OpenFOAM on HECToR

HECToR Distributed CSE Support Technical Meeting Oxford, 23-24 September, 2000

> Dr Gavin J. Pringle g.pringle@epcc.ed.ac.uk +44 131 650 6709

Overview

- Project details
- Overview of OpenFOAM
 - Open-source comments
 - Applications and scientific benefits
 - Background of work
- Work plan outline and status
- Technical notes
 - Installation on HECToR
 - Changes to standard release
 - User information
 - Compilation information
 - Example batch scripts
- Future Plans
- Acknowledgements

- Distributed CSE Support project to provide the OpenFOAM toolbox functionality to HECToR users.
- Project overview
 - Install and test the core OpenFOAM solvers on HECToR
 - Benchmark a range of the OpenFOAM modules
 - identified as useful via UK CFD communities
 - Make OpenFOAM available to HECToR users
 - "how-to" guide
 - Disseminate the benchmark results
- Ultimately, make OpenFOAM, and relevant performance information, available on HECToR
- Presents HECToR to a new group of potential users and allow them to undertake larger, more complex simulations, in a more timely fashion.

Applications

epco

Aerospace

- super- and hyper-sonic flow, ice deposition, etc
- Automotive
 - external noise, combustion, fuel injection, catalytic converters, etc
- Energy
 - fuel storage, heating/ventilation, etc
- Heavy industry:
 - bearings, pumps, etc
- Others
 - baking
 - polymer extrusion
 - ink-jets
 - crystal growth
 - climatic flows
 - etc.

Overview of OpenFOAM

- Open-source toolbox for CFD
 - C++ modules, with MPI calls for parallel inter-core communication
- Generic tools to simulate complex physics for
 - fluid flows involving chemical reactions, turbulence and/or heat transfer
 - solid dynamics
 - electromagnetism
 - pricing of financial options.
- Solvers
 - simulate specific problems in engineering mechanics
- Utilities
 - perform pre- and post-processing tasks ranging from simple data manipulations to visualisation and mesh processing
- Libraries
 - create toolboxes that are accessible to the solvers/utilities

OpenFOAM is open-source

- OpenFOAM is maintained by OpenCFD
 - OpenCFD provides contracted development, support and training for users of OpenFOAM.
- Any user can augment code to create customised applications for specific problems
 - i.e. turbo-machinery
- Some user-augmented versions are available via the OpenCFD
- These are referred to as 'development' versions
 - misnomer: more akin to 'augmented' versions
 - any new functionality in online development versions are not, in general, included in future releases
- Maybe open-source, but official code is written only by OpenCFD
 - plus one trusted external user.

Work plan

- The work plan is in three parts
 - WP1: install and test the core OpenFOAM solvers on HECToR
 - WP2: benchmark a variety of the modules available
 - WP3: publicise the results to the potential users.

- Note on visualisation
 - OpenFOAM GUIs present some difficult challenges
 - paraFOAM employs ParaView
 - HECToR's ParaView does not work for all users
 - post-processing and rendering burning cycles on login nodes?!
 - thus, focus is on core solvers
 - GUIs only being considered time permitting.

WP1: Install and test OpenFOAM

- Identify a suitable subset of modules for installation
 - EPCC will liaise with the project co-PI Professor David Emerson to identify which solvers and modules should be the focus for this project.
 - Also includes polling the UK CFD community in general to find which modules are mainly being used, and specifically which would be useful to future researchers using HECToR.
 - Several consortia have expressed a strong interest in making use of OpenFOAM on HECTOR if it was available, including:
 - UK Applied Aerodynamics Consortium
 - UK Turbulence Consortium
- Create test cases
 - once the modules have been chosen, suitable test examples need to be created/obtained.
- Installation
 - the modules will be installed on HECToR
- Run tests and validate
 - the example test cases will be run to check the installation for correctness.

