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Abstract 
VASP, or the Vienna Ab initio Simulation Package, is an ab initio quantum mechanical software 

package used to simulate the electronic structure of condensed phase materials. Two new mixed-

mode versions have been created by introducing OpenMP to the F90+MPI code.  The first employs 

OpenMP directives within an extant VASP 5.2.12 routine, and we see 50% parallel efficiency, when 

comparing two and no OpenMP threads per MPI task. This will permit new science as we may now 

double the number of cores used, thereby increasing the memory available.  The second version 

(currently incomplete) involves a complete restructuring of the DFT/HF code, and is inspired by a 

GPU-based version.  Replacing the internal FFT routines with calls to the FFTW3 library was found to 

be beneficial: the version of the VASP centrally available to VASP users now employs the FFTW3 

library. 
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Introduction 
In this report, we describe how we undertook to introduce OpenMP [1] parallelisation into a recent 

version of VASP [2], version 5.2.12, on behalf of the UK’s Materials Chemistry Consortium (MCC) [3]. 

VASP 
VASP, or the Vienna Ab initio Simulation Package, is an ab initio quantum mechanical software 

package used to simulate the electronic structure of condensed phase materials. VASP is one of the 

most important and utilised materials science and chemistry codes in the world. Locally, it accounts 

for over 18% of all AUs used on HECToR between October 2009 and June 2010 – by far the code with 

the largest usage in this sampled period – equivalent to a notional cost of over £1.5 million. At that 

time, there were at least 63 registered HECToR users using the package from 14 different HECToR 

projects.  

Hybrid DFT/HF functionals are a new addition to the VASP code (from version 5.2), which offer a 

means to overcome some of the limitations of traditional density functional approaches. Of 

particular relevance to the materials science community are the description of localised wave 

functions (d and f orbitals); transition states and reaction barriers for catalytic cycles, surface work 

functions; and electronic and optical band gaps. The parallel performance of the VASP 5.2 code on 

HECToR is well understood from the previous successful dCSE application [4]. In particular, the 

hybrid functional part of VASP 5.2 has especially poor scaling performance when compared to the 

performance of the pure DFT part, limiting the usage of this functionality within the Materials 

Chemistry Consortium (MCC).  

This difference in performance arises both through the relative immaturity of these subroutines – 

they have not been optimised and developed as thoroughly as the rest of the VASP code; and also 

through the specific challenges posed by computing the HF exchange component for the hybrid 

functional with explicit two-electron integrals. The HF scheme does not parallelise in the same way 

as a pure DFT calculation and so imposes additional constraints on the parallelisation scheme 

employed by VASP which, in turn, adversely affects the performance of the code when moving to 

large core numbers. 

We aimed to overcome these performance limitations by employing a mixed-mode (MPI + OpenMP) 

parallelisation scheme for the hybrid-functional strand of VASP 5. This combination of parallel 

programming models will allow the code to be used for new science on HECToR and future-proof the 

code for the migration to the massively multi-core machines that are part of the upgrade path for 

HECToR and HPC facilities in general. 

These optimisations and developments constitute a first step on implementing a full, mixed-mode 

version of the VASP 5 software package. This development of VASP is critical to allowing its effective 

use for new science on the current- and next-generation of HPC architectures for the reasons 

outlined above. The current Cray parallel programming roadmap is advocating a directive-based 

approach (similar to OpenMP directives) to exploiting parallelism within a MPP node – whether that 

parallelism is based on multi-core CPUs (such as HECToR, a Cray XE6) or on accelerator technology 

(such as GPUs) which Cray are targeting for the next generation of HPC machines. Mixed-mode 



 

 

programming is the only way that codes such as VASP will be able to harness the power of these HPC 

machines. The hybrid-functional strand of the VASP 5 package is an obvious first place to begin these 

developments which has the potential to deliver real performance, scaling and scientific 

enhancements on HECToR right now. These developments will benefit a large proportion of scientific 

projects within the MCC, ranging from crystal structure prediction, heterogeneous catalysis and 

materials design for solar cell applications.    

