Improvements in I/O for
DL POLY 3

lan Bush
Numerical Algorithms Group Ltd, HECToR CSE

HECToR

The DL POLY 3 MD Package

General purpose MD simulation package

Written by llian Todorov and Bill Smith at STFC
Daresbury Laboratory

Written in modularised free formatted Fortran 95 -
FORCHECK and NAGWare verified

Generic parallelisation (for short-ranged
interactions) based on spatial domain
decomposition (DD) and linked cells (LC)

Long-ranged Coulomb interactions are handled by
SPM Ewald employing 3D FFTs for k-space
EYaluation

=kl force field and molecular description Ut

rigid body description yet (as in DL_POLY 29unciis uk

What is Classical MD ?

PRERE RESEARCH
COUNCILS UK

Domain Decomposition Parallelisation

/ 7
14
A B
A
NI %
C D

HECTOR F_{ES E,@RCH
COUNCILS UK

Development

65
o 604
o
o
=)
L 554
(@]
@)
©
»w 504
(]
=
-l
D 45-
e
52
o
=]
O 404
35 T T T T T T | H I
0 1 2 3 4
Development Time [Years] RESEARCH

HECToOR
COUNCILS UK

Benchmarking Main Platforms

84 —e— CRAY XT4 SC
CRAY XT4 DC
—e— CRAY XT3 SC
—e— CRAY XT3 DC
6 3GHz Woodcrest DC
—e— |IBM p575
i BG/L
19, —o— BG/P
2
O 4-
©
=
©
0
2 -
0 - 3.8 million particle GdZZr207 em

. T . r . , . :
- 0 500 1000 1500 2000 RES EZE‘B\O{: H
Processor count COUNCILS UK

Benchmarking Main Platforms

25

LINK CELLS

20 -

15 4

10

105 |VAN DER WARLS 1000 1500

100 +

75

2000

«// /
HECTOR |

2500

T T T T T T
0 500 1000 1500

T
2000

T
2500

25

20

15 4

10

EWALD K-SPACE

125 +

100 +

75 1

50

25

EWALD REAQ

1000 1500 2000 2

RESEARCH
COUNCILS UK

T ; T T T
1000 1500 2000 2500

A Bit Bigger (On HECToR Phase 1)

HECToOR

Speed Gain

8000 —
7000 —
6000 —
5000 —
4000
3000 —
2000 —

1000 -

]| -—©-- MD step total
|| —=— van der Waals

]| —— Ewald k-space

-------- Perfect

Link cells

Ewald real

14.6 million particle Gd_Zr O_ system

T T T T T
1000 2000 3000 4000 5000
Processor count

T
8000

RESEARCH
COUNCILS UK

A Bit Bigger (On BG/L)

16000 | -~ Perfect
1| -—<-- MD step total
14000 - Link cells
|| —e— van der Waals
12000 - Ewald real
—e— Ewald k-space -

= 10000 - T
O
® 8000 -
)
o
7y
6000 -
4000 A
2000 - 14.6 million particle Gd Zr O_ s m

1 ' 1 ' 1 ' 1 ' 1 ' | ' |
2000 4000 6000 8000 10000 12000 14000
T RESEARCH

Processor count COUNCILS UK

Bigger Still (IBM P575)

300,763,000 NaCl with full SPME electrostatics evaluation
on 1024 CPU cores

Start-up time =~ 1 hour
Timestep time ~ 68 seconds
FFT evaluation ~ 55 seconds

In theory ,the system can be seen by the eye. Although

you would need a very good microscope - the MD cell size
for this system is 2um along the side and as the
wavei"*j gth of the visible light is 0.5um so it sho be
the; iIcally possible. e

ButHfﬁls starts to show the problem .. COUNCILS UK

The Problem

» For the 14,600,000 particle system on 16,384
processors of the the Julich BG/L system it takes
~0.5s for a MD timestep

* Fast enough to do science !

» ~1800s to write the coordinates
* Not fast enough to do science !

