
 Improvements for
Multicore Performance

and Domain Choice
within DL_POLY_4,

Ian Bush
Valène Pellissier

(NAG Ltd.)

Molecular Dynamics: What is it?

 Theoretical tool for modelling the detailed
microscopic behaviour of many different
types of systems, including gases, liquids,
solids, surfaces and clusters.

 In an MD simulation, the classical
equations of motion governing the
microscopic time evolution of a many
body system are solved numerically, subject
to the boundary conditions appropriate for
the geometry or symmetry of the system.

Molecular Dynamics

 Can be used to monitor the microscopic
mechanisms of energy and mass transfer in
chemical processes, and dynamical properties
such as absorption spectra, rate constants
and transport properties can be calculated.

 Can be employed as a means of sampling
from a statistical mechanical ensemble and
determining equilibrium properties. These
properties include average thermodynamic
quantities (pressure, volume, temperature,
etc.), structure, and free energies along
reaction paths.

Example: Argon

Pair potential:

V (r)=4ϵ((σr)
12

−(
σ
r)

6

)

rrcutcut

Lennard-Jones Potential

−

=

612

4)(
rr

rV
σσεV(r)

rr

σσ

εε rrcutcut

Pair-wise radial distance

Equations of Motion
 Force on atom i due to atom j:

 Total force on atom i:

 Newton 2:

 So can update position by, e.g., Verlet's
algorithm

f ij=−∇V (r ij)

F i=∑
j=1

N

f ij

ai=
F i

mi

Boundary Conditions

 Open – biopolymer
simulations

 Stochastic
boundaries –
biopolymers

 Hard wall
boundaries – pores,
capillaries

 Periodic
boundaries – most
MD simulations

2D Cubic Periodic:

So What Can We Calculate?

 Kinetic Energy:

 Temperature:

 Configuration Energy:

 Pressure:

 Specific heat:

〈KE 〉=〈
1
2∑i

N

mi vi
2
〉

T=
2

3Nk B
〈KE 〉

U=∑
i
∑
j

j>i

V (r ij)

PV=Nk BT−
1
3
〈∑
i

N

r i . f i 〉

〈δU 〉=
3
2
Nk B

2 T 2(1−3Nk B2Cv)

What Else?

 Pair correlation (Radial Distribution Function):

 Structure factor:

 Note: S(k) available from diffraction
experiments
• e.g. Diamond, ISIS

g (r)=
V

N 2 〈∑
i

N

∑
j , j≠i

N

δ(r−r ij)〉

S (k)=1+4πρ∫
0

∞ sin (kr)
kr

(g (r)−1)r 2dr

So How Does It Scale?

 Provided we can cut off the potential …
• Each atom interacts with a finite volume

• Within that volume on average there is a constant
number of atoms

Related to the density of the system

• So the evaluation of the force on each atom on
average takes a time that is independent of
system size

• So classical MD is O(N) as we have to evaluate the
forces on N atoms for each time step

 BUT – can we always cut off the
potential?

No!!!!

 Consider a radius σ atom interacting with a
uniform “sea” by a 1/rn potential

 The energy of interaction is

 This diverges for n≤3; such potentials are
termed long ranged
• The problem is that the volume element grows

faster than the potential decays

• Get conditionally convergent sums
 Is this important?

E=∫
σ

∞

d r
1

r n
=4π∫

σ

∞

dr r 2
1

rn

Yes!!!!

 The fundamental interaction of chemistry is
the Coulomb potential

 So as we can't cut off the potential we have
to sum every pair
• Which is quite a large number in a system with

periodic boundary conditions (have to include all
images!)

• And therefore might take quite a long time!

V (r ij)=
qi q j
r ij

Ewald Summation

Get round this by use of the Ewald Sum
 Takes advantage of the periodic nature of the

system to evaluate the long range terms
 Effectively splits the potential into two parts

• Short ranged
Can cut off, won't talk about more here

• Long ranged but not singular at r=0
Use Fourier techniques to evaluate
This is what we are interested in

V (r)=
erfc(β r)

r

V (r)=
erf (β r)
r

Long Range Terms

U lr=
1
2πV ∑

m≠0

S (m)S †(m)
e

−
π2∣m∣2

β2

∣m∣
2

S (m)=∑
j=1

N

q j e
2π im . r j

m=m1b1+m2 b2+m3 b3

Structure Factor

S (m)=∑
j=1

N

q j e
2 π im .r j

S (m)=∑
j=1

N

q j e
2π i

m1u1
Κ1 e

2π i
m2u2
Κ2 e

2π i
m3u3
Κ3

This looks almost like a K
1
*K

2
*K

3
 3D FT, but

not quite as the atoms are almost certainly not
on a nice regular grid

The Particle Mesh Approximation

 So can we calculate the structure factor by
only sampling on a regular grid?
• If so can calculate it using a FFT