The Materials Chemistry Consortium 
The MCC are concerned with wide-ranging issues in the field of materials science, including 

electronic, optical, magnetic and nuclear materials and their device applications. The membership of 

the MCC consists of over 200 users on HECToR based in 36 different UK research groups, where the 

Principle Investigator and the Project Manager are Richard Catlow (UCL) and Scott Woodley (UCL), 

respectively. 

The VASP 5 licence is owned by several members of the MCC and, more importantly, work on 

optimising the performance of VASP on HECToR is covered by the current support-licences to HPCx 

and HECToR. 

Baseline profiling 

Baseline hybrid DFT parallel performance 
All results below are for VASP 5.2.11, using a single point SCF calculation using the 64 atom H defect 

in Li benchmark calculation supplied by the MCC. All calculations are performed using the best 

performing -point code on HECToR phase 2a (Cray XT4) with fully-packed nodes. 

The execution times are presented in Table 1, whilst the scaling of the hybrid benchmark is shown in  

Figure 1, compared to the scaling of the same calculation using a pure GGA DFT functional. 

Table 1: Runtimes for VASP benchmark at various core counts using GGA and hybrid DFT functionals. 

 Runtime (secs) 
Cores GGA Functional Hybrid Functional 

16 106 1571 
32 60 1004 
64 41 621 

128 25 566 
256 22 685 

 



 

 

 

Figure 1: Scaling of VASP benchmark for pure DFT and hybrid DFT functionals. 

 

We can see that this rather small benchmark (64 atoms) scales out to 128 cores on HECToR phase 2a 

(Cray XT4) when using the pure DFT functional but only scales to half the number of cores when 

using the hybrid functional. 

One of the reasons for the better scaling in the pure DFT case is that we are able to improve the 

parallel performance by altering the balance between different parallel parts of the program using 

the runtime parameter “NPAR”. The VASP “NPAR” parameter allows users to alter the number of 

MPI tasks assigned to both the parallelisation over plane waves and the parallelisation over the 

electronic bands – this, in turn, allows the parallel performance of VASP to be optimised (at run-

time) to the problem being studied and the number of MPI tasks being used. In the hybrid functional 

calculation we are restricted to selecting a value of “NPAR” equal to the number of MPI tasks that 

the calculation is running on. This inflexibility is imposed by VASP for good reasons as inter-band 

communication would be extremely inefficient when Hartree-Fock exchange is included. Even so, 

the inability to exploit another layer of parallelism within the code is currently limiting the scaling 

behaviour.  

Another limitation in the parallelism of VASP that affects all calculations (pure or hybrid DFT) arises 

in the PAW pseudopotentials that are used to represent the core electrons in the system. VASP 

parallelises this part of the calculation over the number of atoms. This strategy effectively caps the 

scaling that can be achieved by the code relative to the number of atoms in the system. This is 

especially problematic for hybrid DFT calculations as, due to the more computational expensive 

nature of the method, smaller systems tend to be studied. Adding another layer of parallelism to this 

section of the code is therefore a prerequisite of achieving good scaling behaviour. 
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Baseline hybrid DFT profiling results 
Table 2 shows the profile of the MPI routines for the benchmark using the hybrid-DFT functional on 

64 cores (when the code is still scaling well) and on 256 cores (where the code does not scale). The 

major increase is in the MPI_SYNC time for the MPI_Allreduce function indicating an increase in the 

load-imbalance of the code. The MPI_Allreduce collective operation is acting as a barrier in the code 

enforcing the synchronisation of all MPI tasks – a large synchronisation time reveals an imbalance in 

the workload between MPI tasks. This particular call is in the evaluation of the PAW pseudo-

potentials and is evidence of the limits imposed by the parallelisation over atoms described above 

(i.e. there are more MPI tasks than atoms). Introducing OpenMP parallelisation would allow for a 

large improvement in the scaling performance of this portion of the VASP code. Instead of 

parallelising over atoms, by assigning each atom to an individual MPI task (or core), we would be 

able to parallelise the atoms in the PAW calculation by nodes (where a node can correspond to 

either a physical node on the HECToR system or a subset of the processors – possibly a NUMA region 

– within a physical node). Each atom would be assigned to a particular node and the OpenMP 

parallelisation within the node would parallelise the PAW calculation for a single atom. 

