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CITCOM dCSE
 Proposed by University of Durham

 Department of Earth Sciences
Dr Jeroen van Hunen as PI

 School of Engineering
Dr Charles E Augarde as Co-Investigator

 CITCOM Package
 Parallel finite element code
 Written in C  with MPI based parallelisation

 Original developers:
 Louis Moresi (author of original 2D/3D finite element 

code)

�

 Shijie Zhong (parallelised and added Multigrid solver)

�

 PI’s contribution over a number of years
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Project Breakdown
 12 Months full time one person
 On 80% basis translates to 15 months

 Started on 1st January 2008
 To end on 31st March 2010

 Consists of 3 phases
 Initial Project Study 

 Until end of April 2009

 Multigrid Cycles
 Until end of September 2009

 Mesh Refinement 
 Until end of March 2010



5

CITCOM  Characteristics
 Solves for

 Stokes flow with large viscosity contrasts
 Heat advection/diffusion
 Pure advection of composition using a tracer method
 Employs Cartesian coordinates system
 In two & three dimension

 Relies on
 Linear velocity and constant pressure shape functions
 Full multigrid method for Stokes flow
 Uzawa algorithm to apply incompressibility
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Source Code

 In the main CITCOM package
 1 Makefile, 29 source code files and 7 header 

files
 More than 25,000 source code line

 Some code for post processing
 In five sub directories

 1 Makefile and 2 source code files in each sub 
directories

 Header files are used from main CITCOM source
 Calls to a number of functions from main CITCOM 

source

 Documentation
 Some comments within code
 Useful notes from PI
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Learning Curve
 Due to limited documentation, following been the 

learning tools
 Code browsing 

 To read/understand code itself and comments

 Use of Doxygen (to generate documentation from 
source/comments)
 “Call” and “Call by” graphs been of particular help

 Use of eTrace package
 It gives function call tree starting from “main()”

 Good for serial code
 Duplicates function calls for parallel code; one call for each 

process

 Meetings with PI
 Internet

 Google

 Altavista
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 Built on structured finite elements
 Rectangular / Square elements in 2D
 Brick / Cubic elements in 3D

 Z-axis is taken +ve in downward direction
 Although C code, zero locations in arrays are not 

used
 Instead arrays been allocated an extra unit of memory
 For most arrays, a couple of extra units of memory are 

allocated

 Most counter begins at 1 (one), not 0 (zero)

�

, e.g.
 Local node numbering for each element starts at origin 

1(0,0,0)

 Local node numbering for each element is 
counter clockwise

Building Blocks
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Mesh Elements in 2D / 3D
2D: Starting at 
origin, node 
numbering and 
orientation is counter 
clockwise

3D: Starting at 
origin, node 
numbering and 
orientation is counter 
clockwise spiral

(front to back)
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Multigrids

 Here 5 levels, 
each with 
different number 
of elements
 Just 4 elements / 

9 nodes at 
coarsest level

 1024 elements / 
1089 nodes at 
finest level

 CITCOM allows 
up to 12 levels
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Multigrids Sudo Procedure

 Relax translate to 
an iterative solve
 CG at coarsest 

level
 GS everywhere 

else

 Restriction 
transforms vector 
to next coarse level
 RHS, residual

 Prolongation 
(Interpolation) transform 
vector to next 
higher level
 Velocity
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Popular Multigrid Schemes

 V-cycle, W-cycle and 
FMG(V) schemes

 Circles represents 
Smoothing/Correction 
/ Relaxation
 Iterative solve by CG / 

GS

 Lines represent 
Restriction/Prolongati
on(Interpolation)
 RHS, residual
 Velocity
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Multigrids Implemented in CITCOM

 Multigrid V-cycle & W-cycle schemes
These are most efficient schemes but may 

struggle in case of hard to solve problems

 FMG schemes (V- & W-cycles)

�

These schemes have the potential to overcome 
problems where V-cycle / W-cycle might fail

 V-cycles are efficient than W-cycles
In both of the above cases

 V- & W-cycles are efficient than 
corresponding FMG (V- & W-cycle) 
schemes respectively
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General Applications
 A variety of 

dynamical 
problems related 
to the Earth’s 
mantle and 
lithosphere:
 Mantle convection
 Subduction zones
 Mantle plumes
 Continental 

breakup
 Thermal evolution 

of the Earth
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Lithospheric Thinning
 Oceanic lithosphere 

grows by conduction
 But at age > 70 M 

yrs, its base starts to 
‘drip off’

 This might explain the 
observed flattening of 
the seafloor and 
surface heat flow.

Simple illustration of CITCOM calculation

Observed 
topography 
and heatflow 
of Pacific 
seafloor 
(Huang & 
Zhong, 2005)

�
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Mantle Plumes
 Most volcanism at 

plate boundaries (mid-
ocean ridges and 
subduction zones)

�

 Some significant 
‘intraplate’ volcanism 
(e.g. Hawaii) explained 
by mantle plumes

 Mantle plumes are hot 
upwellings from base 
of mantle (3000 km 
depth).

