the continuum

orbitals, then forms the integrals.
• Two distinct types of continuum orbitals:

• ‘Traditional’, generated numerically and iteratively on a grid of radial
values, as consecutive solutions of a model potential problem (and
orthogonal to the bound orbitals) with a fixed boundary condition

• There are typically 20-30 ‘trad’ orbitals per ‘l’, but a ‘Buttle’
correction is needed: the continuum orbitals are ‘accurate’
representations of ‘real’ low-lying continuum orbitals.

• ‘B-spline’: constructed from a large set of B-splines, orthogonal to
the bound orbitals (which are also represented with the B-spline
basis) and diagonalized on the model potential, free boundary
conditions.

• There may be 180-200 B-spline orbitals per ‘l’, but they span the
continuum: Buttle corrections are not needed.

• The larger number of spline continuum orbitals has a
knock-on effect on both the integral generation in RAD
and on the Hamiltonian formation in HAM.

• Integral evaluation: multiple do-loops over labels with
either fine-grid Simpson’s rule integrations (trad) or B-
spline integrations as innermost.

• However the 2-electron integral loops are (mostly)
cunningly written so that the inner integral can be saved
across many integrals.

• (nb a third system generates ‘Buttle-free’ continuum
orbitals iteratively: 30-40 needed to ‘span’ the
continuum: good for HAM, but the RAD time-saving trick
could not be used: this system (Plummer and Noble 1999)
may be reintroduced as complementary work by MP.)

Plan for RAD: AG Sunderland, 3 months over ~7.5 months

• Merge the B-spline and traditional RAD codes into a single
code

• Done with a few ‘final refinements’ left for nearer end of project:
input parameter chooses which version.

• Extend an OpenMP treatment by H van der Hart (QUB) of
B-spline generation and CC integral generation to the rest
of the (spline) code integral generation.

• Done: the !$OMP commands have also been moved from the
innermost loop (of 7-8) to 2-3 loops from innermost, with some
loops condensed. Needed some THREADPRIVATE definitions to work.

• A major performance enhancement for the exchange integrals was
achieved by loop re-ordering, to make much better use of the
‘saved’ inner integral.

• Nb: the integrals formation section takes >~0.8 of the time for 180
B-splines per ‘l’.

• Stage 1 Time (Orbital Generation) = 182.1008 secs
• Stage 2 Time (Integral Evaluation) = 1607.0104 secs
• Elapsed time = 1789.1112 secs,
• (‘trad’ serial takes 3+7=9 seconds for 30 B-splines per ‘l’)

OpenMP Oxygen test timings in seconds:
(the orbital-integral time ratio is maintained)

0 500 1000 1500 2000 2500

1

3

6

12
Current

Initial

• Still to finish for RAD: add in MPI communicators over
outer loops for integral generation: maybe add in sms
code (as an exercise? Here the mixed mode formulation
works well).

• This will automatically introduce a test for parallel I/O
which will be important for the final ANG modifications
and for HAM.

• (generally speaking RAD is a good introduction to the package
before serious work on HAM)

• Work for HAM (~4.5 months effort, ~3 months AGS, ~1.5
CJN): introduce MPI/IPC/sms code into HAM, parallel read,
standardised choices of format for main output (XDR for
portability and PDG or binary if preferred, using ‘xstream’
ideas).

• XStream and Filehand I/O handling:
• PFARM uses XDR files to read inner region data and

between stages. MPI-IO files are more efficient in
parallel but not portable.

• Xstream (CJN) provides a wrapper to allow either
option at any given file read/write.

• Introduced (for PFARM) during the previous dCSE.
• Filehand is a double-buffered I/O module written by

VM Burke for intermediate data in the inner region
codes using direct access files and (being) parallelized
by CJN. Initially devised to avoid continuous I/O,
current tests show that the buffer size (hence record
length) is fairly performance insensitive on HECToR.

• The parallel Filehand and xstream will be compared
(and combined).

• (parallel reading from direct access files is straightforward(?))

	Combined-Multicore Parallelism for the UK electron-atom scattering Inner Region R-matrix codes on HECToR
	Summary
	Electron-Atom Collisions
	Results: Collision Strengths
	Partition of Configuration Space
	Slide Number 6
	R-matrix theory (atomic)�We look for solutions of the TISE inside the sphere: we construct a Hamiltonian and diagonalize it. The basis functions include bound orbitals and continuum orbitals (non-zero on the boundary):�
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Package structure
	ANG
	Slide Number 15
	New ‘sms’ type
	Slide Number 17
	RAD
	Slide Number 19
	Plan for RAD: AG Sunderland, 3 months over ~7.5 months
	OpenMP Oxygen test timings in seconds: �(the orbital-integral time ratio is maintained)
	Slide Number 22
	Slide Number 23

