Implementation of established algorithms to extend HELIUM

Laura Moore, Michael Lysaght, Jonathan Parker and Ken Taylor

Queen's University Belfast

24th September 2009

Plan of Talk

- Introduction
- HELIUM
- Combining HELIUM methods with R-matrix technology
- Computational Details
- Progress to date coding and testing
- Summary

Introduction

Two-electron ions in intense laser fields

Two-electron ions in intense laser fields

 HELIUM solves the two-electron Time-Dependent Schrödinger Equation (TDSE) directly, and is:

Two-electron ions in intense laser fields

- HELIUM solves the two-electron Time-Dependent Schrödinger Equation (TDSE) directly, and is:
 - ab initio
 - full-dimensionality
 - accurate
 - good over a *wide* range of laser wavelength and intensity

Towards multi-electron atoms and molecules

Towards multi-electron atoms and molecules

 There is a crucial need to handle the TDSE accurately for multi-electron atoms and molecules coupled to IR/visible/UV and VUV laser fields

Towards multi-electron atoms and molecules

- There is a crucial need to handle the TDSE accurately for multi-electron atoms and molecules coupled to IR/visible/UV and VUV laser fields
- The R-matrix concept allows the carry over of HELIUM methods

HELIUM

Two-electron ion plus intense laser

$$i\frac{\partial\Psi}{\partial t} = H\Psi(\mathbf{r}_1,\mathbf{r}_2,t)$$
 TDSE

$$H = -\frac{1}{2}\nabla_{1}^{2} - \frac{Z}{r_{1}} - \frac{A(t)}{ic}\frac{\partial}{\partial z_{1}} + \frac{1}{r_{12}} - \frac{1}{2}\nabla_{2}^{2} - \frac{Z}{r_{2}} - \frac{A(t)}{ic}\frac{\partial}{\partial z_{2}}$$

Atomic units $e = m = \hbar = 1$

The HELIUM code (1)

Reported in:

ES Smyth, JS Parker and KT Taylor 1998 Comput. Phys. Comm. 114 1-14

- Finite-difference/ basis set method
- (6+1)D PDE $\Psi(r_1, r_2, \theta_1, \theta_2, \phi_1, \phi_2, t)$
- Basis set for $heta_1, heta_2,\phi_1,\phi_2$

$$\Psi = \sum_{\ell_1 \, \ell_2 \, L \, M} \frac{1}{r_1 r_2} f_{\ell_1 \ell_2 L M}(r_1, r_2, t) \left| \ell_1 \, \ell_2 \, L \, M \right\rangle$$

The HELIUM code (2)

Reported in:

ES Smyth, JS Parker and KT Taylor 1998 Comput. Phys. Comm. 114 1-14

• Through orthonormality of the angular basis $|\ell_1 \ell_2 L M\rangle$, a set of coupled differential equations for the functions $f_{\ell_1 \ell_2 L M}(r_1, r_2, t)$ is obtained

• Propagate over grid from $\Psi({f r_1},{f r_2},t)$ to $\Psi({f r_1},{f r_2},t+\Delta t)$ via an Arnoldi propagator

Combining HELIUM methods with R-matrix technology

R-matrix approach

R-matrix approach

 Allows an accurate, genuinely multi-electron, representation of the multi-electron regions near nuclei through basis set methods (Inner Region)

R-matrix approach

 Allows an accurate, genuinely multi-electron, representation of the multi-electron regions near nuclei through basis set methods (Inner Region)

 Allows only the one electron present at larger distances in single ionization processes to be represented there using HELIUM methods (Outer Region)

Combining HELIUM and R-matrix Methods

Reported in:

LAA Nikolopoulos, JS Parker and KT Taylor 2008 Phys. Rev. A 78 063420

 Split into a multi-electron inner region and a one-electron outer region

Combining HELIUM and R-matrix Methods

Reported in:

LAA Nikolopoulos, JS Parker and KT Taylor 2008 Phys. Rev. A 78 063420

- Split into a multi-electron inner region and a one-electron outer region
- Inner region handled with an R-matrix basis
 - Long-established computer codes available for time-independent calculations using basis set methods
 - These codes are being extended to handle the TDSE

Combining HELIUM and R-matrix Methods

Reported in:

LAA Nikolopoulos, JS Parker and KT Taylor 2008 Phys. Rev. A 78 063420

- Split into a multi-electron inner region and a one-electron outer region
- Outer region handled with a finite difference grid
 - Explicit high-order time-propagator techniques are crucial for accuracy, stability and efficiency
 - Implementation of HELIUM methods

Partition of Configuration Space

Computational Details

Inner Region Multi-electron Wavefunction

$$\psi_I(\mathbf{r_1r_2...r_{N+1}},t) = \sum_{k=1}^K C_k(t)\psi_k(\mathbf{r_1r_2...r_{N+1}})$$

for $0 \le r_1, r_2, ..., r_{N+1} = r \le b$

Inner Region Multi-electron Wavefunction

$$\psi_I(\mathbf{r_1r_2...r_{N+1}},t) = \sum_{k=1}^K C_k(t)\psi_k(\mathbf{r_1r_2...r_{N+1}})$$

for $0 \le r_1, r_2, ..., r_{N+1} = r \le b$

• The $\psi_k, k = 1, K$ form a field-free, time-independent R-matrix basis for the (N + 1) electrons within the Inner Region with outer boundary at r = b in all electron radial co-ordinates.

Inner Region Hamiltonian

- Must be Hermitian over the Inner Region
- The Hermitian Inner Region Hamiltonian is $H_I = H_0 + \hat{L}_h$
- The Hermitian dipole operator is $D_I = D + g \hat{L}_d$ (where g = 1 in velocity gauge and g = 0 in length gauge)
- \hat{L}_h and \hat{L}_d are Bloch surface terms, and \hat{L}_h has a spatial derivative to be evaluated at the boundary r = b

Inner Region TDSE (1)

$$i\frac{d}{dt}\psi_{I}(\mathbf{r_{1}r_{2}} \dots \mathbf{r_{N+1}}, t) = [H_{I} + D_{I}(t)]\psi_{I}(\mathbf{r_{1}r_{2}}...\mathbf{r_{N+1}}, t) - [\hat{L}_{h} + \hat{L}_{d}(t)]\psi(\mathbf{r_{N+1}}, t)$$

or $0 \leq r_{1}, r_{2}, ..., r_{N+1} = r \leq b$

f

Inner Region TDSE (2)

After algebra, and writing in matrix notation:

$$i\frac{d}{dt}C_k(t) = [\mathbf{H}.\mathbf{C}]_k(t) - \sum_p \frac{1}{2}\omega_{kp}\bar{f}_p(b,t)$$

where

Inner Region TDSE (2)

After algebra, and writing in matrix notation:

$$i\frac{d}{dt}C_k(t) = [\mathbf{H}.\mathbf{C}]_k(t) - \sum_p \frac{1}{2}\omega_{kp}\bar{f}_p(b,t)$$

where

• ω_{kp} are known surface amplitudes

Inner Region TDSE (2)

After algebra, and writing in matrix notation:

$$i\frac{d}{dt}C_k(t) = [\mathbf{H}.\mathbf{C}]_k(t) - \sum_p \frac{1}{2}\omega_{kp}\bar{f}_p(b,t)$$

where

- ω_{kp} are known surface amplitudes
- $f_p(b,t)$ contain spatial derivatives of the outer wavefunction on the boundary

Outer Region One-electron Wavefunction

$$\psi_{II}(\tilde{\mathbf{r}}_N, \mathbf{r}(i), t) = \sum_p \Phi_p(\tilde{\mathbf{r}}_N, \hat{r}) \frac{f_p(i, t)}{r(i)}$$

for $b \leq r(i)$

Outer Region One-electron Wavefunction

$$\psi_{II}(\tilde{\mathbf{r}}_N, \mathbf{r}(i), t) = \sum_p \Phi_p(\tilde{\mathbf{r}}_N, \hat{r}) \frac{f_p(i, t)}{r(i)}$$

for $b \leq r(i)$

• where
$$i = i_b, ..., I$$
 and $r(i_b) = b$

• The radial motion of the ejected electron is described by the radial channel functions $f_p(i,t)$

Outer Region TDSE

Outer Region TDSE

 $\begin{aligned} \frac{d}{dt}f_p(i,t) &= - i[\mathbf{H} \cdot \mathbf{F}]_p(i,t) \\ &+ \delta_{ii_b} \left[B_{0p}(i_b - 1, t) + B_{0p}(i_b - 2, t) \right] \\ &+ \delta_{ii_b + 1} B_{1p}(i_b - 1, t) \end{aligned}$

- The terms multiplying δ_{ii_b} and δ_{ii_b+1} require the B terms to be evaluated at grid points $i_b - 1$ and $i_b - 2$ on the *inner* side of the boundary at r = b.
- This reflects the use of 5-point difference operators on the FD grid.

