
A Research Councils UK High End Computing Service



Updating Domain Decomposition 
Algorithm for Incompact3D

Dr Ning Li
Numerical Algorithms Group Ltd, HECToR CSE

23-24 September 2009
HECToR dCSE support technical meeting, Oxford 



Presentation Outline

 Incompact3D - Background information
 Old 1D domain decomposition 
 New 2D domain decomposition

 Concept
 Implementation details
 Library design
 Performance issues
 Ongoing and future works



About This dCSE Project

• CFD code Incompact3D
• Turbulence, Mixing and Flow Control group at 

Imperial College
• PI - Prof. Christos Vassilicos
• Main code author – Dr. Sylvain Laizet
• 16-month work funded  



Incompact3D - Background Information

• Direct Numerical Simulation (DNS)
• Flow passing through fractal geometry
• Billions of mesh points required to 

resolve smallest scale



Implicit Schemes – Compact Finite Difference 

 A compact scheme is inherently implicit
 This applies to spatial derivative and interpolation 

calculations
 af'i-1 + bf'i + cf'i+1 = RHS

 All values along a global mesh line has to be 
solved together

 Tri-diagonal linear solver is fast and easy in local 
memory.

 Not so in parallel
 Relies on parallel library (such as ScaLAPACK) 
 Not easy to use and not so efficient



Implicit Schemes – FFT

 FFT applies to spectral method 
 Many finite difference/volume CFD codes use 

FFT to solve the pressure Poisson problem
 Multiple-dimension FFT equivalent to a family of 

1D FFTs. 
 1D FFT has to go through all values along a global 

mesh line.
 If they are not all local, parallel 1D FFT library 

required. 



Exisiting 1D Decomposition

By H. Jagode 



1D Decomposition Limitation

• For N^3 mesh, N_proc < N
• Planned simulations 

– Typical mesh size 2048*512*512
– N_proc up to 512 only
– 200000 time steps at 4 seconds per step
– 26 days (excluding queueing time)

– For larger problems, it is also likely to hit 
the memory limit



2D Decomposition
xy

z

 Also known as pencil decomposition
 Local operations in one dimension at a 

time; then transpose
 Repeat to form a loop
 Constraint relaxed to N_proc < N^2



Related Works

• Open-source P3DFFT library by Pekurovsky

– 3D FFT interface for applications

– Using 2D decomposition internally

– Delegate 1D FFT to established 3rd party library
• Turbulence research by Yeung, et al.

– Spectral DNS code

– Using P3DFFT 



2D Decomposition Example

 17*13*11 global mesh
 4*3 processor grid
 Uneven distribution fully supported
 However, consider load balance
 MPI_ALLTOALL faster than ALLTOALLV?



2D Decomposition Example

 How many transpositions?
 A->B; B->C – communication among 

sub-groups, more efficient
 C->A – true ALLTOALL, complex to code
 C->B and B->A instead

A B

C



Using MPI_ALLTOALL(V)

MPI_ALLTOALL(sendbuf, sendcount, sendtype, 
recvbuf, recvcount, recvtype, comm)

MPI_ALLTOALLV(sendbuf, sendcounts, sdispls, 
sendtype, recvbuf, recvcounts, rdispls, 
recvtype, comm)



Gather/Scatter Data for ALLTOALLV Buffers 

Transpose from X-pencil to Y-pencil

SRC(i,j,k)

MPI_ALLTOALLV

DST(i,j,k)x
y

z

Scatter

Gather

RECV_BUF

SEND_BUF



Gather/Scatter Data for ALLTOALLV Buffers 

x
y

z
DST(i,j,k)

RECV_BUF

MPI_ALLTOALLV

SRC(i,j,k)
suitable as S_BUF

Scatter

Transpose from Z-pencil to Y-pencil



Library Design

Implement as a library:

Reusable; hide communication details

Applications

FFT interface
Delegate 1D FFT to 3rd party

FFTW
IBM

ESSL
......