» Want to write the coordinates every ~100-1000
timesteps

So while the compute is fast
enough the 1/0O prohibits az
useful science being don

N RESEARCH
COUNCILS UK

It's Not Just BG/L

» 15 million system on 2048 processors of HECToR
Phase 1
* MD time per timestep ~0.7 seconds on Cray XT4

* Configuration read ~100 seconds (once during the
simulation)

* Configuration write ~600 seconds

» 1/0 in native binary is only 3 times faster and 3

times smaller

* So just using binary is not a solution
RESEARCH

HECTOR
COUNCILS UK

Some Unpopular Solutions

Saving only the important fragments of the
configuration

What's important ?

How does the user specify that ?

Saving only fragments that have moved more
than a given distance between two consecutive
dumps

Rewrite of analysis programs required

Distributed dump - separated configuration in
separate files for each MPI task

___° The Files ! The Files !
%] |Restart on a different number of processors ? z

RESEARCH
COUNCILS UK

HECTOR

So What Do We have To Write ?

pyrochlore
2 3
378.0382791976
0.0000000000
0.0000000000
GD 3
-186.2697242
0.2315100734
13210.65286
GD 4
-188.9764926
-0.2949178501
-254542.5135
GD 5
-189.0096634
1.344516913
-21153.56476

GD HECTOR 7
-186.1640453
0.4695334076

-7260.018574

3773000 50
0.0000000000
378.0382791976
0.0000000000

-188.9656799
-1.673201463
-235052.7542

-186.3753017
0.9443083034
49396.61430

-183.5772665
0.3640837776E-01
1492.614280

-180.8116309
-0.3909127980
-288.9791458

-183.6603272
-0.6539792816
9301.762012

0.00003125
0.0000000000
0.0000000000

378.0382791976

-186.3793036
0.9363383539
44828.56133

-186.3328710
2.428692460
67986.12075

-183.4873639
-1.250456823
949.9063469

-183.7179432
-2.407327182
5327.259472

-181.1469216
0.2197201872
24438.07425

0.00156250

RESEARCH
COUNCILS UK

And What's The Problem Writing It ?

The atoms move!

An atom can migrate from one processor to
another, so the ordering of atoms is not
preserved.

But users' analysis programs (e.g. for visulization)
often assume that the ordering is preserved.

So have to rearrange data so that it can be
written out in the form the users require.

Also files need to be portable - often the

analysis is done on a different machine fro at
yupon which the MD is performed. So we nee
pftable format.

HECToR RESEARCH
COUNCILS UK

Initial Attempts At A Solution

. Serial direct access write (abbreviated SDAW) - where only a
single node, the master, prints it all and all the rest communicate
Information to a master in turn while the master completes writing
a configuration of the time evolution.

. Parallel direct access write (PDAW) - where all nodes print in
the same file in an orderly manner so no overlapping occurs using
Fortran direct access files. However the behaviour of this method
Is not defined by the Fortran standard.

. MPI-1/O write (MPIW) which has the same concept as the PDAW
but is performed using MPI-I/O rather than direct access. This is
portable.

. Serial NetCDF write (SNCW) using NetCDF libraries for machine-
mdi? dent data formats of array-based, scientific dat idely

various scientific communities)

T RESEARCH
COUNCILS UK

Comparison of The Methods

Method
SDAW
PDAW
MPIW
SNCW

HECToOR

Human
Parallel Portable Readable
No
No

No No

r'e

RESEARCH
COUNCILS UK

Performance of the Methods

\VO BG/L SDAW, PDAW, MPIW
a SDAW, —e— PDAW
SDAW, —@— PDAW, —&— MPIW, —s— SNCW
J —e— PDAW, —&— MPIW (to 512)
—&— PDAW, —&— MPIW (to 1024)
) SDAW, —A— MPIW, —— SNCW
E e — SDAW, —A— MPIW, —&— SNCW
24 i
©
QO YO —
)]
o
m -
Q
x 0- —
2
YO —
—% S —
% — 5
. = — — -
T T T T T T T T T
. 0\Y Y- YE YOY11 Y-EA
Processor Count
HECTOR RESEARCH

COUNCILS UK

Initial DL_POLY 3 I/O Conclusions

In general parallel methods achieve a higher I/O
bandwidth

PDAW performs markedly superiorly to the SDAW or
MPIW where supported by the platform

MPIW performs consistently well for Cray XT3/4
architectures, and for this architecture MPIW is much
better than SDAW, which is extremely slow on the XT3 (
9 hours !! results not shown).

MPIW performs badly on IBM platforms.