 When hitting 
lithosphere they melt 
partially to give 
volcanic activity. 
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Subduction Zones
 Subducting plates 

(slabs) drive the 
movement of tectonic 
plates: main force to 
drive plate tectonics

 Subduction zones are 
also the location where 
most of the continental 
crust seems to be 
formed.

 Understanding 
dynamics of subduction 
essential for Earth’s 
evolution 
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Numerical Challenges

 Modelling lithospheric plates requires large 
viscosity contrasts (104 – 106) in very narrow 
bands (shear zones)

�

 Solving this with multigrid is difficult, because the 
coarse levels don’t ‘see’ the narrow, low-viscosity 
bands
 This explains why V & W face difficulties in contrast to 

FMG(V & W)
 Possible solutions(?):

 Better multigrid algorithms (improved smoothing, AMG)

�

 Strong local mesh refinement 
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Governing Equations

 Governing 
equations can be 
described as 
conservation 
equations for
 Mass
 Momentum
 Energy
 Composition

 Symbols have their 
usual meanings
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Discrete Linear System

 Governing equations can be written in 
discrete form as
 Au + Bp = f
 BTu = 0

 This yields system of linear equations

 Finite elements used are bi-linear in nature

 This system is solved using
 Iterative MG method for Stokes equations (first 

two equations on previous slide) 
 Explicit forward integration for Temperature
 Tracer method for composition
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Simple 2D Test Problem

Number of 
Processes

Time (in seconds)

V-cycle W-cycle FMG-V FMG-W

2 3902 4754 4487 5987

4 1851 2264 2104 2695

8 1026 1266 1177 1515

16 523 647 613 799

32 278 354 352 479

64 182 236 265 384
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Simple 2D Test Problem

 Due to memory limitations (8GB per node)
 One core per node for 2 MPI processes jobs is 

used
 Two cores per node for 4 MPI processes jobs 

are used

 Four cores per node are used for all other 
jobs
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Simple 2D Test Problem

 Problem size
 Initial mgunits (elements): 128 X 128 = 16,384
 Global number of elements: 2048 X 2048 = 

4,194,304
 Global number of nodes: 2049 X 2049 X 1 = 

4,198,401
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Number of 
Processes

Time (in seconds)

V-cycle W-cycle FMG-V FMG-W

32 21826 24656 21935 25907

64 13548 16354 13194 16736

128 5851 6674 5869 7039

256 3635 4420 3586 4641

Simple 3D Test Problem

 Problem Size
 Initial mgunits (elements): 32 X 16 X 32 = 

16,384
 Global number of elements: 512 X 256 X 512 = 

67,239,936
 Global number of nodes: 513 X 257 X 513 = 

67,634,433
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 Due to memory limitation (8GB per node)
One core per node for 32 MPI processes job is 

used
Two cores per node for 64 MPI processes job 

are used

 Four cores per node are used for all other 
jobs

Simple 3D Test Problem
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Simple 3D Test Problem



27

Complex 3D Test Problem

Number of 
Processes

Time (in seconds)

V-cycle W-cycle FMG-V FMG-W

32 42960 31386 26940 34940

64 * 21205 16305 22440

128 13167 8147 7166 9306

256 12031 5469 4423 6150

 Extrapolated* from 88 to 100 steps 
(49116)

 88 iterations time: 43222 seconds
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Complex (Bar) 3D Test Problem

 V-cycle failed to complete 100 time steps 
within 12 hours for 64 MPI processes job
 Maximum queue time on HECToR is 12 hours
 This is not understood given that 32 MPI 

processes job managed to complete 100 steps 
within 12 hours
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Complex (Bar) 3D Test Problem
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Complex 2D Test Problem

Number of 
Processes

Time (in seconds)

V-cycle W-cycle FMG-V FMG-W

2 ~ ~ - -

4 ~ ~ 22883 23238

8 ~ ~ 14005 18396

16 ~ ~ 8934 12493

32 ~ ~ 5676 8286

64 ~ ~ 5815 7600
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Complex 2D Test Problem

 V-cycle & W-cycle failed to achieve any 
results

 FMG(V) performed poorly for 64 processes 
job
 Problem size per MPI process too small

 FMG(W) is the successful scheme in this 
case
 Although performance for 64 processes job is 

not good
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Complex 2D Test Problem
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What Next? Local Mesh 
Refinement

 Aimed to help large 
velocity/viscosity gradients

 Might introduce more 
complexity

 Could require extra work 
by introducing
 Ghost nodal point
 Extra book keeping

 Potential to lead to load 
imbalance
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What Next? Prolongation and 
Restriction

 These help transform info across mesh 
levels

 Prolongation could be achieved by 
interpolation

 Restriction could be achieved by 
averaging
 Arithmetic averaging

 f = ½ ( g + h )
 Geometric averaging

 f = √gh
 Harmonic averaging

 1/f = 1/g + 1/h

 These may give significantly different rate 
of convergence depending on the problem 
nature
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Conclusion

 Success so far
 Four Multigrid schemes are available
 Option of efficient schemes for not so hard 

problems
 Option of FMG schemes for hard to solve 

problems

 Difficulties
 Learning curve was quite steep

 Predictions for next phase
 Local mesh refinements and improved 

prolongation and restriction expected to 
improve Multigrids performance and capability 
of handling hard to solve problems
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