WP1: Effort, Tasks and Outputs

- Effort: 3 months over 6 months
 - 1st April 2009 30th September 2009
- Tasks and status:
 - Task 1. Identify suitable subset of modules for testing
 - Task 2. Create tests
 - Task 3. Install remaining OpenFOAM modules
 - Task 4. Run tests and validate
 - Task 5. Revisit installation if required
- Outputs:
 - D1.1 Short report listing the modules chosen for testing and test cases
 - D1.2 Short report on the installation process

WP1: Current status

- Task1. Identify suitable subset of modules for testing
 - co-PI requested that the Tutorials Test Suite be employed
- Task 2. Create tests
 - Tutorials Test Suite needs extended to run in parallel
 - OpenCFD assisting
 - also giving general guidance with code
 - creating dam break 'cases'
 - 'Finest simulation' yet to be used for advertising purposes
- 3. Install remaining OpenFOAM modules
 - Done: all modules, bar GUIs, are installed.
 - Cray's assistance invaluable.
- 4. Run tests and validate
 - Some tutorials fail due to bugs in code
- 5. Revisit installation if required

WP2: Benchmarking

- Effort: 2 months
 - 1st October 2009 31st January 2010
- Task 1: Create benchmark models/tests
 - the benchmark models will ideally follow on from the test cases created in the first work package.
- Task 2: Generate the benchmark data
 - demonstrate the scaling of the parallel OpenFOAM modules
 - give idea of the limits on the size of models which can be simulated
 - Scaling and performance improvements, compared with serial runs, will be measured.
 - Optimal runtime parameters will be identified for the different models based on the results
- Output:
 - D2.1 Report on the benchmarking results, scaling and performance, and optimal runtime parameters

- Effort: 1 months
 - 1st February 2010 31st March 2010
- Task 1: Identify appropriate dissemination routes
 - HECToR website and User mailings
 - may be via a paper or poster to an appropriate conference
 - AHM2010, Open CFD International, etc
- Task 2: Dissemination
 - Write up benchmarking results
 - Create a OpenFOAM User Guide on HECToR website
- Outputs:
 - D3.1 Paper/poster on the benchmark performance
 - D3.2 Web-based reference on using OpenFOAM on HECToR

Installation details

- OpenFOAM installation directory must be visible to compute nodes
 - despite best efforts by Cray and EPCC.
 - installation resides in /work/y07/y07/openfoam
 - other 3rd party packages are also only available from /work
- OpenFOAM package account created in /usr/local/packages
 - only contains gzipped tarball to recreate installation quickly
 - /work not backed up, whilst /usr/local/packages is not
- gzipped tarball differs from standard release
 - Code changes
 - Additional HECToR-specific dynamic libraries
 - Excludes
 - html documentation
 - malloc
 - openmpi
 - zlib
 - gcc
 - Includes HECToR-specific user files
 - README, example batch scripts for compilation and testing, etc

Changes to source code:

- etc/settings.sh
 - Employed Cray MPI rather an release's own OpenMPI
- wmake/rules
 - added cray_xt directory for setting compiler flags, location of mpi, etc.
 - very similar to linux64Gcc
- src/Pstream/Allwmake
 - Added MPT target for Cray MPI
- Added several shared and dynamic libraries to /mylib
 - currently only found on the front end,
 - now available to compute nodes during compilation and runtime
 - five hour compilation must be done on back-end
 - libalpslli.a, libalpsutil.so, libgcc_s.so.1, libpthread.so.0, libalpslli.so, libalpsutil.so.0, libm.so.6, librt.so.1, libalpslli.so.0, libalpsutil.so.0.0, libmpich.so.1.1, libstdc++.so.6, libalpslli.so.0.0, libc.so.6, libpmi.so, libz.so.1, libalpsutil.a, libdl.so.2, libportals.so.1

Current status

- Three versions of OpenFOAM are currently available
 - 1.6 (current), 1.5 (previous) and a 1.5-dev version
 - basic optimization with –O3
- Early Adopters' User Guide emailed to small, select group
 - group includes 3 actual users identified via the HECToR Helpdesk
 - Guide available via HECToR 3rd Party Software Wiki by end of Sept., '09.
- All OpenFOAM executables can be run in either serial or parallel
 - hence both dual- and quad-core versions available for all three versions
 - quad-core binaries run in serial queue may fail on the dual-core nodes
- Users can either
 - run OpenFOAM from package account or
 - copy our modified source, augment and install in their own workspace

