
 1

Implementation of a Divide and Conquer
Linear Scaling Algorithm in the

CRYSTAL Code

Daniel R. Jones
Numerical Algorithms Group

Acknowledgements:
STFC:
 Barbara Montanari, Leonardo Bernasconi, Nic Harrison
NAG:
 Ian Bush
Computing
 HECToR, SCARF

 2

Outline
● An introduction to CRYSTAL

● Motivation

● Divide and conquer scheme –
What does the algorithm look like?

● Task level parallelism in CRYSTAL

● A very simple test case – first results.

● Continuations

● Conclusions

 3

Basis Set
• LCAO – Gaussians type orbitals

• All electron or pseudopotential

Hamiltonian
• Hartree-Fock (UHF, RHF)

• DFT (LSDA, GGA)

• Hybrid exchange functionals

• Periodic local MP2 via CRYSCOR

Techniques
• Replicated and massively parallel

Visualisation
• DLVizualise

 4

Energy
Geometry optimisation
Vibrations (phonons)
Elastic tensor
Transition state searching
Ferroelectric polarisation
Piezoelectric constants
X-ray structure factors
Density of States / Bands
Charge / Spin Densities
Magnetic Coupling
Electrostatics (V, E, EFG)
Fermi contact (NMR)
EMD (Compton, e-2e)

TDDFT (+ hybrids)
• Optical spectra
• Exciton binding energies

 Coupled Perturbed HF/KS
• Static polarizabilty
• Dielectric tensor

Empirical dispersion terms
Substitutional & magnetic order
Quantum transport

• Landauer via WaNT interface

Helical symmetry for polymers
Autogeneration of nanotubes

 5

CRYSTAL Example 1 – Crambin

● 2 Chains in unit Cell
● 1284 Atoms
● 6-31G** basis set

(12354 functions)
● All calculations

B3LYP

Work by Ian J. Bush.

 6

CRYSTAL Example 2 -

Helix stabilization by adsorption on hydroxyapatite

● B3LYP /6-31G(d,p) periodic level with CRYSTAL06 code

● Only electronic energies (no T effects!)

● No dynamics (daunting task)

● Forced to use fixed peptide conformers (either random coil/alpha-helix)

● Protein and adsorption from gas-phase(!)

● Water studied as a microsolvation process

Originally presented by Pierro Ugliengo, Ab Initio Modelling in Solid State Chemistry,
University of Torino

 7

When do we need linear scaling?
● Traditional DFT algorithms scale as O(N3) – where N is some

measure of the system size.

● Prohibitive at large system sizes, e.g:

– Obvious cases, where a crystal has a large unit cell

– Surfaces, can require a deep slab so the centre converges
to bulk like.

– Defects, can require a large super-cell to reduce the impact
of the defect interacting with its periodic image.

 8

Symmetry

● CRYSTAL is very good at utilising symmetry to minimise computational
expense.

● However:

– Many systems have very low symmetry (e.g. most proteins)

– Symmetry is fragile!

 9

Target Systems

To make best use of the algorithm, the target stystems are
large unit cell molecular crystals and (to a lesser extent)
biomolecules.

 10

Divide and Conquer Algorithm

● How can we achieve linear scaling?

● Why is “conventional” DFT O(N3)?

– In CRYSTAL the Fock matrix in reciprocal space is diagonalised
– an O(N3) operation.

– Plane wave codes have a number of states which are generally
delocalised across the whole system that must be mutually
orthogonal.

● “Short sighted” localised electrons

– Result of destructive wave interference in the presence of
many particles.

– Usually (but not universally) true

– Already assumed in a lot of chemistry and materials
science.

 11

Dividing the system into subsystems
● Use the short-sightedness of electrons. Electrons only

interact with other electrons at (relatively) small separations.

● System is separated into subsystems.

● Simplest way (used here and in SIESTA) is to have 1 core
atom per subsystem.

● More sophisticated (and sensible) divisions are possible and
should be implemented later.

 12

Scaling of Order N In Crystal
● Implemented algorithm named SONIC, to find the electronic

structure by divide and conquer.

● The system is divided into a set of subsystems, {α}, and a partition
function P

ij

α is defined.

● Once the SCF has converged for all subsystems the global Fermi
energy is determined by iteratively improving Ef until there are the
right number of electrons in the system.

