Fast Fourier Transformations for gyrokinetic plasma simulations

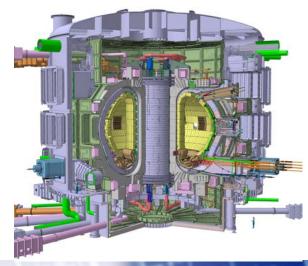
Joachim Hein

In collaboration with Colin Roach (PI), Wayne Arter, Michael Barnes, Greg Colyer, Nuno Loureiro

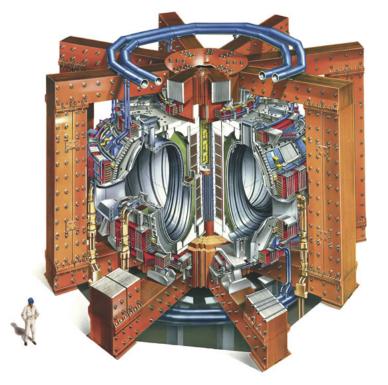
EPCC, University of Edinburgh

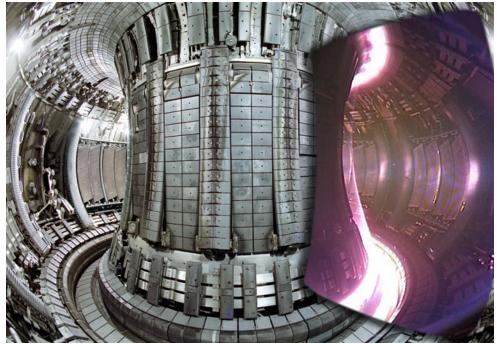
|epcc|

- Magnetic confinement fusion research
- Simulating plasma turbulence
- Gyrokinetic code GS2
- Profiles from GS2
- Performance FFTW version 2 and version 3
- HECToR floating point units (SSE instructions)


Magnetic confinement fusion reasearch

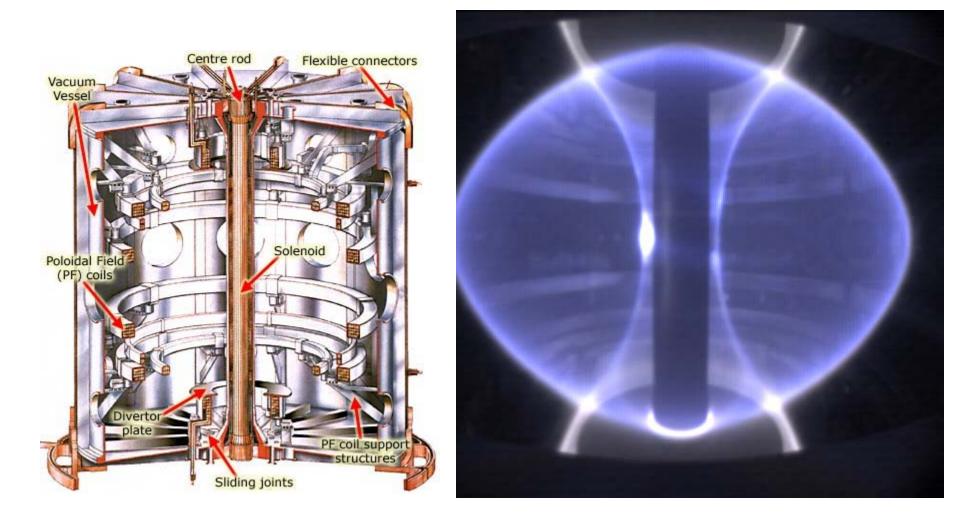
- Thermonuclear fusion powers stars
- Great potential to generate energy
- Most advanced technical path: Tokamak
 - Particles are confined by a magnetic field (≈ 5 Tesla)
 - Culham: JET and MAST
 - ITER: next generation Tokamak in Cadarache France
- Focus on nuclear reaction:


 $D^+ + T^+ \rightarrow {}^{4}He^{++} (3.5 \text{ MeV}) + n (14.1 \text{ MeV})$


- Many technical challenges, e.g.:
 - Temperatures of 10⁸ K
 - Losses of heat and particles (fuel)
 - Neutron fluxes cause material damage

ITER

EFDA Joint European Torus (JET)

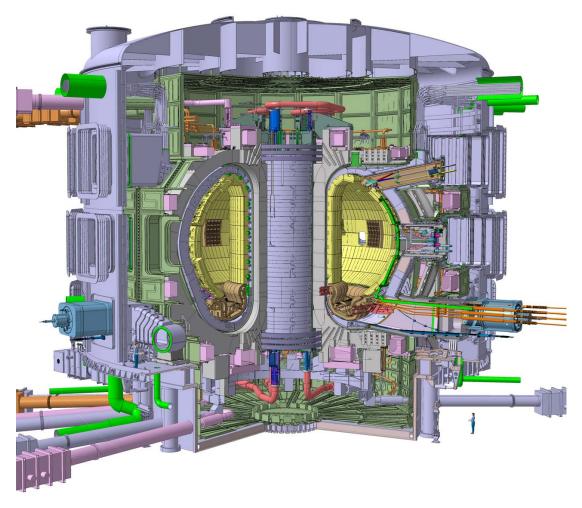


Images: EFDA

FFTs for gyrokinetic plasma simulations

UKAEA: Mega Amp Spherical Tokamak

ITER



 30 m tall (Plasma R=5.6m)

• 23,000 tons

- First plasma in 2018
- Goal:
 Q > 10
 ~ 500 MW power

23 September 2009

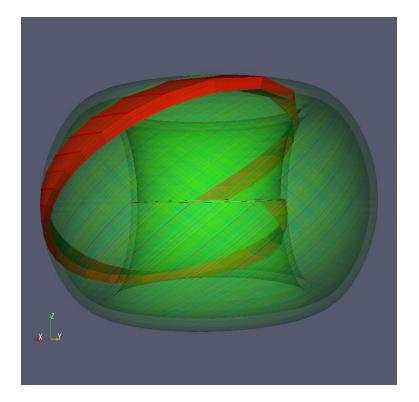
Plasma Turbulence

- Understanding particle and heat loss will
 - help scientists to optimise efficiency of confinement
 - and therefore fusion performance
- Turbulence is believed to be responsible for these losses
- Simulating a full Tokamak is quite a challenge
 - Eddy turnover time: ≈1µs
 - Confinement time: ≈1s
 - Electron Larmor radius: 0.1mm
 - Tokamak plasma size: R = O(1m)

(ITER has R≈6m)

- Range of codes to investigate different plasma phenomena
 - E.g.: Magneto hydrodynamic, gyrokinetic, particle ...