Time Propagation

Time Propagation

Taylor Propagator

$$\psi(t + \delta t) = a_0 \psi(t) + a_1 H \psi(t)$$
$$+ a_2 H^2 \psi(t) + \dots + a_n H^n \psi(t)$$

where $a_k = (-i\delta t)^k / k!$, so that

 $\psi(t + \delta t) = \exp(-i\delta t H)\psi(t)$

Time Propagation

Taylor Propagator

$$\psi(t + \delta t) = a_0 \psi(t) + a_1 H \psi(t)$$

+ $a_2 H^2 \psi(t) + \dots + a_n H^n \psi(t)$

where $a_k = (-\mathrm{i}\delta t)^k/k!$, so that

$$\psi(t + \delta t) = \exp(-i\delta t H)\psi(t)$$

- Explicit single-step propagator
- Can easily monitor local truncation error
- May not be efficient, especially in inner region
Time Propagation

Time Propagation

• Arnoldi Propagator

$$\psi(t+\delta t) = \exp(-\mathrm{i}\delta t\tilde{H})\psi(t)$$

where $ilde{H}=QhQ^{\dagger}$

Time Propagation

Arnoldi Propagator

$$\psi(t + \delta t) = \exp(-\mathrm{i}\delta t\tilde{H})\psi(t)$$

where $\tilde{H}=QhQ^{\dagger}$

- Q has columns Q_0, Q_1, \dots, Q_n where Q_k is obtained by calculating HQ_{k-1} and orthonormalizing with respect to Q_0, Q_1, \dots, Q_{k-1}
- -h is the Krylov subspace Hamiltonian
- More efficient than the Taylor propagator

To propagate 1 time step from t to $t + \delta t$:

To propagate 1 time step from t to $t + \delta t$:

• Using Inner Region information (wavefunction values at grid points $i_b - 1$ and $i_b - 2$, all known for time t), solve the Outer Region TDSE for $f_p(i, t + \delta t)$.

To propagate 1 time step from t to $t + \delta t$:

- Using Inner Region information (wavefunction values at grid points $i_b 1$ and $i_b 2$, all known for time t), solve the Outer Region TDSE for $f_p(i, t + \delta t)$.
- Using Outer Region information (spatial derivative terms at r = b), solve the Inner Region TDSE for $C_k(t + \delta t)$.

To propagate 1 time step from t to $t + \delta t$:

- Using Inner Region information (wavefunction values at grid points $i_b 1$ and $i_b 2$, all known for time t), solve the Outer Region TDSE for $f_p(i, t + \delta t)$.
- Using Outer Region information (spatial derivative terms at r = b), solve the Inner Region TDSE for $C_k(t + \delta t)$.

Repeat the process for the next time step.

Progress to date

Code Schematic

Code Schematic

Initialization Using R-matrix codes

- Read H and D files
 - 1st sweep reads problem parameters
 - 2nd sweep reads matrix elements

Initialization Using R-matrix codes

- Read H and D files
 - 1st sweep reads problem parameters
 - 2nd sweep reads matrix elements
- Set up inner Hamiltonian matrix
- Set up long range potentials for outer Hamiltonian
- Set up basis state arrays

Further Initialization Routines

- Set up surface amplitudes (ω_{kp})
- Initialize finite difference routines
- Initialize propagator coefficients
- Read a status file to determine starting point of run
- Initialize (or read in) the wavefunction itself

Code Schematic

Diffusion and Wave Equations

For each timestep:

• Calculate f_p , \dot{f}_p , \ddot{f}_p , ... at i_b-1 and i_b-2

Propagate outer wavefunction

• Calculate
$$\frac{df_p}{dr}$$
, $\frac{d\dot{f}_p}{dr}$, $\frac{d\ddot{f}_p}{dr}$, ... at $r = b$

Propagate inner wavefunction

Calculate populations and other observables

Code Schematic

Propagation of Outer Wavefunction

Taylor and Arnoldi propagators coded

• Spatial derivatives
$$\frac{df_p}{dr}$$
, $\frac{d\dot{f}_p}{dr}$, $\frac{d\ddot{f}_p}{dr}$, ... at $r=b$ coded

