
Adding Parallel I/O to PARA-BMU

Nick Johnson, Iain Bethune,

EPCC, The University of Edinburgh

October 1, 2012

Abstract

VOX-FE[1] is a voxel-based bone modelling suite. The solver part of the
suite - PARA-BMU - currently uses only serial I/O routines which lead
to poor scalability. We enhance the code by adding parallel I/O routines
based on the netCDF[2] and HDF5[3] libraries. We demonstrate that this
gives a reduction in file sizes of up to 190x and a reduction in wall-clock
time of 7x at 512 cores. This paves the way for PARA-BMU to be used
effectively on HECToR and allows users to perform research with much
larger and more complex models than was previously possible.

Contents

1 Introduction 2

2 Objectives 2

3 I/O schemes and optimization 3
3.1 Current Input . 3
3.2 Current Output . 4
3.3 New Input . 4
3.4 New Output . 4

4 Results 5

5 Notes for users 7
5.1 Commands added to the scripting language 7
5.2 How to use the convertors . 7
5.3 netCDF operators & compression 7

6 Conclusion 8

7 Acknowledgements 8

1

1 Introduction

VOX-FE is a voxel-based finite element bone modelling suite developed by Prof.
Michael Fagan’s Medical & Biological Engineering group at the University of
Hull. It is one of the demonstrator applications for the EPSRC-funded ”Novel
Asynchronous Algorithms and Software for Large Sparse Systems” project, and
the core algorithms of VOX-FE are being redeveloped for increased scalability
and functionality. The VOX-FE suite comprises two parts; a GUI for manipulat-
ing bone structures and visualizing the results of applying strain forces, and an
MPI-parallelised Finite Element solver PARA-BMU which performs the com-
putation required to solve the Linear Elasticity problem and calculate stresses
and strains in the bone. Example applications would include computing the
maximum principal strain in a human mandible (jaw bone) undergoing incisor
biting, or understanding the stresses in an axially loaded femur.

Initail examination of the code revealed that plain ASCII files were being used
for both input and output data. These were read and written in serial by a
single process whereas the solver routines operated in parallel. This solution
did not scale well to a large number of cores with the result that for systems
with a very large number of finite elements, the runtime was dominated by I/O
and MPI data exchange rather than by computation. Another side-effect of
using plain text files is that file sizes grow extremely large as the problem size
increases which increases transfer times to and from HECToR. Prof. Fagan’s
group intend to routinely study bone models with resolutions of over 100 million
elements in the near future, where the input files are expected to be many GB
in size.

2 Objectives

In this dCSE project, the primary goal was improve the scalability of the code
by parallelising the I/O routines. To that end there were two objectives:

• Reduce file sizes by converting to netCDF-HDF5 formats with a target
reduction of between 2 and 20 times.

• Increase disk I/O speed by using parallel netCDF routines with a target
speedup of between 3 and 4 times minimum.

Currently, the code exhibits poor strong scaling: the input is performed in se-
rial on the master process and the output is performed by each process but is
serialised in a round-robin pattern. The effect on the overall performance of the
code compared to the performance of the solver itself can be observed in Fig 1.
With respect the purely serial case (1 MPI process), the maximum speedup
is limited to ∼22. The theoretical scalability limit for this code is the num-
ber of z-planes present in the problem as the decomposition is one dimensional.
Throughout this report, we use the larger of the two test cases supplied by Prof.
Fagan’s group, the High res model which has 884 z-planes comprising ∼29 mil-
lion elements.

For backwards compatibility, it is obviously desirable to be able to re-use pre-
vious data files and for that reason, all serial I/O routines are preserved. In

2

1 2 4 8 16 32 64 128 256 512
Number of MPI processes

1

2

4

8

16

32

64

128

256

512
S
p
ee

d
u
p

Serial I/O: Strong scaling

Linear
Solver Only
Total

Figure 1: Strong scaling of PARA-BMU using only serial I/O showing ideal case
(Linear), solver only (Solver) and complete runtime (Total).

addition, convertor utilities are provided to allow conversion of the old ASCII
data files to and from the new format.

3 I/O schemes and optimization

To understand the I/O routines, we briefly review the data storage schema used
in PARA-BMU.

Data is stored in a dynamically allocated array of type BYTE, a user defined
type in C++ which is 8 bits in length and unsigned. Each array element repre-
sents a voxel, and its value the Hounsfield value of that region of the physical
system (essentially a density value derived by CT scanning a physical bone
sample). The data is organised as a 3D array with dimensions corresponding to
cartesian co-ordinates. The solver itself operates on slices of data corresponding
to z-planes in the system. The data contains many elements which have a value
of 0 indicating that no material is present (i.e. empty space).

