
Improvements in I/O for
DL_POLY_3

Ian Bush
Numerical Algorithms Group Ltd, HECToR CSE

The DL_POLY_3 MD Package

 General purpose MD simulation package
 Written by Ilian Todorov and Bill Smith at STFC

Daresbury Laboratory
 Written in modularised free formatted Fortran 95 -

FORCHECK and NAGWare verified
 Generic parallelisation (for short-ranged

interactions) based on spatial domain
decomposition (DD) and linked cells (LC)

 Long-ranged Coulomb interactions are handled by
SPM Ewald employing 3D FFTs for k-space
evaluation

 Full force field and molecular description but no
rigid body description yet (as in DL_POLY_2)

What is Classical MD ?

Domain Decomposition Parallelisation

A BB

C D

Development

0 1 2 3 4 5
35

40

45

50

55

60

65

P
u

b
lis

h
e

d
 L

in
es

 o
f

C
o

de
 [1

0
0

0
]

Development Time [Years]

Benchmarking Main Platforms

0 500 1000 1500 2000 2500

0

2

4

6

8

3.8 million particle Gd
2
Zr

2
O

7
 system

E
v
a

lu
a

tio
n

s
[s-1

]

Processor count

 CRAY XT4 SC
 CRAY XT4 DC
 CRAY XT3 SC
 CRAY XT3 DC
 3GHz Woodcrest DC
 IBM p575
 BG/L
 BG/P

Benchmarking Main Platforms

0 500 1000 1500 2000 2500

0

5

10

15

20

25 LINK CELLS

0 500 1000 1500 2000 2500

0

5

10

15

20

25 EWALD K-SPACE

0 500 1000 1500 2000 2500

0

25

50

75

100

125 VAN DER WAALS

0 500 1000 1500 2000 2500

0

25

50

75

100

125 EWALD REAL

A Bit Bigger (On HECToR Phase 1)

1000 2000 3000 4000 5000 6000 7000 8000

1000

2000

3000

4000

5000

6000

7000

8000

14.6 million particle Gd
2
Zr

2
O

7
 system

Processor count

S
p

e
e

d
 G

a
in

 Perfect
 MD step total
 Link cells
 van der Waals
 Ewald real
 Ewald k-space

A Bit Bigger (On BG/L)

2000 4000 6000 8000 10000 12000 14000 16000

2000

4000

6000

8000

10000

12000

14000

16000

14.6 million particle Gd
2
Zr

2
O

7
 system

S
p

e
ed

 G
a

in

Processor count

 Perfect
 MD step total
 Link cells
 van der Waals
 Ewald real
 Ewald k-space

Bigger Still (IBM P575)

300,763,000 NaCl with full SPME electrostatics evaluation
on 1024 CPU cores

Start-up time ≈ 1 hour
Timestep time ≈ 68 seconds
FFT evaluation ≈ 55 seconds

In theory ,the system can be seen by the eye. Although
you would need a very good microscope – the MD cell size
for this system is 2μm along the side and as the
wavelength of the visible light is 0.5μm so it should be
theoretically possible.
But this starts to show the problem ...

The Problem
 For the 14,600,000 particle system on 16,384

processors of the the Jülich BG/L system it takes
~0.5s for a MD timestep
• Fast enough to do science !

 ~1800s to write the coordinates
• Not fast enough to do science !

 Want to write the coordinates every ~100-1000
timesteps

So while the compute is fast
enough the I/O prohibits any

useful science being done

It’s Not Just BG/L

 15 million system on 2048 processors of HECToR
Phase 1
• MD time per timestep ~0.7 seconds on Cray XT4

• Configuration read ~100 seconds (once during the
simulation)

• Configuration write ~600 seconds

 I/O in native binary is only 3 times faster and 3
times smaller
• So just using binary is not a solution

Some Unpopular Solutions

 Saving only the important fragments of the
configuration
• What's important ?

• How does the user specify that ?

 Saving only fragments that have moved more
than a given distance between two consecutive
dumps
• Rewrite of analysis programs required

 Distributed dump – separated configuration in
separate files for each MPI task
• The Files ! The Files !

• Restart on a different number of processors ?

So What Do We have To Write ?

pyrochlore

 2 3 3773000 50 0.00003125 0.00156250

 378.0382791976 0.0000000000 0.0000000000

 0.0000000000 378.0382791976 0.0000000000

 0.0000000000 0.0000000000 378.0382791976

GD 3

 -186.2697242 -188.9656799 -186.3793036

 0.2315100734 -1.673201463 0.9363383539

 13210.65286 -235052.7542 44828.56133

GD 4

 -188.9764926 -186.3753017 -186.3328710

 -0.2949178501 0.9443083034 2.428692460

 -254542.5135 49396.61430 67986.12075

GD 5

 -189.0096634 -183.5772665 -183.4873639

 1.344516913 0.3640837776E-01 -1.250456823

 -21153.56476 1492.614280 949.9063469

GD 6

 -186.2854413 -180.8116309 -183.7179432

 -0.3272091542 -0.3909127980 -2.407327182

 -5003.623307 -288.9791458 5327.259472

GD 7

 -186.1640453 -183.6603272 -181.1469216

 0.4695334076 -0.6539792816 0.2197201872

 -7260.018574 9301.762012 24438.07425

And What’s The Problem Writing It ?