● And the global density matrix is constructed, from which the energy
can be evaluated.

∑
P ij

=1

N=∑ij
 ij Sij=∑ij

2∑
Pij

∑m
f F−m

 C ij
C jm

 Sij

ij=∑
2Pij

∑m
f F−m

 Cℑ
C jm

Pij=1, i∈∧ j∈

Pij=0.5,i∈∧ j∉∨ j∈∧i∉

Pij=0,i∉∧ j∉

 13

Divide and Conquer Algorithm
Read
Geometry

Begin SCF
Cycle

Compute the SCF for
each subsystem.

First
SCF?

Converged?

Partition the system
into subsystems.

Determine partition function.

Find the global Fermi
Energy.
Compute the density
matrix.

Compute the Energy

yes

yes

no

no

 14

Divide and Conquer Algorithm
Read
Geometry

Begin SCF
Cycle

Compute the SCF for
each subsystem.

First
SCF?

Converged?

Partition the system
into subsystems.

Determine partition function.

Find the global Fermi
Energy.
Compute the density
matrix.

Compute the Energy

yes

yes

no

no

 15

Task level parallelism in CRYSTAL

● Aside from the divide and conquer
algorithm there are many cases
where multiple SCF computations
are required.

● e.g. (1). Finding the electronic
structure at snapshots of a
classical MD run. (2). Finding
several points on a phase
diagram. (3). (not shown) Finding
higher order differentials of the
potential energy surface, to
compute frequencies etc.

● This is now easy to perform in
CRYSTAL and I have developed
helper routines so that this task
level parallelism can be used
within CRYSTAL.

MULTIRUN in CRYSTAL
● I have implemented this task farming within CRYSTAL using

the MULTIRUN keyword.

● It is simple to use, an INPUT file containing nothing but

1. A title line.

2. MULTIRUN

3. 2 Integers, NRUNS and TASK_SIZE

• The total number of tasks, and the number of
processors to use for each task.

● A separate normal INPUT file name INPUT.tsk_ is required for
tasks 1-NRUNS. Running this job will be identical to running
CRYSTAL for each of the INPUT files.

● Should be available soon (after further testing) hopefully in the
next release of CRYSTAL.

Integrating MULTIRUN for use
 with other CRYSTAL routines

● It should be possible to integrate this
functionality with routines within CRYSTAL
where the computation of many SCFs
happens sequentially.

● This is likely to improve the scaling using large
numbers of processors.

● Should be ideally suited to finite difference
methods – so long as SCFs are independent
of each other.

 18

Divide and Conquer Algorithm
Read
Geometry

Begin SCF
Cycle

Compute the SCF for
each subsystem.

First
SCF?

Converged?

Partition the system
into subsystems.

Determine partition function.

Find the global Fermi
Energy.
Compute the density
matrix.

Compute the Energy

yes

yes

no

no

 19

Modern HPC Architecture

● Multi-core chips are becoming increasingly important

● Task level parallelism means it is possible to keep
communication mostly on-chip.

● The D&C algorithm in SONIC should scale very well with
number of processors, as well as linearly with system size.
Lots of computation with very little communication.

HECToR

XE6 Node

 20

Simple Case

Radius of Halo / Å E(O(N)) – E(Trad) /
 millihartree cell-1

0.1 17.3

3.0 5.1

4.5 2.6

● 10 Å3 Neon

● Each subsystem
contains 1 core atom

● Atoms within a
defined radius are
included in a halo.

 21

What's next?

● 2 main problems to work on:
– Termination of covalent bonds at the surface

of subsystems.

– Long range treatment of electrostatics –
CRYSTAL has the machinery for this.

● Implement a more intelligent way to partition a
system into subsystems.

● Test the algorithm's performance for more
challenging and interesting systems.

 22

Summary
● Implemented an O(N) divide and conquer algorithm for

the CRYSTAL code.

● As part of this, task level parallelism has been
implemented in CRYSTAL.

● Showed the method applies to a simple example case.

Continuations
● Long range Coulombic interactions using a multipole

expansion.

● Sensible subsystem termination to deal with covalent
systems.

● Splitting the system into a variety of subsystems
depending on what is most appropriate.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