GS2: gyrokinetic plasma simulations

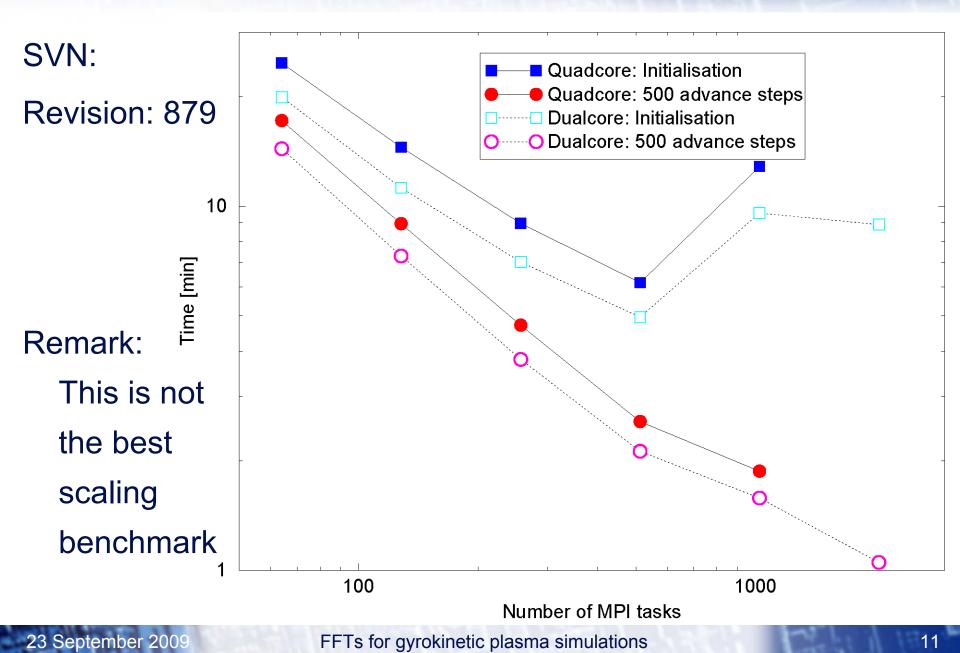

- GS2 is a mature open source code
- Developed by Dorland, Kotschenreuther and Liu
- International contributors including Oxford, York and UKAEA
- http://gs2.sourceforge.net/
- Rem: Astro version of GS2: AstroGK

- Averaging fast Larmor orbit motion gives 5D phase space (3 spatial and 2 velocity coordinates)
- Leads to Gyrokinetic equations: Distribution function in 5D
- Solver: linear step implicit, nonlinear step explicit
- Suitable: short perpendicular wavelength plasma turbulence

23 September 2009

Fluxtube domain

- Particle movement most rapid along the field lines ⇒ flux tube domain attractive
- Restrict simulation domain to this flux tube
- Domain decomposition
 5D arrays offer a lot of scope



F90 and MPI

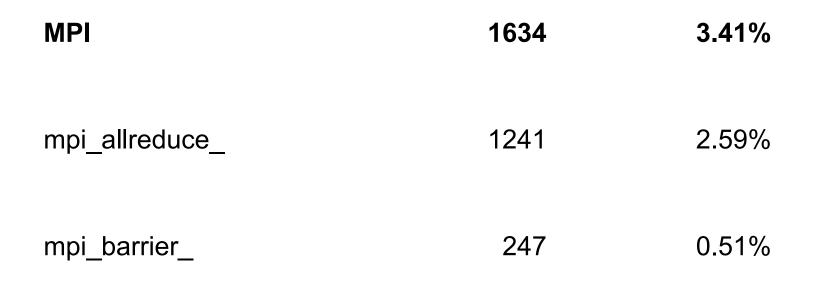
Input file (smallish problem)

- 2 species of charged particles
- 96 × 96 Fourier modes in x, y direction (anti-aliased)
- 31 points along the field lines
- Velocity space:
 - 8 energy levels
 - 32 pitch angles
 - 2 directions perpendicular to B
 - Total 512 velocity space points

Scaling of GS2 on HECToR

Rem: Differences of 1500 steps and 200 steps, Craypat tool. Sampled 100 times/sec, though we get only about 60 ticks/sec -> follow up with CRAY

	Samples	Percentage	
Total	47966	100 %	
User	27421	57.17%	
ETC	18911	39.43%	
MPI	1634	3.4%	