 Yes!
 Number of ways, most commonly used in MD

is the Smooth Particle Mesh Ewald method
due to Darden et al.:

e
2π i

mμuμ

Κμ ≈bμ(mμ) ∑
kμ=−∞

∞

M n(uμ−kμ)e
2π i

mμ kμ

Κμ

SPME

M
n
 are the cardinal B-splines of order n

They have some nice properties including:
 Easily evaluated by a simple recurrence
 Differentiable n–2 times

• Forces

 M
n
(u) is non-zero only in the range 0<u<n

• Only need evaluate at grid points near each atom

• So effectively a short range interaction!

e
2π i

mμuμ

Κμ ≈bμ(mμ) ∑
kμ=−∞

∞

M n(uμ−kμ)e
2π i

mμ kμ

Κμ

1 Evaluate

2 Fourier transform Q(k) → Q(m)

3

4 Inverse Fourier transform V(m) V(→ k)

5 From Q(k), V(k) easy to calculate energy and
forces

SPME Steps

Q (k)=∑
i=1

N

∑
n1,n2, n3

q i ∏
μ=1,2,3

M n(uμ i−kμ−nμΚμ)

V (m)=[∏μ
∣(bμ)

2∣]Q (m)
e

−
π
2∣m∣2

β2

∣m∣2

So…

Therefore:
 To evaluate short ranged terms we only need

to know the positions of the atoms near to
the atom of interest

 To evaluate long range terms we
• Need to evaluate terms on the grid points near the

reference atom

• But also need a FFT

Thus when planning how to do this in parallel
we should use a decomposition that reflects the
spatial locality

DL_POLY – What is it?

 General purpose parallel (classical) MD
simulation software

 Originally funded by CCP5
 Written in modularised Fortran95 with

MPI1+MPI-I/O
 1994 – 2011: DL_POLY_2 (RD) by W. Smith

& T.R. Forester
 2003 – 2011: DL_POLY_3 (DD) by I.T.

Todorov & W. Smith
 Available free of charge (under licence) to

University researchers (provided as code)
and at cost to industry

Widely Used

1000 2000 3000 4000 5000 6000 7000 8000

1000

2000

3000

4000

5000

6000

7000

8000

14.6 million particle Gd
2
Zr

2
O

7
 system

Processor count

S
p

e
e

d
 G

a
in

 Perfect
 MD step total
 Link cells
 van der Waals
 Ewald real
 Ewald k-space

How well does it work?

Two Main Versions
 DL_POLY_4 (version 1.2)

• Parallelisation based on domain decomposition

• limits up to ≈2.1×109 atoms with inherent
parallelisation

i.e. 231

• Full force field and molecular description with rigid
body description

 DL_POLY Classic (version 1.6)

• Replicated Data parallelisation, limits up to ≈30,000
atoms with good parallelisation up to ~64 cores

• Full force field and molecular description

• Hyper-dynamics, Temperature Accelerated Dynamics,
Solvation Dynamics, Path Integral MD

24

AA BB

CC DD

DL_POLY_4 Domain Decomposition

Domain Decomposition

 So domain decomposition fits the short range
terms very nicely

 But not “standard” library parallel 3D FFTs
• FFTW, IBM's PESSL, Cray's SciLib all use a

decomposition by planes (“slabs”)
 So two choices:

1)Use a library routine, but this will require an
expensive data redistribution

2)Write an FFT that uses the domain decomposed
form directly – DaFT

● But now we need to parallelise the 1D FFTs

So how DaFT is it?

Without time for redistribution Including time for redistribution

Moral of this story

 Have to use the data decomposition that fits
the problem
• Sometimes “force fitting” a standard library may

not be the best solution
Libraries for distributed data problems are hard:

o ~Infinitely different ways to distribute the data
o Have to use best distribution for whole application,

not just the library routine
 Redistribution will (eventually) kill you

o Somebody from NAG shouldn't be saying this!

So How to Parallelise a 1D FFT?

