

A Research Councils UK High End Computing Service

### DCSE WS 2009: Improving Parallel Performance of GLOMAP Mode MPI

### Mark Richardson Numerical Algorithms Group Ltd mark.richardson@nag.co.uk





### Personnel with input to the project

### NCAS

- Prof. Carslaw
- Dr. Graham Mann
- SEE
  - Prof. Martyn Chipperfield
  - Dr. Steven Pickering
- NAG Ltd CSE team
  - Mark Richardson
  - HECToR Support CSE team

### Cray CoE







nag



### Overview

- Expect to give you an insight into some of the auxiliary effort needed to get the best use of HECToR
- Presented as a case study of GloMAP
  - <u>Glo</u>bal <u>M</u>odel of <u>A</u>erosol <u>P</u>rocesses
- Follow three lines of investigation
  - Compiler options
  - Code structure
  - Parallel performance





### The GloMAP simulation components

### TOMCAT advection code

- Rectangular coordinate system for the numerical scheme
- Mapping longitude, latitude and altitude
- Resolution of this case T42 (128x64x31)
- GLOMAP chemistry University of Leeds
  - Per "gridbox" aerosol process model (>250 scalars)
  - Mode and Bin schemes (this project uses mode)
- ASAD from Cambridge
  - Numerical method for atmospheric chemical reactions
  - Time integration and user defined chemistry





### Map physical space into computational space

The GloMAP simulates decades of atmospheric chemistry



### This project was originally 12 months.

- The project had been reduced to 6 months
  focus was on the shorter term goal of first 4 tasks
  - analyse GloMAP Mode MPI to provide a plan for enhancing its performance.
  - general code optimizations
  - MPI communication efficiency.
  - analyse the file handling and recommend a plan for parallel I/O to avoid the bottleneck of the MASTER-I/O model.





### The GloMAP Working practice

- One large script with several sections
  - PBS directions
  - Shell commands, initialise variables
  - "here doc" TOMCAT updates (users work here)
  - "here doc" ASAD updates (users work here)
  - NUPDATE (serial process to create prog.f)
  - Compile glomap.exe (serial process)
  - Copy files (set up case directory)
  - APRUN (launch parallel program)
  - Post process (double to single)
- Strength is
  - that researchers have to make changes only to the "here doc" sections





### Porting to Cray X2

- Primarily used on HPCx with Open MP
- Code "already" vectorised
- Ported to HECToR XT4 using PG Fortran
- Some history of MPI implementation





### Porting the code to Cray X2 vector system







RESEARCH

COUNCILS UK

### Need to continually check quality of solution





### Analysing code structure

- Determine where the code is slow
- Use Cray PAT
- Read code (guided by CrayPAT and grep)
- Discussions with code owners (why?)





### Challenge of sampling experiments

- How do you know you have not "quantised" the data?
- Might be hitting a harmonic so use trace to confirm
  Sampling for 8PEs gives higher resolution than for 64PEs (need to modify sample rate)
- Perhaps only useful for the rough guide