While on the IBM P5-575 SNCW was only 1.5 times
fastek than SDAW on average, on the Cray XT was
1(3E| es. May be more a reflection of the slo ss of

JAW on the Cray machines. RESEARCH
COUNCILS UK
It's all a very sad story!

But What About The Scaling

Overall the best of a very bad bunch seems MPIW, which
became the default method in DL _POLY 3.

But how does this affect the scaling of the whole
code?

To test used a benchmark of 216,000 ions of NaCl. Ran
the job for 500 time steps, then dumped a single
configuration. Chosen as representative of an “average”
job for DL _POLY_3 (though probably slightly toward the
tough end for this as the force field is so simple).
iIchmiark from now on unless otherwise statei

spvironment variables set to default values (because
that is what the users will use) COUNCIESS

The Scaling of MPIW

14

12 /

* / - = HECTOR -
/ P Without I/O
- HPCx - Without I/
0
‘ / s =+ HECTOR - Includ-
Va 7 ing 1/O
— v ——— = HPCx - Including
/0

Time Stepsls
N
<
\
\

0 50 100 150 200 250 300
Number Of Processors

AT

HEC* RESEARCH
COUNCILS UK

Can’'t we do better ?

Can't we do better? Potentially two major problems.

All the processors are writing
Probably will exhaust the available I/0 bandwidth
Might be a serialization somewhere

All the 1/O transactions are very short
Each transaction writes the data for one atom only

To circumvent this a new method MPIW_SORTED based on
MPIW was developed, and implementing this as
production quality code is the first part of the dCSE.

- RESEARCH
COUNCILS UK

MPIW_SORTED

» Gather the data onto a subset of the processors
(the “I/O processors”)

» Perform a parallel, distributed sort of the data on
the I/O processors into the original ordering
* Index the local data (O((N/P)log(N/P)))
* Work out which I/O processor this atom should be on
* Redistribute among the I/O processors
* Sort the new local data(O((N/P)log(P)) in principle -
something like merge sort)
» As the data is now in order can write many
records at once. Use MPI I/O as in MPIW for

mrtability. z

HECJOR RESEARCH
Rearrange the data on the CPUs ratherithank

the disk

MPIW_SORTED

Though the method address the two problems
above there are some downsides

Much increased communication

A very appreciable memory overhead - the data

structures are no longer distributed across all the
Processors

Some extra CPU work - but sorting/indexing is
quick

First see how well it works, then discuss how we
addressed the downsides

- RESEARCH
COUNCILS UK

MPIW_SORTED on HECToR

45.0
40.0
35.0
()]
?)
Q. 300 A Without I/O
% - MPIW
() 2>0 ¥ 4 \Writers
g 20.0 -4 8 Writers
= »- 16 Writers
15.0 <1 32 Writers
10.0 » 64 Writers
| X 128 Writers
5.0
0.0 ;
HECT 0 200 400 600 800 1000 1200 RCH

LS UK
Processors

MPIW_SORTED on HPCx

HECToF

Time Steps/s

12.0

10.0

8.0

6.0

4.0

2.0

> e

50 100 150 200 250

Processors

= Without 1/0
- MPIW
=¥ 4 \Writers
=& 8 Writers
=16 Writers
<t 32 writers
¢ 64 writers

300

RESEARCH
COUNCILS UK

Why The Difference ?

The new method spends 95%+ of it's time actually
writing the file

» Communication costs are negligible
» Sorting costs are negligible

So the increased performance is due to more
efficiently using the disks - the longer I/O
transactions

So what is the the best number of writers ?

RESEARCH
COUNCILS UK

' ECo "

MPIW_SORTED on HECToR

HECToOR

Time/s

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0

B e

20

40 60 80 100 120 140

Number of Writers

r'e

RESEARCH
COUNCILS UK

RTED on HPCx

P!
L

Time/s

0 10 20 30 40 50 60
Number Of Writers

HECTOR

Best Number of Writers

The best number of writers is 64 on HECToR and
32 on HPCx

However the data is very noisy, as indicated by
the error bars (but don't take them too seriously
... Small sample size)

In practice it looks like a few tens of writers are
the best, at least for this system

S What effective disk bandwidth are we gett@

RESEARCH

HECTOR . ;
COUNCILS UK

190 % HECTOR

100 /

50

-~ HPCx

Write Rate /MBytes s

0 \ \ \ \ \ \
0 20 40 60 80 100 120

Number Of Writers

HECToR

Disk Bandwidth

Effective 1/0 bandwidth on HECToR very good, peaks at
about 280 Mbyte s

Not so good on HPCx, around 40 Mbyte s™.
Disappointing when compared with (the non-portable)
PDAW which peaks at 120 Mbyte s'. However good
enough for good scaling as shown before - the only
benchmark figure of any importance is how well your
whole code performs!