 The atoms move!
 An atom can migrate from one processor to

another, so the ordering of atoms is not
preserved.

 But users' analysis programs (e.g. for visulization)
often assume that the ordering is preserved.

 So have to rearrange data so that it can be
written out in the form the users require.

 Also files need to be portable – often the
analysis is done on a different machine from that
upon which the MD is performed. So we need a
portable format.

Initial Attempts At A Solution

1. Serial direct access write (abbreviated SDAW) – where only a
single node, the master, prints it all and all the rest communicate
information to a master in turn while the master completes writing
a configuration of the time evolution.

2. Parallel direct access write (PDAW) – where all nodes print in
the same file in an orderly manner so no overlapping occurs using
Fortran direct access files. However the behaviour of this method
is not defined by the Fortran standard.

3. MPI-I/O write (MPIW) which has the same concept as the PDAW
but is performed using MPI-I/O rather than direct access. This is
portable.

4. Serial NetCDF write (SNCW) using NetCDF libraries for machine-
independent data formats of array-based, scientific data (widely
used by various scientific communities)

Comparison of The Methods

Human
Method Parallel Portable Readable
SDAW No Yes Yes
PDAW Yes No Yes
MPIW Yes Yes Yes
SNCW No Yes No

Performance of the Methods

0 512 1024 1536 2048

0

25

50

75

100

125

W
ri

te
 S

p
e

e
d

 [
M

B
/s

]

Processor Count

BG/L : SDAW, PDAW, MPIW
BG/P : SDAW, PDAW
P5-575: SDAW, PDAW, MPIW, SNCW
XT3 SC: PDAW, MPIW (to 512)
XT3 DC: PDAW, MPIW (to 1024)
XT4 SC: SDAW, MPIW, SNCW
XT4 DC: SDAW, MPIW, SNCW

Initial DL_POLY_3 I/O Conclusions

 In general parallel methods achieve a higher I/O
bandwidth

 PDAW performs markedly superiorly to the SDAW or
MPIW where supported by the platform

 MPIW performs consistently well for Cray XT3/4
architectures, and for this architecture MPIW is much
better than SDAW, which is extremely slow on the XT3 (
9 hours !! results not shown).

 MPIW performs badly on IBM platforms.
 While on the IBM P5-575 SNCW was only 1.5 times

faster than SDAW on average, on the Cray XT4 it was
10 times. May be more a reflection of the slowness of
SDAW on the Cray machines.

It's all a very sad story!

But What About The Scaling

Overall the best of a very bad bunch seems MPIW, which
became the default method in DL_POLY_3.

But how does this affect the scaling of the whole
code?

To test used a benchmark of 216,000 ions of NaCl. Ran
the job for 500 time steps, then dumped a single
configuration. Chosen as representative of an “average”
job for DL_POLY_3 (though probably slightly toward the
tough end for this as the force field is so simple).
Benchmark from now on unless otherwise stated.
All environment variables set to default values (because
that is what the users will use)

The Scaling of MPIW

0 50 100 150 200 250 300

0

2

4

6

8

10

12

14

HECToR –
Without I/O
HPCx – Without I/
O
HECToR – Includ-
ing I/O
HPCx – Including
I/O

Number Of Processors

T
im

e
 S

te
p

s
/s

Can’t we do better ?

Can't we do better? Potentially two major problems.
3. All the processors are writing

• Probably will exhaust the available I/O bandwidth

• Might be a serialization somewhere

4. All the I/O transactions are very short
• Each transaction writes the data for one atom only

To circumvent this a new method MPIW_SORTED based on
MPIW was developed, and implementing this as
production quality code is the first part of the dCSE.

MPIW_SORTED

 Gather the data onto a subset of the processors
(the “I/O processors”)

 Perform a parallel, distributed sort of the data on
the I/O processors into the original ordering
• Index the local data (O((N/P)log(N/P)))

• Work out which I/O processor this atom should be on

• Redistribute among the I/O processors

• Sort the new local data(O((N/P)log(P)) in principle -
something like merge sort)

 As the data is now in order can write many
records at once. Use MPI I/O as in MPIW for
portability.

Rearrange the data on the CPUs rather than
the disk

MPIW_SORTED

Though the method address the two problems
above there are some downsides
2)Much increased communication
3)A very appreciable memory overhead – the data
structures are no longer distributed across all the
processors
4)Some extra CPU work – but sorting/indexing is
quick
First see how well it works, then discuss how we
addressed the downsides

MPIW_SORTED on HECToR

0 200 400 600 800 1000 1200
0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

Without I/O
MPIW
4 Writers
8 Writers
16 Writers
32 Writers
64 Writers
128 Writers

Processors

T
im

e
S

te
ps

/s

MPIW_SORTED on HPCx

0 50 100 150 200 250 300

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Without I/O
MPIW
4 Writers
8 Writers
16 Writers
32 writers
64 writers

Processors

T
im

e
S

te
ps

/s

Why The Difference ?