Library kernel:
decomposition info; communication routines

Common data 
structure

Halo cell
support

Finished

Partially
Implemented

To do

Parallel I/O
module

3rd party
FFT library



Sample Application

USE decomp_2d
INTEGER, PARAMETER :: nx=96,ny=48,nz=48
INTEGER, PRRAMETER :: p_row=4,p_col=3
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: ux,uy,uz

CALL MPI_INIT(ierror)
CALL SETUP_2D_DECOMP(nx,ny,nz,p_row,p_col)

ALLOCATE(ux(xstart(1):xend(1),xstart(2):xend(2),xstart(3):xend(3))
ALLOCATE(uy(ystart(1):yend(1),ystart(2):yend(2),ystart(3):yend(3))
ALLOCATE(uz(zstart(1):zend(1),zstart(2):zend(2),zstart(3):zend(3))

!......

Global data size

2D processor grid

Initialise application
data structure

Set up 2D 
decomposition



Sample Application (continued)

!......

! do something on ux
CALL TRANSPOSE_X_TO_Y(ux,uy)

! do something on uy
CALL TRANSPOSE_Y_TO_Z(uy,uz)

! do something on uz
CALL TRANSPOSE_Z_TO_Y(uz,uy)

! do something on uy
CALL TRANSPOSE_Y_TO_X(uy,ux)
CALL MPIIO_WRITE(nx,ny,nz,ux,'ux.dat')

CALL CLEAN_2D_DECOMP
DEALLOCATE(ux,uy,uz)
CALL MPI_FINALIZE(ierror)

END



What Application Developers Need to Do?

• Understand decomposition concept 

• Understand library interface

• Group calculations based on decomposition

• Minimise the number of transpositions

• Incompact3D flow chart
Initialisation

convection/diffusion/filter

time advancement

velocity divergence

pressure Poisson

pressure gradient

velocity correction

I/O, finalise

T
im

e loop

X->Y->Z->Y->X

No swap

X->Y->Z

Stay at Z

Z->Y->X

No swap

• Calculate X derivatives
• Combine results in temp
• Swap temp to Y pencil
• Calculate Y derivatives
• Add to temp
• Swap temp to Z pencil
• Calculate Z derivatives
• Add to temp
• Results stored in Z pencil



Performance – Core per Node

 Network bandwidth is not enough.
 Possibly memory bandwidth issue as well
 Still worthwhile to use 4 cores unless 

application requires more memory



Performance – Shape of 2D Processor Grid

 P_row << P_col recommended on HECToR
 Ideally, P_row 4
 Cache efficiency: nx/P_row largest possible 

?



Shared-Memory Implementation

Shared-memory code (D. Tanqueray, Cray)
 ALLTOALL(V) among large number of nodes expensive.
 HECToR prefers small number of large messages.
 HECToR phase 2 has 8GB memory shared by 4 cores.
 Memory addressable by all cores.
 Cores on same node copy data to/from a shared buffer.
 Only leaders of the nodes participate communication
 This results in fewer but larger messages. 
 Communication routine interface remains the same.
 Not automatically portable, but can be so. 



Performance - Shared-Memory 

 Performance improvement for message 
size smaller than 64K only

 Must be more useful on HECToR Phase 
2B - 12-core system



Performance - Scaling

 Going through all Incompact3D 
algorithms except pressure solver.

 8 billion (2048^3) mesh points.
 Scaling factor 85%-90%.
 Application code to be optimised.



Ongoing and Future Work

 Implement FFT interface
 Validation of new Incompact3D
 Performance benchmark of new Incompact3D 
 Parallel I/O and other library improvement
 Other algorithm improvements – stretching 

grid; filtering; new boundary conditions; etc.
 MPI/OpenMP hybrid programming?
 Other applications

– SoFTaR – computational combustion      
code at Brunel University

– Several CFD codes within UKTC
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