We now proceed to describe the current and new I/O routines in PARA-BMU.

3.1 Current Input

The existing input method consists of reading all data from an ASCII formatted
text file into a buffer on the master process and then sending z-planes of data

3

to each worker process via MPI.

Each line of the input file, save for header information is one record and cor-
responds to a single voxel. It contains an element number, a type (the data
value) and the aforementioned x, y & z co-ordinates of the voxel in the system.
The data undergoes a mapping operation upon input which changes it from
the values read from file to an internal representation as one of a defined set of
materials.

Once read, a stencil operation is applied to the data which generates a distri-
bution of certain-valued elements per z-plane. A load-balancing algorithm is
used which generates, from the distribution, the number z-planes of data to be
distributed to each worker process via MPI.

3.2 Current Output

The existing output routine uses a round-robin serialization to allow all pro-
cesses to write their output values to a single text file.

Beginning with the master process, the file is opened and header information
written to the file. The master process writes its data then signals process
P + 1 with an MPI call to write its own data. Once this process has written
its data, it signals the next process and the cycle continues until all processes
have written their data. In addition to signalling the next process to write data,
the renumbered node offset (a long integer) is also sent between processes. This
value is necessary for the correct numbering of nodes in the output file. Each
worker process must wait, idle, for the signal to write data and once finished
must return to idle until all processes have completed their individual writes.

3.3 New Input

We have added a new input routine which can be selected in the script file
with the arguements remaining identical to the serial case (see Section 5.1 for
details). This routine can be described by Algorithm 1.

Each process (including the master process) now reads data. Any partial z-
planes read are sent to process P + 1 along with a copy of the lowest z-plane
which is necessary for the solver. The load balancing algorithm which is present
in the serial case is not used as this would require complex re-distribution of the
data once read.

3.4 New Output

We have added a new output routine which can be selected in the script file
with the single arguement of the file to write the data to, as in the serial case.
See Section 5.1 for details.
This routine is conceptually similar to the serial case except that all writes are
now done in parallel. It is described by Algorithm 2.
In contrast to the serial output case, here, the renumbering offset is calculated
before any data is written. Once it is calculated, an MPI Barrier call is issued

4

Algorithm 1 New parallel input algorithm.

Synchronize MPI processes.
Open input file by call to netcdf routine nc open par.
Read N/P records into a private buffer where N is the number of records and
P the number of processors.
Close file.
if Topmost layer in records buffer is incomplete then

Send top-most partial layer to process P+1
end if
if Lowest layer in records buffer is incomplete then

Receive incomplete layer from process P-1
end if
Translate records buffer into local data buffer respresenting voxel data values
with transformations as per serial case.
Free records buffer memory.

Algorithm 2 New parallel output algorithm.

Compute renumbering offset.
Synchronize MPI processes.
Open output file by call to netcdf routine nc open par.
Write local data to file using netcdf routine nc put vara.
Close file.

to ensure synchronicity between processes prior to calling nc put vara which
instructs processes to write (in parallel) to the output file.

Unlike the input files, parallel output files cannot be compressed at write time
using netCDF, which is a limitation of the library. It is suggested to user that
they make use of the netCDF operators to perform compression. See Section
5.3 for usage details.

4 Results

Measuring the I/O speed for comparison was found to be difficult on HECToR.
CrayPAT, Cray’s profiling tool did not handle well the case of netCDF/HDF5
API calls. Thus we resorted to using calls to the MPI Wtime routine to measure
the elapsed time for both serial and parallel I/O.

We show results for the case of 128 processes on 4 nodes, fully packed at 32
processes per node. Where times for each parallel process were not equal, we
show the worst case result recorded. For the serial case, we show the elapsed
time on the master process. We time only calls to read or write functions,
ie fprintf/fscanf or nc put vara/nc get vara and not associated stores to
memory, calls to transformation routines or counter increments, which are iden-
tical between versions.
As can be seen from both Tables 1 & 2, the relative I/O speed for the parallel
case is much worse than that of the serial case, however, the absolute time is
much lower and represents a significant speedup.

5

Input
File size Worst-case time Approximate I/O speed

Serial 567MB 30s 18.9 MB/s
Parallel 2.9MB 0.4s 0.05MB/s

Table 1: Input file sizes and times for 128 processes, fully packed at 32 pro-
cess/node.