# GM3 MPI sample experiment for 8PE (13s per iteration) and 64PE (2s per iteration)

| GM3 (Cray XT4 Dual Core) PAT sample experiment <b>8PEs</b> |          |         |           | GM3       | 3 (Cray X                  | T4 Dual | Core) PAT s | ample e | xperiment 64PEs |         |                       |
|------------------------------------------------------------|----------|---------|-----------|-----------|----------------------------|---------|-------------|---------|-----------------|---------|-----------------------|
| Samp %   Samp   Imb.   Imb.  Group                         |          |         |           | Sa        | amp %                      | Samp    | Imb.        | Imb.  G | roup            |         |                       |
|                                                            | l.       | I       | Samp   Sa | .mp %   1 | Function                   |         | I           |         | Samp   Sa       | ımp % ∣ | Function              |
|                                                            | I        |         | I         | I         | PE='HIDE'                  |         |             | 1       |                 | I       | PE='HIDE'             |
| -                                                          |          |         |           |           |                            |         |             |         |                 |         |                       |
|                                                            | /9.8%    | 98686   |           | (         | USER                       |         | 39.1%       | 864/    |                 |         | USER                  |
|                                                            | 27.3%    | 33702   | 109.25    | 0.4%      | chimie                     |         | 5.3%        | 1179    | 107.09          | 8.5%    | advy2                 |
|                                                            | 8.8%     | 10857 j | 174.38    | 1.8%      | ukca coagwithnucl          |         | 3.9%        | 871     | 38.41           | 4.3%    | chimie                |
|                                                            | 6.0%     | 7360    | 60.25     | 0.9%      | advy2                      |         | 3.5%        | 781     | 40.91           | 5.1%    | ukca coagwithnucl     |
|                                                            | 3.98     | 4795    | 238.50    | 5.4%      | consom                     |         | 2.7%        | 601     | 15.22           | 2.5%    | advz2                 |
|                                                            | 3.5%     | 4364    | 29.88     | 0.8%      | advz2                      |         | 2.7%        | 589     | 10.84           | 1.8%    | consom                |
|                                                            | 3.2%     | 3956 j  | 59.12 j   | 1.7%      | advx2                      |         | 2.3%        | 512     | 270.48          | 35.1%   | advx2                 |
| 11                                                         | 2.4%     | 2945 j  | 90.12 j   | 3.4%      | '<br> ukca water content v | i i     | 1.6%        | 348 I   | 112.12          | 24.8%   | emptin2               |
| 11                                                         | 2.1%     | 2586 j  | 169.75 j  | 7.0%      | ukca conden                | i i     | 1.4%        | 312     | 50.08 j         | 14.1%   | lukca water content v |
| 11                                                         | 2.0%     | 2448    | 13.50 j   | 0.6%      | ukca coag coff v           | i i     | 1.3%        | 297 I   | 160.19 j        | 35.6%   | fillin2               |
| 11                                                         | 1.8%     | 2256 j  | 73.88     | 3.6%      | ukca solvecoagnucl v       | i i     | 1.3%        | 279     | 66.77 j         | 19.6%   | lprls                 |
| 11                                                         | 1.8%     | 2171 I  | 79.12 I   | 4.0%      | ukca cond coff v           | i i     | 1.1%        | 241 I   | 18.44           | 7.2%    | lukca coag coff v     |
| 11                                                         | 1.6%     | 2016 j  | 103.00 j  | 5.6%      | ukca volume mode           | i i     | 1.0%        | 218     | 283.30 j        | 57.4%   | spetru1               |
| 11                                                         | 1.6%     | 2003 j  | 50.38 j   | 2.8%      | prls                       | =       |             |         |                 |         | =========             |
| i i                                                        | 1.3%     | 1583 j  | 110.62    | 7.5%      | ljac                       | i i     | 32.2%       | 7118    |                 |         | MPI                   |
| 11                                                         | 1.0%     | 1274 I  | 63.75 j   | 5.4%      | emptin2                    | -       | ·           |         | ·               | ·       |                       |
|                                                            | 1.0%     | 1188    | 34.00     | 3.2%      | initer                     |         | 15.8%       | 3486    | 2032.61         | 37.4%   | mpi recv              |
|                                                            | ======== |         |           |           |                            |         | 11.9%       | 2638    | 2207.33         | 46.3%   | mpi sendrecv          |
| Ì                                                          | 17.4%    | 21498   |           | ]         | ETC                        |         | 3.8%        | 834     | 668.56          | 45.2%   | mpi ssend             |
|                                                            |          |         |           |           |                            | =       |             |         |                 |         | =========             |
|                                                            | 7.9%     | 9808    | 309.00    | 3.5%      | c mzero8                   | I       | 28.7%       | 6352    |                 |         | ETC                   |
|                                                            | 2.6%     | 3212    | 83.75     | 2.9%      | <br>  cmcopy8              | -       |             |         |                 |         |                       |
|                                                            | 1.1%     | 1369    | 61.62     | 4.9%      | fmth i dexp                |         | 7.2%        | 1595    | 90.95           | 5.5%    | c mzero8              |
|                                                            | ======== |         |           | =======   |                            |         | 7.0%        | 1548    | 421.45          | 21.7%   | <br> PtlEQPeek        |
|                                                            | 2.8%     | 3466    |           | 1         | MPI                        |         | 1.9%        | 429     | 54.33           | 11.4%   | c mcopy8              |
|                                                            |          |         |           |           |                            |         | 1.8%        | 395     | 139.33          | 26.5%   | PtlEQGet              |
|                                                            | 1.3%     | 1587    | 584.38    | 30.8%     | mpi sendrecv               |         | 1.7%        | 372     | 158.47          | 30.4%   | PtlEQGet internal     |
|                                                            | 1.0%     | 1264    | 532.00    | 33.9%     | mpi_recv_                  |         | 1.0%        | 215     | 79.30           | 27.4%   | ptl_hndl2nal          |
| =                                                          |          |         |           |           |                            | ==      |             |         |                 |         |                       |
|                                                            |          |         |           |           |                            |         |             |         |                 |         |                       |