The new method spends 95%+ of it's time actually
writing the file

 Communication costs are negligible
 Sorting costs are negligible

So the increased performance is due to more
efficiently using the disks – the longer I/O
transactions

So what is the the best number of writers ?

MPIW_SORTED on HECToR

0 20 40 60 80 100 120 140
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of Writers

T
im

e/
s

MPIW_SORTED on HPCx

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

Number Of Writers

T
im

e
/s

Best Number of Writers

 The best number of writers is 64 on HECToR and
32 on HPCx

 However the data is very noisy, as indicated by
the error bars (but don't take them too seriously
… small sample size)

 In practice it looks like a few tens of writers are
the best, at least for this system

 What effective disk bandwidth are we getting ?

Disk Bandwidth

0 20 40 60 80 100 120 140

0

50

100

150

200

250

300

HECToR
HPCx

Number Of Writers

W
ri

te
 R

a
te

 /
M

B
yt

e
s

s

Disk Bandwidth

 Effective I/O bandwidth on HECToR very good, peaks at
about 280 Mbyte s-1

 Not so good on HPCx, around 40 Mbyte s-1.
Disappointing when compared with (the non-portable)
PDAW which peaks at 120 Mbyte s-1. However good
enough for good scaling as shown before – the only
benchmark figure of any importance is how well your
whole code performs!

 How does the method scale with system size ? Take the
benchmark and double it in each direction (so 8 times
bigger overall). Only run on HECToR with 64 writers.

Scaling With System Size

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0.0

5.0

10.0

15.0

20.0

25.0

Without I/O
Including I/O

Number of Processors

T
im

e
S

te
ps

/s

Problems ?

The MPIW_SORTED method seems to solve the
performance problem. However
What about the memory overhead ?

• This can be solved by writing out the data in batch

But the I/O only scales to 64 processors – I have
132,000!

• Much harder. Can do a bit more on software (binary
formats, compression, collectives for writing) but hitting
the barrier of what can be done portably. Ultimately
hardware improvements are required.

Current Situation
 Batching implemented
 All (large) output is now done by the MPIW_SORTED

method
• Ouput on average 51.2 time quicker compared to MWRITE over

the standard DL_POLY test cases

• Quicker on all those cases but 1

 DL_POLY_3 picks sensible default values for the number
of I/O processors and batch sizes
• But the user may override these

 Writing now released to users
 Parallel reading now implemented using a similar

method and in testing
• Less important but harder than output

• Over an order of magnitude quicker than before

 About to start on a netcdf version

Conclusions

 As disk access is so sloooow it may be worthwhile to
completely reorganize your data simply to get the least
bad performance out of the disks – we all program to
minimize comms, same principles apply.

 Write long I/O transactions ! (This is news?)
 For the system sizes typically studied on HPCx and

HECToR the MPIW_SORTED method effectively solves
the I/O problem.

 However current I/O hardware does not scale to the
whole system size – only can use a few tens of writers

 For large system sizes on larger numbers of processors
the jury is out – how well does the I/O hardware (and
system software) scale ?

More Details of The Method

More details in the HPCx technical report:

"DL_POLY_3 Parallel I/O Alternatives at Large Processor
Counts", I.T. Todorov and I.J Bush

Which can be found at

http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0806.pdf

Acknowledgements

Thanks to
 Ilian Todorov for the code, many of the slides,

helping me move house ...
 Andy Porter for NetCDF work and support
 Luican Anton and David Tanqueray for first draft

of MPI-I/O writing routine

http://www.ccp5.ac.uk/DL_POLY/

	Improvements in I/O for DL_POLY_3
	The DL_POLY_3 MD Package
	What is Classical MD ?
	Domain Decomposition Parallelisation
	Development
	Benchmarking Main Platforms
	Slide 7
	A Bit Bigger (On HECToR Phase 1)
	A Bit Bigger (On BG/L)
	Bigger Still (IBM P575)
	The Problem
	It’s Not Just BG/L
	Some Unpopular Solutions
	So What Do We have To Write ?
	And What’s The Problem Writing It ?
	Initial Attempts At A Solution
	Comparison of The Methods
	Performance of the Methods
	Initial DL_POLY_3 I/O Conclusions
	But What About The Scaling
	The Scaling of MPIW
	Can’t we do better ?
	MPIW_SORTED
	Slide 24
	MPIW_SORTED on HECToR
	MPIW_SORTED on HPCx
	Why The Difference ?
	Slide 28
	Slide 29
	Best Number of Writers
	Disk Bandwidth
	Slide 32
	Scaling With System Size
	Problems ?
	Current Situation
	Conclusions
	More Details of The Method
	Acknowledgements