Output
File size Worst-case time Approximate I/O speed

Serial 2600MB 118s 22MB/s
Parallel 994MB 7s 1MB/s

Table 2: Output file sizes and times for 128 processes, fully packed at 32 pro-
cess/node.

1 2 4 8 16 32 64 128 256 512
Number of MPI processes

1

2

4

8

16

32

64

128

256

512

S
p
ee

d
u
p

Serial & Parallel I/O: Strong scaling

Linear
Serial Solver Only
Serial Total
Parallel Solver Only
Parallel Total

Figure 2: Strong scaling of PARA-BMU using serial and parallel I/O showing
ideal case (Linear), solver only (Solver) and complete runtime (Total).

From Figure 2 we can see that the solver scales almost identically for the parallel
and serial case. The total wall clock time for calculations using the new parallel
I/O routines scales much better than those using the serial I/O routines although
it is still not as close to linear as the solver alone, indicating that there may still
be gains to be found by further optimising the parallel I/O. The speedup over
a single core for serial I/O is ∼22 and for parallel I/O is ∼90. The speedup of
the solver alone is ∼180.

6

5 Notes for users

5.1 Commands added to the scripting language

The new parallel loading routine can be invoked in a similar manner to the
current serial routine.

LOAD_MCTSCANPAR <X> <Y> <Z> <filename>

Similarly for the new parallel output routine.

PARPRINT_X <filename>

These commands are interchangeable with their serial counterparts and one may
elect to use only one of the pair, i.e. one may choose parallel input with serial
output or vice-versa, as needed.

5.2 How to use the convertors

Two conversion programs are provided to convert from ASCII to and from the
netCDF file formats.
The first program, txt2hdf5 will convert an ASCII file to a netcdf format file.
The type of file, either element data (PARA-BMU input) or displacement data
(PARA-BMU output) is automatically detected. Invocation is thus:

./txt2hdf5 <txt_filename> <hdf5_filename>

This is a serial code which must be compiled for, and run in, the serial environ-
ment on HECToR.

Similarly, the second program hdf52txt will convert a netcdf format file to an
ASCII file. Again, the type of file, either element data or displacement data is
automatically detected. Invocation is thus:

./hdf52txt <hdf5_filename> <txt_filename>

Again, this is a serial code which must be compiled for, and run in, the serial
environment on HECToR.

5.3 netCDF operators & compression

In order to compress the files generated by either the convertors or PARA-BMU
itself, one should make use of the netCDF operators, NCO, and in particular the
nccopy utility. A compression level of 9 (maximum) is recommended although
it is known that this may not always give the best compression and users may
wish to experiment. Invocation is:

./nccopy -d9 <input_filename> <output_filename>

7

6 Conclusion

We have shown that by using the netCDF libraries we were able to decrease I/O
time and reduce the file sizes of both input and output files relative to the orig-
inal implementation using ASCII case. We have merged these additions to the
main trunk version of the code of CCPForge such that Prof Fagan’s group may
make immediate use of them. The impact of this work is that it is now feasible
to use HECToR as a platform for running PARA-BMU rather than small-scale
local clusters; this paves the way for bone modelling at unprecedented scale and
accuracy.

7 Acknowledgements

This project was funded under the HECToR Distributed Computational Science
and Engineering (CSE) Service operated by NAG Ltd. HECToR – A Research
Councils UK High End Computing Service - is the UK’s national supercom-
puting service, managed by EPSRC on behalf of the participating Research
Councils. Its mission is to support capability science and engineering in UK
academia. The HECToR supercomputers are managed by UoE HPCx Ltd and
the CSE Support Service is provided by NAG Ltd. http://www.hector.ac.uk

References

[1] Medical & Biological Engineering
University of Hull
VOX-FE: Voxel Based Finite Element Analysis
http://www2.hull.ac.uk/science/medical__biological_eng/research/vox-fe.aspx

[2] netCDF
http://www.unidata.ucar.edu/software/netcdf/

[3] HDF5
http://www.hdfgroup.org/HDF5/

8

http://www.hector.ac.uk
http://www2.hull.ac.uk/science/medical__biological_eng/research/vox-fe.aspx
http://www.unidata.ucar.edu/software/netcdf/
http://www.hdfgroup.org/HDF5/

	Introduction
	Objectives
	I/O schemes and optimization
	Current Input
	Current Output
	New Input
	New Output

	Results
	Notes for users
	Commands added to the scripting language
	How to use the convertors
	netCDF operators & compression

	Conclusion
	Acknowledgements