#!/bin/bash --login **#PBS** -q serial **#PBS -N compile_OF** #PBS -l cput=05:00:00 **#PBS -A y07** . /opt/modules/3.1.6/init/bash module swap PrgEnv-pgi PrgEnv-gnu #module load xtpe-quadcore module swap gcc gcc/4.3.3 module swap xt-mpt xt-mpt/3.2.0 cd /work/y07/y07/openfoam/dual-core/OpenFOAM/OpenFOAM-1.5 source etc/bashrc export LD_LIBRARY_PATH=\$WM_PROJECT/mylib:\$LD_LIBRARY_PATH ./Allwmake

Compilation fails

- Compilation currently fails
 - [../OpenFOAM/OpenFOAM-1.5/lib/crayxtDPOpt/libuserd-foam.so] Error 1
 - This is due to the currently employed Cray XT4 CSE 2. does not ship the necessary dynamic libraries.
 - Fixed in CSE 2.2.
 - The compilation script provided for HECToR users includes a work-around.
- Some portals warnings during compilation
 - only if /mylib not in \$LD_LIBRARY_PATH
 - portals are what the MPI is built upon
 - can ignore them as they are not required at runtime as we employ the portals static libraries.
 - number of dummy libraries in /mylib to calm the compilation and the runtime environment

Example Batch Script for serial jobs

#!/bin/bash --login **#PBS** -q serial **#PBS -N testInstall** #PBS -I cput=01:00:00 **#PBS -A 701** . /opt/modules/3.1.6/init/bash module swap PrgEnv-pgi PrgEnv-gnu module swap gcc gcc/4.3.3 module swap xt-mpt xt-mpt/3.2.0 source /work/z01/z01/gavin/OpenFOAM/OpenFOAM-1.6/etc/bashrc export LD_LIBRARY_PATH=\$WM_PROJECT_DIR/mylib:\$LD_LIBRARY_PATH cd /work/z01/z01/gavin/OpenFOAM/gavin-1.6/run/tutorials Allclean

Alltest

Example Batch Script for a Parallel Job

#!/bin/bash --login **#PBS -I mppwidth=8** #PBS -I mppnppn=4 **#PBS -N dam tutorial** #PBS -I cput=01:00:00 **#PBS -A z01** export NSLOTS=`qstat -f \$PBS_JOBID | awk '/mppwidth/ {print \$3}'` export NTASK=`qstat -f \$PBS JOBID | awk '/mppnppn/ {print \$3}'` . /opt/modules/3.1.6/init/bash module swap PrgEnv-pgi PrgEnv-gnu module swap gcc gcc/4.3.3 module swap xt-mpt xt-mpt/3.2.0 source /work/z01/z01/gavin/OpenFOAM/OpenFOAM-1.6/etc/bashrc export LD_LIBRARY_PATH=\$WM_PROJECT_DIR/mylib:\$LD_LIBRARY_PATH cd \$TUTORIALS/... aprun -n \$NSLOTS -N \$NTASK interFoam –parallel

Future Work

- By end of September, 2009
 - Complete WP1 and deliver D1.1 and D1.2 on time
 - On target
 - Release Early Adopters' User Guide on HECToR's 3rd Party Package Wiki
 - Contact OpenFOAM code authors re
 - compilation warnings
 - i.e. non-standard C++ usage
 - tutorial test suite errors
- Attending Open CFD International in Barcelona in Nov. '09.
 - speak to users to gauge usage profile and popular modules
 - gain more experience in running 'cases'
 - increase profile of upcoming HECToR installation

Fin

- Thanks to

- Jason Beech-Brandt, of the Cray Centre of Excellence at EPCC
 - for installation assistance
- Chris Greenfields, of OpenCFD
 - for code overview and case creations
- You, the audience
 - for your attention
- Any questions?
 - gavin@epcc.ed.ac.uk