
Efficient massively-parallel tools for 

the study of catalytic chemistry

Tom Keal

23 Sep 2009



Catalytic chemistry example

• Methanol synthesis on Al-doped zinc oxide (UCL)



Cluster calculations

• Cut out a representative part of the surface

reaction



QM/MM cluster calculations

• Quantum mechanical description required for reaction

• Molecular mechanical description for environment

QM

Active MM

Point charges 

mimic the bulk

environment

Fixed MM



ChemShell

• Computational chemistry environment

– www.chemshell.org

– Tcl front end, C/Fortran behind the scenes

• Particularly useful for QM/MM calculations

– Interfaces with external QM and MM programs to obtain E/g

– ChemShell forms combined QM/MM energy/gradient

• Utilities for cutting clusters

• For our cluster calculations…

– GAMESS-UK for the QM region

– GULP for the MM region



ChemShell in parallel

• ChemShell can run in parallel using MPI

• Takes advantage of parallel external programs 

– E.g. parallel energy/gradient evaluation in GAMESS-UK

• However, this approach does not scale well to 000’s 

of processors

Tcl

Parallel code

Node 0 Node 1 ... N

Initialisation



Task-farming parallelism

• Aim is to parallelise ChemShell algorithms as well

– E.g. parallel Hessian evaluation, geometry optimisation, etc.

• Task-farming approach: divide up processors into 

workgroups working independently on tasks

Tcl

Parallel code

Node 0 Node 1 ... N

Tcl

Parallel code

Node 0 Node 1 ... N

Workgroup 0 Workgroup 1 ...

Initialisation (split communicators)



Task-farming parallelism

• Workgroups are essentially independent

– Separate stdout/stderr

– Separate working directories to prevent file conflicts

– All lower-level parallelism (e.g. GAMESS-UK calculations) 

occurs within a single workgroup. Therefore the workgroup 

communicator must be passed to GAMESS.

• All workgroups are controlled via a single Tcl input 

script

– Tcl commands to allow workgroup-specific tasks

– Workgroups can be explicitly synchronised

– Local ChemShell objects can be made available globally



Finite difference Hessians

• Second derivative matrix of the energy, calculated 

numerically using first derivatives (gradients)

• ChemShell’s ‘force’ command split up into three stages to 

allow task-farmed execution:

1. Precalculate the required gradients

• Divided up by atom number (static load-balancing)

2. Make gradient objects available globally

3. Build the Hessian from the precalculated gradients



Hessian benchmarks

• GAMESS-UK, DFT (B3LYP), lanl2 basis (pure QM)

• Two VO3/silicate clusters:

Cluster 1: 111 atoms

Cluster 2: 57 atoms



0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

16 32 64 128 256 512 1024

T
im

e
 /
 s

Processors

Cluster 1

With ScaLAPACK

No ScaLAPACK

Single point calculations

• Problem: ScaLAPACK routines in GAMESS-UK do not 

support split communicators

– compare with and without ScaLAPACK

0.0

100.0

200.0

300.0

400.0

500.0

600.0

16 32 64 128 256 512 1024

T
im

e
 /
 s

Processors

Cluster 2



Hessian benchmark results

• Single gradient timings suggest that 32 workgroups is 

optimal

• Original = single workgroup with ScaLAPACK

• Single workgroup = no ScaLAPACK (like with like)

CLUSTER 1 Finite difference type

Time / s Single point Two point

Original 28441.2 57842.1

32 workgroups 12335.4 23690.8

Task farming speed up factor

vs Original 2.3 2.4

CLUSTER 2 Finite difference type

Time / s Single point Two point

Original 5769.8 11430.5

Single workgroup 9150.9 18219.6

32 workgroups 1256.6 2454.6

Task farming speed up factor

vs Single workgroup 7.3 7.4

vs Original 4.6 4.7



DL-FIND

• An open-source geometry optimisation library

• Interface to ChemShell for QM/MM optimisations

DL-FIND

QM/MM driver

Energies / gradients

ChemShell

QM (GAMESS) MM (GULP)



Nudged elastic band method

• Optimising reaction paths: finds the minimum energy path

• Multiple images, connected by spring forces.

• Climbing image to find transition state

• Image e/g evaluations are independent, so can be 

parallelised



Parallel NEB

• ChemShell/DL-FIND parallel interface required

– Pass the relevant MPI communicators, workgroup information

• Each workgroup runs DL-FIND

– Tasks allocated according to workgroup ID

– Energies/gradients shared between workgroups at the end of 

each cycle (allreduce)

• Some complications compared to serial case

– Status, restarts

– First cycle in serial for benefit of QM program (guess vectors)

– Frozen images speed up serial calculations vs. parallel



Parallel NEB test

• NEB to find barrier of hydrogen exchange for CO2 on Al-

doped ZnO surface:



Parallel NEB test

• QM/MM cluster calculation

– MM: GULP must use MPI communicator from ChemShell



Parallel NEB test details

• 3207 atoms

– QM: 32 atoms, DFT(B97-1), double zeta basis (ECP for Zn)

– MM includes shell model for polarisation

• 10 NEB images (including end points and climbing 

images)

• Speed up > 2 expected over standard 1024-processor run

– Preliminary results (Time for 50 cycles of NEB):

1 workgroup of 1024 procs 10 hours

4 workgroups of 256 procs 3 hours



Summary and outlook

• Task-farm parallel framework implemented in ChemShell

– GAMESS-UK and GULP made ‘task farm aware’

• Finite difference Hessian code parallelised

• Parallel interface between ChemShell & DL-FIND

• Parallel NEB implemented

• Next milestone: interface ChemShell with DL-FIND’s 

parallel optimisation algorithms

– Genetic algorithm, stochastic search



Acknowledgements

• Paul Sherwood

• Huub van Dam

• Gargi Dutta

• NAG for funding


