
HECToR optimization of the RMT program

Laura Moore, on behalf of Jonathan Parker

Queen’s University Belfast

4th October 2011



Plan of Talk

Introduction

The RMT (R-Matrix incorporating Time)

method

Parallelization of RMT

Scaling studies on HECToR

Optimization of the outer region
Algorithmic enhancement of the time propagator
Optimization of workload of first outer region core

Optimization of the inner region

Summary



Introduction



Numerical description of laser-atom interactions

There is a crucial need to solve the

Time-Dependent Schrödinger Equation (TDSE)
accurately for multi-electron atoms and

molecules coupled to IR/visible/UV and XUV
laser fields

Numerical models need to consider:

multi-electron spatial atomic structure

multi-electron temporal response to the laser



The Time-Dependent Schrödinger Equation (TDSE)

i~
∂Ψ

∂t
= HΨ

Ψ is the wavefunction describing the electrons

H is the Hamiltonian describing the interactions

that can occur



Helium and a short intense laser pulse

r2

r1

e2

e1

z

Laser
O



Computational Demand for a 2-electron atom

3 coordinates (r , θ, φ) for each electron

Full dimensional treatment for a 2-electron atom
achievable on parallel machines

The HELIUM code: Grown from ∼ 16 Gbytes
on Cray T3D to ∼ 15 Tbytes on Cray XE6



Numerical methods used in the HELIUM code

(6+1)D PDE – Ψ(r1, r2, θ1, θ2, φ1, φ2, t)

Finite-difference/ basis set method

Propagate over grid from Ψ(r1, r2, t) to

Ψ(r1, r2, t + ∆t) via an Arnoldi propagator

ES Smyth, JS Parker and KT Taylor 1998 Comput. Phys. Commun. 114 1



Numerical methods used in the HELIUM code

(6+1)D PDE – Ψ(r1, r2, θ1, θ2, φ1, φ2, t)

Finite-difference/ basis set method

Propagate over grid from Ψ(r1, r2, t) to

Ψ(r1, r2, t + ∆t) via an Arnoldi propagator

ES Smyth, JS Parker and KT Taylor 1998 Comput. Phys. Commun. 114 1

The R-matrix concept allows the carry over of

HELIUM methods to multi-electron atoms and
molecules



The RMT (R-Matrix incorporating Time) method

A new ab initio method to solve accurately the

TDSE for multi-electron atoms in intense laser
light



Combining HELIUM and R-matrix Methods

Split into a multi-electron inner region and an

outer region in which one electron has become
separated from the other electrons



Combining HELIUM and R-matrix Methods

Split into a multi-electron inner region and an

outer region in which one electron has become
separated from the other electrons

Inner region: extension of long-established
time-independent R-matrix computer codes to

incorporate time dependence



Combining HELIUM and R-matrix Methods

Split into a multi-electron inner region and an

outer region in which one electron has become
separated from the other electrons

Inner region: extension of long-established
time-independent R-matrix computer codes to

incorporate time dependence

Outer region: Implementation of HELIUM
finite-difference methods



Position Space

II I

r

ψ
INNERb

ψ

R−matrix basis

OUTER
Region II

Region I

rN

Finite differences
HELIUM

Split into an inner region and an outer region



Handling the inter-region boundary

To solve the TDSE in the outer region: need
wavefunction information from the inner region

and vice-versa!



Handling the inter-region boundary

To solve the TDSE in the outer region: need
wavefunction information from the inner region

and vice-versa!

At every time-step, cores assigned to the inner

region must synchronize with cores assigned to
the outer region



Parallelization of RMT



Parallelization of Inner Region

Calculation involves many Matrix-Vector
multiplications where the matrix has block

tridiagonal form:

Parallelize inner region vector over blocks

Communication limited to neighbouring blocks



Parallelization of Outer Region

Calculation involves use of finite difference

operators on a grid:

Parallelize outer region over grid points: each
core handles XLast grid points

Communication limited to neighbouring cores



One-to-one communication between regions

Cores handling
 Inner Region Cores handling

 Outer Region

Different algorithms in the 2 regions

The 2 regions must synchronize every time-step

Care with load balancing



Scaling studies on HECToR



Weak Scaling on HECToR

Number of cores allocated to the Inner Region

Group is 24
XLast is the number of FD points on each Outer
Region core

No. cores No. of FD points Iter time (s)
XLast = 150 XLast = 600

24 24×XLast 10.90 43.41
48 48×XLast 10.98 43.51
96 96×XLast 10.93 43.66
192 192×XLast 10.92 43.41
384 384×XLast 10.93 43.39

Weak scaling is very good



Strong Scaling on HECToR

With 94 grid points per Outer Region core, load
balancing improves when the Inner Region is
allocated 48 cores

24 48 96 192 384
Number of Outer Region cores

0

5

10

15

20

S
pe

ed
 u

p

Ideal speed up
With 24 Inner Region cores
With 48 Inner Region cores

1500 750 375 187 94
Number of grid points per core



Optimization of the outer region



Optimization of the outer region

1. Algorithmic enhancement of time propagator



Scaling of the time-step δt

Highest energy eigenvalues of the FD
Hamiltonian are of the order E = ~

2
k

2/2m

where k
2
max

= π2/δr 2

The propagator must integrate the equations of

motion as though these high-energy unphysical
modes contain population

In the explicit propagator used by RMT, outer

region stability requires time-steps δt that scale
as 1/δr 2



The eigenspectrum of the outer region Hamiltonian

Dominated by the kinetic energy operator K,

which in turn is dominated by the 2nd derivative
operator

Expect that δt is governed by 1/δr 2 dependence

of 2nd derivative operator

But both inner and outer regions use same δt

Behaviour of eigenspectrum of K has

profound effect on run-time efficiency of
RMT



Goal:

Develop methods to mitigate the effect of high
eigenvalues of K

New technique to reduce the peak
eigenvalues of K by using least squares

operators

Successfully reduces peak eigenvalues by up

to a factor of 4 with very little additional
computational cost



Integration using 3 different 2nd derivative operators

Failure of standard 3 point rule for 2nd order
derivatives

Success of a least-squares finite-difference rule
(7 point)

0 100 200 300 400 500 600
time (atomic units)

0.85

0.9

0.95

1

po
pu

la
tio

n 
(w

ith
in

 1
0 

au
 o

f n
uc

le
us

)

2nd deriv. 3 pt 2nd order rule (green)

2nd deriv. 5 pt 4rth order rule (red)

2nd deriv. (least squares) 7 pt 5th order rule (black)



Eigenspectra of 4 FD 2nd derivative operators

Least squares process can dramatically truncate

the higher frequency components of the
eigenspectrum without significantly changing

the low frequency components

0 50 100 150 200 250 300
eigenvalue index

0

1

2

3

4

5

6

7

ab
so

lu
te

 v
al

ue
 o

f e
ig

en
va

lu
e

2nd deriv. f.d. operator (9 pt. 8th order)

2nd deriv. f.d. operator (5 pt. 4th order)

2nd deriv. f.d. operator (9 pt. 7th order, least squares)

2nd deriv. f.d. operator (9 pt. 5th order, least squares)



Maximum eigenenergy of outer region Hamiltonian during

the course of an 8 field period integration

Least squares operators have the smallest

maximum eigenenergies

0 2 4 6 8 10
time (units of field period)

100

200

300

400

m
ax

im
um

 e
ig

en
-e

ne
rg

y 
(a

to
m

ic
 u

ni
ts

)

9 pt. 5th order f.d. rules (least squares)

9 pt. 7th order f.d. rules (least squares)

5 pt. 4th order f.d. rules

9 pt. 8th order f.d. rules



Population within 20 Bohr radii of the nucleus as a

function of time

Least squares rules give same accuracy as non

least-squares rules

0 5 10 15 20
time (units of field period)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

po
pu

la
tio

n 
w

ith
in

 2
0 

a.
u.

 o
f n

uc
le

us

9 pt. 5th order least squares f.d. rules

9 pt. 8th order f.d. rules



Increase in δt achievable using least squares rules

At δt = 0.0061 a.u. 5 point rule fails
The 9 point least squares rule is correct at

δt = 0.011 a.u.