X (k)=∑
j=0

N−1

x (j)e
2π i
N

jk

X (2r)= ∑
j=0

N /2−1

x (j)e
2 π i

(N /2)
(2r) j

+ ∑
j=0

N /2−1

x (j+N /2)e
2 π i

(N /2)
(2r) j

X (2r+1)= ∑
j=0

N /2−1

x (j)e
2 π i

(N /2)
(2r+1) j

− ∑
j=0

N /2−1

[x (j+N /2)e
2π i
N

j

]e
2π i

(N /2)
(2r+1) j

 “Decimation in frequency”

• Sande-Tukey Algorithm

Graphically

So for a 3D FFT

 The method is obvious!
• Do the x transforms in parallel

• Then do the y transforms

• And finally the z

 No nasssty transposes
• So no mpi_alltoallvs

Much longer messages

• Communication purely along the principle
directions of the process grid

• If 512=8*8*8 cores only need to get the 1D
transforms to scale to 8 cores

• BUT more data needs to be sent

So DaFT for the 1D transforms...

 Log
2
(P) communication steps

• Obviously communicate all at once
Sending V/P amount of data

• Big messages
Doing many FFTs at once

 Followed by a standard serial FFT library call

 Inverse FFT can be done by “Decimation in
Time” – essentially the reverse of the above

 First a standard serial FFT library call
 Then Log

2
(P) communication steps

• Also undoes the reordering, but won't go into this

But

 This only works on powers of 2 numbers of
processes

 And the problem size might not naturally fit
onto such a number of processors
• Restrictions due to cutoff

 Scientist
• Might use more procs than he/she needs

Poor scaling?

• Might scale up the problem size to fit
 Both a waste of computer budget
 Thus dCSE funded to reduce this restriction

on core counts

Work Funded

 Funded: to allow P=2nx30-2x50-1

 What actually done – allow P to be any
number
• But performance will be poor if includes a large

prime factor

Mixed Radix

X (k)=∑
j=0

N−1

x (j)e
2π i
N

jk

X (N 2 k 1+k 2)=∑
j1=0

N 1−1 [e
2π i
N

j1k 2](∑
j 2=0

N 2−1

x(N 1 j 2+ j1)e
2π i
N 2

j 2k 2)e
2π i
N 1

j1k 1

So if have multiple factors

 So I split the prime factors into two sets
• Short

Small primes
Usually raised to high powers
Done by full FFT algorithm
Code designed to make this set easily added to

• Long
Larger primes
Usually raised to low powers
Done by simple DFT algorithm
Note if the power raised to is 1 DFT=FFT

 Note though any number of cores the length
of the FFT must still be a multiple of P
• Not in practice a problem

An Example

 If P
x
=2n*L

• First do 2n DFTs of length N
x
/2n each split over L

cores
Simultaneously
Need to circulate data – double buffered systolic loop

found best

• Next apply the phase (“twiddle”) factors

• Finally do L FFTs of length N
x
/L each split over 2n

cores
Simultaneously

 And then similarly for y and z

Other Issues

 The domain decomposition algorithm in
DL_POLY had to be generalised to any
number of cores

 Recast as an optimisation problem
• Want to minimise amount of data sent

• Related to the the sum of the surface areas of the
domains

 c.f. Halo exchange

• Nice side effect of 3D, tends to factorise the long
factors – 1728 = (22*3)*(22*3)*(22*3)

So How Well Does It Work

 If not a power of 2 how hard hit is the
performance?

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

40

45

50

Other
Power of 2

Cores

T
im

e
st

e
p

s/
s

Briefly

 Other work by Valène Pellissier focused on
profiling and optimising DL_POLY
• Loss in performance as the number of cores in the

node has increased
 Valène is now based in France so I'll give a

quick overview of some of her work
• Full report going up on the web page

Profiling

 DL_POLY_4 was profiled extensively
• Main tests on a large biomolecule

 Problem areas identified include
• Frozen atoms in general

Conditionals in inner loops but most simulations have no
frozen atoms

• Link cell pairs
Conditionals in inner loops avoided by slight change of

algorithm

• Ewald routines
 Improved vectorisation – see later

• Constraints
Build list of constrained atoms avoids conditionals in

inner loops

Ewald Summation

 Problem: Inner loop short and of variable
length (typically 1-12)

 Solution:
• Length of loop can be determined outside main

loop nest

• Therefore use a select construct to choose outside
the loop an unrolled version

• Allows vectorising over both inner and second
innermost loop

• Early compiler versions dramatic improvements:
189s 109s!→

• Compilers getting better but still ~20%
improvement to do it manually.

Overall Improvement

 Rather case dependent but each
improvement gives around 10-35%
improvement
• Depends on number of cores as well

 So whole run times around 10-25% better
due to Valène's work
• XE6 now faster than the XT4!

Summary

 Through dCSE funded work DL_POLY_4 has
• Been made more flexible by removing restrictions

due to the FFT
Can run on any number of cores now

• Run faster due to identifying hotspots and
optimising

	OpenMP
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