| <b>GM4</b> on <b>8 PEs</b> (XT4 D<br>Samp %   Samp | ual Core)<br>Imb.  <br>Samp   Sa | PAT sampling experiment report<br>Imb.  Group<br>mp %   Function |
|----------------------------------------------------|----------------------------------|------------------------------------------------------------------|
|                                                    |                                  | PE='HIDE'                                                        |
| 100 0%   73918                                     |                                  | lTotal                                                           |
|                                                    |                                  |                                                                  |
| 69.5%   51363                                      |                                  | USER                                                             |
|                                                    | 72 50 1                          | 1 0% Lodury2                                                     |
|                                                    | 73.30                            | 2.0% [auvy2]                                                     |
|                                                    | 202.38                           | 3.0%  ukca_coagwithhuci_                                         |
|                                                    | 35.88                            | 0.8%  Consom_                                                    |
|                                                    | 11.88                            | 0.3%  advz2_                                                     |
| 5.4%   4012                                        | 66.00                            | 1.8%  advx2_                                                     |
| 2.9%   2131                                        | 53.50                            | 2.8%  ukca_water_content_v_                                      |
|                                                    | 97.25                            | 5.8%  chimie_                                                    |
| 2.4%   1779                                        | 56.62                            | 3.5%  ukca_conden_                                               |
| 2.2%   1611                                        | 52.88                            | 3.6%  ukca_calc_coag_kernel_                                     |
| 1.9%   1418                                        | 30.38                            | 2.4%  ukca_aero_step_                                            |
| 1.7%   1273                                        | 21.00                            | 1.9%   <b>emptin2_</b>                                           |
| 1.7%   1254                                        | 219.25                           | 17.0%  initer_                                                   |
| 1.5%   1143                                        | 17.75                            | 1.7%  radabs_                                                    |
| 1.3%   939                                         | 43.00                            | 5.0%  ukca_ddepaer_incl_sedi_                                    |
| 1.2%   917                                         | 170.75                           | 17.9%   <b>fillin2</b>                                           |
| 1.2%   875                                         | 67.75                            | 8.2%  update_1dvars_by_cstep_                                    |
| 26.5%   19590                                      |                                  | ETC                                                              |
| 11.1%   8236                                       | 166.75 I                         | 2.3%   c mzero8                                                  |
| 3.6%   2666                                        | 45.88                            | 1.9%   <b>c mcopv8</b>                                           |
| 1.5%   1093                                        | 421.00                           | 31.8%  PtlEOPeek                                                 |
| 1 1.3% 937                                         | 44.50                            | 5.2%   fmth i dexp                                               |
| 1 1.0% 729                                         | 41.38                            | 6.1%   fydlog long                                               |
|                                                    | 61 25 1                          | 9 0% [munmap                                                     |
|                                                    | ===========                      | =======================================                          |
| 4.0%   2965                                        |                                  | MPI                                                              |
|                                                    | 573.88                           | 36.5% Impi recy                                                  |
|                                                    | 246.50                           | 20.0% Impi sendrecy                                              |
|                                                    | ===========                      | =======================================                          |
|                                                    |                                  |                                                                  |