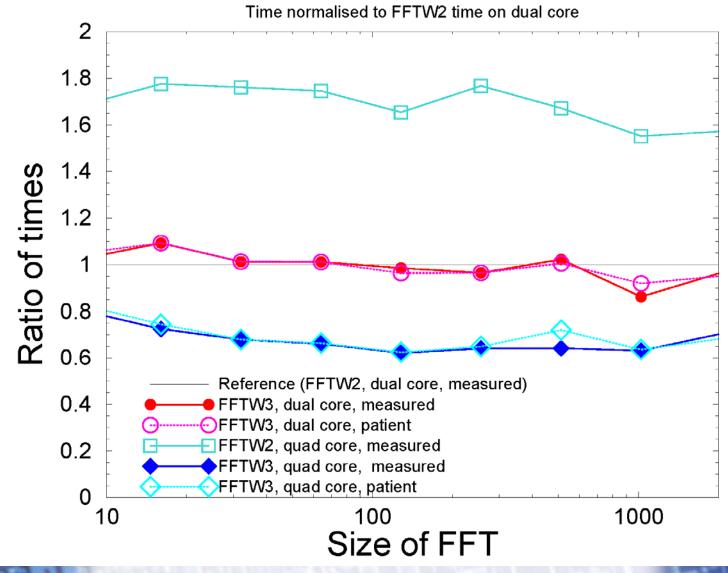

User time on 256 cores	Faus-1	lebco
User	27421	57.17%
dist_fn_get_source_term_set_source	4536	9.46%
gs2_transforms_transform2_5d_accel_	6276	13.08%
dist_fn_get_source_term_	2133	4.45%
dist_fn_invert_rhs_1_	1969	4.10%
nonlinear_terms_add_nl_	4949	10.32%
dist_fn_getan_	727	1.52%
le_grids_integrate_species_	576	1.20%
dist_fn_getfieldeq1_	312	0.65%

Rem: 44.8% accounted for – leaves about 12% in other stuff

23 September 2009

no

ETC time on 256 cores	18911		epcc
fftwi_no_twiddle_12	3473	7.24%	
PtIEQPeek	836	1.74%	
rfftw_c2hc	2516	5.25%	.4%
fftw_hc2real_12	2208	4.60%	counted
fast_nal_poll	478	1.00% 24	.9%
PtIEQGet	392	0.82% FF	TW
fftwi_twiddle_8	1438	3.00% P	+I
fftw_hc2hc_backward_8	1413		outines:
PtIEQGet_internal	290	0.00%	PI
MPIDI CRAY smpdev progress	277	0.58%	elated
ftn strcmp	400	0.83%	
fftw no twiddle 12	870	1.81%	
	netic plasma simulat		14

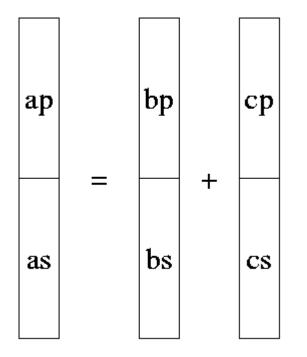

• FFT library calculates things like:

$$\tilde{f}(k) = \sum_{x=1}^{N} f(x) \exp\left(-2\pi i \frac{kx}{N}\right)$$

- Typically a two stage process on
 - Plan creation (initialisation involves e.g. trigonometric functions)
 - Typically: Do once for each N and store
 - Use many times
 - Calculate the FFT using the stored plan
 - Done many times during a scientific program

FFTW performance (artificial benchmark)

FFTW performance



23 September 2009

FFTs for gyrokinetic plasma simulations

SSE instructions on OPTERON

- Many processors offer 128 bit floating point registers & units
- Capable of retiring two (dp) or four (sp) operations per cycle

- These typically have strong alignment constraints (16 byte)
 - Hard to resolve for the compiler
 - Using a library might be an alternative (e.g. FFTW3)

23 September 2009

FFTs for gyrokinetic plasma simulations

Moving GS2 from FFTW2 to FFTW3

- Benefits:
 - Benchmarking suggests improved performance
 - FFTW2 is legacy code move GS2 to the modern times
- Problems/Difficulties/Requirements
 - Keep FFTW2 as an option, at least now (pre-processor option)
 - Interface incompatible between FFTW2 and FFTW3
 - Pointers are now part of the plan (requirement for SSE instructions)
 - Input and output array needs to be know at plan creation
 - Requires re-engineering of the code
 - Code needs to run on a number of different architectures
 - 16-byte aligned allocates unavailable in Fortran (fftw_malloc C only)
 - Easy option: copy into work arrays or estimated plans
 - Better implementation: avoid the copies, use measured plans

Thanks

- Questions
- Comments