0 5 10 15 20
time (units of field period)

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

po
pu

la
tio

n 
w

ith
in

 2
0 

a.
u.

 o
f n

uc
le

us

5 pt. finite-difference rules, delta_t = 0.0061 au

9 pt. least squares f.d. rules, delta_t = 0.011 au

9 pt. f.d. rules, delta_t = 0.001 au 



Run time efficiency of 9 point least squares rules

On HECToR, 9 point rules nearly as fast as 5
point rules - overhead is in accessing arrays from

memory

Memory fetch overhead is the same for 9 and 5

point rules

2nd derivative operator has small computational
cost in comparison to other operators in the

Hamiltonian

Ability to increase δt by a factor 1.8 directly

translates into a factor 1.8 increase in
integration speed



Optimization of the outer region



Optimization of the outer region

2. Optimization of workload of first outer region
core



Optimization of workload of first outer region core

First outer region core has additional workload
compared to other outer region cores
(calculation of boundary terms to be sent to the

inner region)

Adapt RMT so that the first outer region core

handles a reduced number of grid points

With the optimum workload for the first outer

region core, it synchronizes with the remaining
outer region cores every time-step



Time interval propagated per wall-clock second

The first outer region core handles the same

number (RED) and a reduced number (BLACK)
of grid points compared to other outer region

cores

0 2000 4000 6000 8000 10000
total number of cores

0

0.05

0.1

0.15

0.2

0.25

tim
e 

in
te

rv
al

 p
ro

pa
ga

te
d 

(a
u)

 p
er

 w
al

l-
cl

oc
k 

se
co

nd



Optimization of the inner region



Inner region cores to handle even and odd orders of

propagation

The inner and outer regions synchronize at the

start and end of every time-step

Arnoldi propagators are used in both regions

The maximum propagation order is set as a
parameter

At every order of propagation within a
time-step, the inner region requires starting

information sent from the outer region

Divide inner region into 2 independent sets of
cores - red and black - which independently

receive information from the outer region



Time interval propagated per wall-clock second

Near linear speed up to about 240 inner region

cores

Above 240 cores improvement in speed
continues linearly (but more slowly)

0 100 200 300 400 500 600
number of inner-region cores

0

0.25

0.5

tim
e 

in
te

rv
al

 p
ro

pa
ga

te
d 

(a
u)

 p
er

 w
al

l-
cl

oc
k 

se
co

nd red-black parallel inner-region = true

red-black parallel inner-region = false

8th order propagator



Inner region cores to handle even and odd orders of

propagation

Addition of 340 inner region cores (above the

240 core threshold) gives 70% improvement in
speed

Both desirable and beneficial in RMT - outer
region runs on 1000’s or tens of 1000’s of cores

Addition of 340 inner region cores is a highly

inexpensive way to improve the run-time
efficiency of the entire program by 70%



Summary



Summary

X Enhanced time propagator successfully
implemented

using least squares processes in 2nd derivative operators has
the benefit of lowering peak eigenenergies, thus allowing a

larger time-step which can increase integration speed by a

factor of 80%



Summary

X Enhanced time propagator successfully
implemented

using least squares processes in 2nd derivative operators has
the benefit of lowering peak eigenenergies, thus allowing a

larger time-step which can increase integration speed by a

factor of 80%

X Optimum workload for first outer region core
successfully implemented

reducing the number of grid points handled by the first outer

region core can speed up the calculation by around 20%



Summary

X Enhanced time propagator successfully
implemented

using least squares processes in 2nd derivative operators has
the benefit of lowering peak eigenenergies, thus allowing a

larger time-step which can increase integration speed by a

factor of 80%

X Optimum workload for first outer region core
successfully implemented

reducing the number of grid points handled by the first outer

region core can speed up the calculation by around 20%

X Even/odd propagation orders handled by
independent sets of inner region cores
successfully implemented

adding a few 100 inner region cores can speed up, by 70% or
more, entire calculations using 1000’s of cores in total



Thanks for your attention!