• Full surface term
$$\sum\limits_p \omega_{kp} f_p(b,t)$$
 coded

where
$$\bar{f}_p(b,t) = \frac{df_p}{dr} + g\left(\frac{A(t)}{c}\right) \sum_{p'} K_{pp'} f_{p'}|_{r=b}$$

Outer Wavefunction: Hf_p Calculation

• For each channel *p*:

$$Hf_{p} = -\frac{1}{2}\nabla^{2}f_{p} - \frac{Z - N}{r}f_{p} + \sum_{p'}(W_{E} + W_{P} + W_{D})f_{p'}$$

Code Schematic

Propagation of Inner Wavefunction

Dr Michael Lysaght has started development of Inner Region Code:

Propagation of Inner Wavefunction

Dr Michael Lysaght has started development of Inner Region Code:

- Arnoldi propagator coded (without surface terms)
- Arnoldi propagator tested (without surface terms)

• Wavefunction values f_p , \dot{f}_p , \ddot{f}_p , ... at $i_b - 1$ and $i_b - 2$ for passing to outer region yet to be coded

Inner Wavefunction: HC Calculation

• Ordering the eigenfunctions by symmetry means H is a block diagonal matrix:

• \mathbf{HC} is calculated by a matrix multiplication

Code Schematic

Output Routines

• Write the inner and outer wavefunctions to disk

Write population arrays to disk

• Update the status file

Testing of Coding

Inner Region Arnoldi Propagation

- Tested by extending the size of the inner region so that an outer region is not brought into play
- Results compared with those from an established
 R-matrix code that invokes an implicit time propagator
- The comparison is very satisfactory and certainly demonstrates the correctness of the new coding

HECToR Distributed CSE Support Meeting, Oxford, 24th Sep 2009

Population in the ground state of Neon as a function of time

Real part of 1 S(l=1) Neon continuum wavefunction after excitation with a 6 cycle laser pulse as a function of radial distance

Recap of Progress

Outer Region Coding

- Initialization routines
- Hamiltonian terms
- Diffusion and wave equations Taylor and Arnoldi propagators
- Surface terms to pass to inner region
- Population calculations
- Some I/O

Inner Region Coding

- Initialization routines
- Hamiltonian matrix
- Implementation and testing of the Arnoldi propagator without the Bloch surface terms
- Population calculations
- I/O Routines

Next Steps

 Incorporating surface terms in the Inner Region Arnoldi propagation

- Coding the surface terms at $i_b 1$ and $i_b 2$ required for propagating the Outer Region wavefunction
- Testing and re-testing!

• Parallelization ...

Summary - Goals

 Aim: To solve the TDSE accurately for multi-electron atoms coupled to laser fields

Summary - Goals

- Aim: To solve the TDSE accurately for multi-electron atoms coupled to laser fields
- Inner Region code based on R-matrix basis set methods
- Outer Region code based on HELIUM finite-difference methods

Summary - Progress

Summary - Progress

- Inner Region
 - Arnoldi propagator invoked and results agree very well with those obtained from an established R-matrix code
 - Work continuing on surface terms
Summary - Progress

- Inner Region
 - Arnoldi propagator invoked and results agree very well with those obtained from an established R-matrix code
 - Work continuing on surface terms
- Outer Region
 - Taylor propagator and Arnoldi propagator coded
 - Really need to start looking at tests

 Extensions to HELIUM to allow calculations with crossed laser fields

- Extensions to HELIUM to allow calculations with crossed laser fields
- Implementation of a new final-state momentum-space code for HELIUM

- Extensions to HELIUM to allow calculations with crossed laser fields
- Implementation of a new final-state momentum-space code for HELIUM
- Implementation of new post-processing code to transform HELIUM output from spherical to cylindrical geometry

- Extensions to HELIUM to allow calculations with crossed laser fields
- Implementation of a new final-state momentum-space code for HELIUM
- Implementation of new post-processing code to transform HELIUM output from spherical to cylindrical geometry
- Implementation of a hybrid MPI-OpenMP parallelism in HELIUM (Dr Ed Smyth, NAG)

Many thanks for your attention!

Implementation of established algorithms to extend HELIUM