### Change to code structure



### **Improve MPI communications**

- Identify number of routines using send-receive pairs
  - 33 subroutines to visit many different methods existed
- Read code, examine use of buffers
  - optimise filling buffers
- Observed a lot of MPI\_BCASTS
  - Many associated with MASTER I/O requirement
- Too much global data
- Too much static memory





#### FILLIN2-LISTCOMM-EMPTIN2 process

• West and East halo and shadows (K=2)



### Effect of communication enhancements







### **Results 1**

| Improvement due to changes in code structure, dual core system |       |       |       |      |  |  |
|----------------------------------------------------------------|-------|-------|-------|------|--|--|
| Number of MPI<br>Tasks                                         | 8     | 16    | 32    | 64   |  |  |
| GM3 (DC -O3)                                                   | 1952  | 872   | 451   | 276  |  |  |
| GM4 (DC -fast)                                                 | 1122  | 631   | 377   | 251  |  |  |
| Improvement %                                                  | 42.48 | 27.62 | 16.26 | 9.08 |  |  |

Time in seconds for simulation omitting first and final steps

| Improvement due to changes in compiler optimization, quad core system |      |      |      |      |  |  |
|-----------------------------------------------------------------------|------|------|------|------|--|--|
| Number of MPI<br>Tasks                                                | 8    | 16   | 32   | 64   |  |  |
| GM4 (QC -O3)                                                          | 1485 | 783  | 449  | 334  |  |  |
| GM4 (QC -fast)                                                        | 1387 | 742  | 434  | 302  |  |  |
| Improvement %                                                         | 6.60 | 5.24 | 3.34 | 9.58 |  |  |





### **Results 2**

| Improvement due to MPI enhancement  |       |      |      |      |  |  |
|-------------------------------------|-------|------|------|------|--|--|
| Number of MPI Tasks                 | 8     | 16   | 32   | 64   |  |  |
| GM4 (-fast)                         | 1387  | 742  | 434  | 302  |  |  |
| GM4 (-fast) with MPI<br>enhancement | 1389  | 723  | 393  | 279  |  |  |
| Improvement over GM4<br>baseline %  | -0.14 | 2.56 | 9.44 | 7.61 |  |  |

Time in seconds for simulation omitting first and final steps

| Overall improvements (including previous optimisations) |                                               |                                                                           |                                                                                                                |  |  |
|---------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| 8                                                       | 16                                            | 32                                                                        | 64                                                                                                             |  |  |
| 1485                                                    | 783                                           | 449                                                                       | 334                                                                                                            |  |  |
| 1389                                                    | 723                                           | 393                                                                       | 279                                                                                                            |  |  |
| 6.46                                                    | 7.66                                          | 12.47                                                                     | 16.47                                                                                                          |  |  |
|                                                         | ling previous op<br>8<br>1485<br>1389<br>6.46 | 8      16        1485      783        1389      723        6.46      7.66 | 8      16      32        1485      783      449        1389      723      393        6.46      7.66      12.47 |  |  |

Time in seconds for simulation omitting first and final steps



RESEARCH COUNCILS UK

### Conclusions

- The code structure was revised to enhance cache usage
- Some coding errors were revealed by:
  - Cray X2 compiler
    - +subsequently NAG X86\_64 compiler
  - Cray PAT
  - Code reading
  - Difference tool
- Improvement in buffer loading and unloading
  - Led to improvement in parallel performance





### Recommendations

- Recommendations have been made for further improvement
  - MPI-IO will lead to;
    - Reducing BCASTS
    - Reduce memory; better use of cache
  - Re-use of buffers
    - will reduce memory requirement
- Some that have not been investigated
  - Pre-posting receives





### **Current work planned**

### Mixing MPI and Open MP

- Can see that running single core per node gives advantages
- Using Open MP will enhance that performance
  - E.g. If ¼ under-populate gives 2x speed-up and the inefficient SMP speed-up of 2.5 on 4 cores will result in a speed-up of 1.25 of the solely MPI version.





## East West Communication pattern

(if discussion requires it)





### Halo data structure on one domain

### West and East halo and shadows



Required storage is excessive

