
A Research Councils UK High End Computing Service

Updating Domain Decomposition
Algorithm for Incompact3D

Dr Ning Li
Numerical Algorithms Group Ltd, HECToR CSE

23-24 September 2009
HECToR dCSE support technical meeting, Oxford

Presentation Outline

 Incompact3D - Background information
 Old 1D domain decomposition
 New 2D domain decomposition

 Concept
 Implementation details
 Library design
 Performance issues
 Ongoing and future works

About This dCSE Project

• CFD code Incompact3D
• Turbulence, Mixing and Flow Control group at

Imperial College
• PI - Prof. Christos Vassilicos
• Main code author – Dr. Sylvain Laizet
• 16-month work funded

Incompact3D - Background Information

• Direct Numerical Simulation (DNS)
• Flow passing through fractal geometry
• Billions of mesh points required to

resolve smallest scale

Implicit Schemes – Compact Finite Difference

 A compact scheme is inherently implicit
 This applies to spatial derivative and interpolation

calculations
 af'i-1 + bf'i + cf'i+1 = RHS

 All values along a global mesh line has to be
solved together

 Tri-diagonal linear solver is fast and easy in local
memory.

 Not so in parallel
 Relies on parallel library (such as ScaLAPACK)
 Not easy to use and not so efficient

Implicit Schemes – FFT

 FFT applies to spectral method
 Many finite difference/volume CFD codes use

FFT to solve the pressure Poisson problem
 Multiple-dimension FFT equivalent to a family of

1D FFTs.
 1D FFT has to go through all values along a global

mesh line.
 If they are not all local, parallel 1D FFT library

required.

Exisiting 1D Decomposition

By H. Jagode

1D Decomposition Limitation

• For N^3 mesh, N_proc < N
• Planned simulations

– Typical mesh size 2048*512*512
– N_proc up to 512 only
– 200000 time steps at 4 seconds per step
– 26 days (excluding queueing time)

– For larger problems, it is also likely to hit
the memory limit

2D Decomposition
xy

z

 Also known as pencil decomposition
 Local operations in one dimension at a

time; then transpose
 Repeat to form a loop
 Constraint relaxed to N_proc < N^2

Related Works

• Open-source P3DFFT library by Pekurovsky

– 3D FFT interface for applications

– Using 2D decomposition internally

– Delegate 1D FFT to established 3rd party library
• Turbulence research by Yeung, et al.

– Spectral DNS code

– Using P3DFFT

2D Decomposition Example

 17*13*11 global mesh
 4*3 processor grid
 Uneven distribution fully supported
 However, consider load balance
 MPI_ALLTOALL faster than ALLTOALLV?

2D Decomposition Example

 How many transpositions?
 A->B; B->C – communication among

sub-groups, more efficient
 C->A – true ALLTOALL, complex to code
 C->B and B->A instead

A B

C

Using MPI_ALLTOALL(V)

MPI_ALLTOALL(sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, comm)

MPI_ALLTOALLV(sendbuf, sendcounts, sdispls,
sendtype, recvbuf, recvcounts, rdispls,
recvtype, comm)

Gather/Scatter Data for ALLTOALLV Buffers

Transpose from X-pencil to Y-pencil

SRC(i,j,k)

MPI_ALLTOALLV

DST(i,j,k)x
y

z

Scatter

Gather

RECV_BUF

SEND_BUF

Gather/Scatter Data for ALLTOALLV Buffers

x
y

z
DST(i,j,k)

RECV_BUF

MPI_ALLTOALLV

SRC(i,j,k)
suitable as S_BUF

Scatter

Transpose from Z-pencil to Y-pencil

Library Design

Implement as a library:

Reusable; hide communication details

Applications

FFT interface
Delegate 1D FFT to 3rd party

FFTW
IBM

ESSL
......

Library kernel:
decomposition info; communication routines

Common data
structure

Halo cell
support

Finished

Partially
Implemented

To do

Parallel I/O
module

3rd party
FFT library

Sample Application

USE decomp_2d
INTEGER, PARAMETER :: nx=96,ny=48,nz=48
INTEGER, PRRAMETER :: p_row=4,p_col=3
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: ux,uy,uz

CALL MPI_INIT(ierror)
CALL SETUP_2D_DECOMP(nx,ny,nz,p_row,p_col)

ALLOCATE(ux(xstart(1):xend(1),xstart(2):xend(2),xstart(3):xend(3))
ALLOCATE(uy(ystart(1):yend(1),ystart(2):yend(2),ystart(3):yend(3))
ALLOCATE(uz(zstart(1):zend(1),zstart(2):zend(2),zstart(3):zend(3))

!......

Global data size

2D processor grid

Initialise application
data structure

Set up 2D
decomposition

Sample Application (continued)

!......

! do something on ux
CALL TRANSPOSE_X_TO_Y(ux,uy)

! do something on uy
CALL TRANSPOSE_Y_TO_Z(uy,uz)

! do something on uz
CALL TRANSPOSE_Z_TO_Y(uz,uy)

! do something on uy
CALL TRANSPOSE_Y_TO_X(uy,ux)
CALL MPIIO_WRITE(nx,ny,nz,ux,'ux.dat')

CALL CLEAN_2D_DECOMP
DEALLOCATE(ux,uy,uz)
CALL MPI_FINALIZE(ierror)

END

What Application Developers Need to Do?

• Understand decomposition concept

• Understand library interface

• Group calculations based on decomposition

• Minimise the number of transpositions

• Incompact3D flow chart
Initialisation

convection/diffusion/filter

time advancement

velocity divergence

pressure Poisson

pressure gradient

velocity correction

I/O, finalise

T
im

e loop

X->Y->Z->Y->X

No swap

X->Y->Z

Stay at Z

Z->Y->X

No swap

• Calculate X derivatives
• Combine results in temp
• Swap temp to Y pencil
• Calculate Y derivatives
• Add to temp
• Swap temp to Z pencil
• Calculate Z derivatives
• Add to temp
• Results stored in Z pencil

Performance – Core per Node

 Network bandwidth is not enough.
 Possibly memory bandwidth issue as well
 Still worthwhile to use 4 cores unless

application requires more memory

Performance – Shape of 2D Processor Grid

 P_row << P_col recommended on HECToR
 Ideally, P_row 4
 Cache efficiency: nx/P_row largest possible

?

Shared-Memory Implementation

Shared-memory code (D. Tanqueray, Cray)
 ALLTOALL(V) among large number of nodes expensive.
 HECToR prefers small number of large messages.
 HECToR phase 2 has 8GB memory shared by 4 cores.
 Memory addressable by all cores.
 Cores on same node copy data to/from a shared buffer.
 Only leaders of the nodes participate communication
 This results in fewer but larger messages.
 Communication routine interface remains the same.
 Not automatically portable, but can be so.

Performance - Shared-Memory

 Performance improvement for message
size smaller than 64K only

 Must be more useful on HECToR Phase
2B - 12-core system

Performance - Scaling

 Going through all Incompact3D
algorithms except pressure solver.

 8 billion (2048^3) mesh points.
 Scaling factor 85%-90%.
 Application code to be optimised.

Ongoing and Future Work

 Implement FFT interface
 Validation of new Incompact3D
 Performance benchmark of new Incompact3D
 Parallel I/O and other library improvement
 Other algorithm improvements – stretching

grid; filtering; new boundary conditions; etc.
 MPI/OpenMP hybrid programming?
 Other applications

– SoFTaR – computational combustion
code at Brunel University

– Several CFD codes within UKTC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