How does the method scale with system size ? Take the
benchmark and double it in each direction (so 8 times
bigggr overall). Only run on HECToR with 64 wigters.
ir
ol

HECTOR

RESEARCH
COUNCILS UK

ith System Size

15.0

10.0

Time Steps/s

5.0

0.0

HECTOR

\ \ \ \ \
1000 1500 2000 2500 3000

Number of Processors

3500

4000

=@ \Without I/O
=%= Including I/O

Problems ?

The MPIW_SORTED method seems to solve the
performance problem. However

What about the memory overhead ?
This can be solved by writing out the data in batch

But the I/O only scales to 64 processors - | have
132,000!

Much harder. Can do a bit more on software (binary
formats, compression, collectives for writing) but hitting
the barrier of what can be done portably. Ultimately

hardware improvements are required.

COUNCILS UK

Current Situation
Batching implemented
All (large) output is now done by the MPIW_SORTED

method

Ouput on average 51.2 time quicker compared to MWRITE over
the standard DL POLY test cases

Quicker on all those cases but 1

DL POLY 3 picks sensible default values for the number
of 1/O processors and batch sizes
But the user may override these

Writing now released to users
Parallel reading now implemented using a similar

thod and in testing
S important but harder than output

fzOver an order of magnitude quicker than before g{ggrﬁgﬁcﬁ
About to start on a netcdf version

Conclusions

As disk access is so sloooow it may be worthwhile to
completely reorganize your data simply to get the least
bad performance out of the disks - we all program to
minimize comms, same principles apply.

Write long I/O transactions ! (This is news?)

For the system sizes typically studied on HPCx and
HECToR the MPIW_SORTED method effectively solves
the 1/O problem.

However current I/O hardware does not scale to the
whole system size - only can use a few tens of writers

arge system sizes on larger numbers of prg€essors
thatiry is out - how well does the I/O hardw et Lg
systé€m software) scale ? COUNCILS UK

More Details of The Method

More details in the HPCx technical report:

"DL POLY_3 Parallel I/O Alternatives at Large Processor
Counts", I.T. Todorov and |.J) Bush

Which can be found at

http://www.hpcx.ac.uk/research/hpc/technical _reports/HPCxTR0O806.pdf

m RESEARCH

HECTOR
COUNCILS UK

Acknowledgements

Thanks to

» llian Todorov for the code, many of the slides,
helping me move house ...

» Andy Porter for NetCDF work and support

» Luican Anton and David Tanqueray for first draft
of MPI-1/O writing routine

http://www.ccp5.ac.uk/DL _POLY/

H r'e

T RESEARCH
COUNCILS UK

	Improvements in I/O for DL_POLY_3
	The DL_POLY_3 MD Package
	What is Classical MD ?
	Domain Decomposition Parallelisation
	Development
	Benchmarking Main Platforms
	Slide 7
	A Bit Bigger (On HECToR Phase 1)
	A Bit Bigger (On BG/L)
	Bigger Still (IBM P575)
	The Problem
	It’s Not Just BG/L
	Some Unpopular Solutions
	So What Do We have To Write ?
	And What’s The Problem Writing It ?
	Initial Attempts At A Solution
	Comparison of The Methods
	Performance of the Methods
	Initial DL_POLY_3 I/O Conclusions
	But What About The Scaling
	The Scaling of MPIW
	Can’t we do better ?
	MPIW_SORTED
	Slide 24
	MPIW_SORTED on HECToR
	MPIW_SORTED on HPCx
	Why The Difference ?
	Slide 28
	Slide 29
	Best Number of Writers
	Disk Bandwidth
	Slide 32
	Scaling With System Size
	Problems ?
	Current Situation
	Conclusions
	More Details of The Method
	Acknowledgements