Table 2: Parallel profile at 64 and 256 cores (fully populated nodes) for the benchmark, MPI_SYNC time relates to wait 
time on the parallel tasks. 

 64 Cores  256 Cores  
Routine % Time Time (secs)  % Time Time (secs) 

MPI_SYNC 16.0 110.5 33.7 267.5 
 MPI_Allreduce 10.1 69.6 20.7 164.1 
 MPI_Bcast (ScaLAPACK) 2.5 16.9 5.6 44.2 
 MPI_Alltoallv 1.0 6.9 3.3 26.5 
 MPI_Barrier 1.1 7.9 2.2 17.8 
MPI     
 MPI_Bcast 7.1 48.8 12.1 95.9 
 MPI_Allreduce 5.6 38.3 8.7 69.2 

 

Table 3 provides an overview of the time spent in different subroutines within the VASP hybrid-

functional code and allows us to identify the routines with which to start the OpenMP parallelisation 

of the non-PAW parts of the code. The obvious candidate is the “eddav” subroutine which accounts 

for a large fraction of the runtime at both 64 and 256 cores, followed by “rpro1_hf” and 

“wpbe_spline” (and the “*_spline” routines corresponding to the other DFT functionals). The FFT 

routines “fpassm”, “ipassm” and “fft3d” are also key routines for OpenMP parallelisation. Of course, 

the majority of the hybrid-functional code will have to be OpenMP parallelised in order to maintain 

performance but the routines identified here are the areas in which the OpenMP optimisation effort 

should be focussed. Although there is some code shared between the hybrid-functional and pure 

DFT functional parts of the VASP code, much of the computational work is done in routines specific 

to the hybrid-functional calculation which allows us to effectively introduce OpenMP parallelisation 

without having to modify the entire VASP codebase. 

The outcome from this work will be a version of the VASP 5.2 code that can be run with 

MPI+OpenMP when running calculations that employ a hybrid functional and with just MPI for pure 

DFT functional calculations (this part of the code will be equivalent to the current VASP 5.2 

implementation). All of the OpenMP directives will be enclosed in appropriate pre-processor 

directives so the build type can be selected in the VASP makefile. 



 

 

Table 3: Profile of VASP subroutines at 64 and 256 cores (fully populated nodes) for the benchmark. 

 64 Cores  256 Cores  
Routine % Time Time (secs)  % Time Time (secs) 

USER 67.7 467.2 41.2 326.7 
 eddav_ 20.9 144.1 25.8 111.4 
 nonlr_rpro1_hf_ 5.9 10.6 1.9 15.2 
 wpbe_wpbe_spline_ 5.1 35.2 1.3 10.0 
 fassm_ 5.0 34.8 1.6 12.6 
 ipassm_ 4.8 33.4 1.6 12.4 
 fft3d_ 4.6 31.9 1.5 11.9 
 pawfock_rs_coulomb_green_func_ 4.2 29.1 1.5 11.9 
 racc0_hf_ 4.1 28.2 1.3 10.5 

Original Work Packages (WPs) 
The key areas of improvement to the hybrid-functional part of VASP are in the areas of load-

imbalance in the PAW calculation and parallel performance of the hybrid-functional specific 

routines. The work packages below detail how we planned to produce an optimised version of the 

VASP hybrid-functional code that includes OpenMP parallelisation. 

WP1: OpenMP parallelisation of PAW routines – 4 months 

Tasks: 

• OpenMP parallelisation of the PAW calculation controlled by the “set_dd_paw” subroutine. 

Output: 

• Optimised hybrid (MPI + OpenMP) version of PAW calculation. 

• Improved load-balancing of VASP code where the number of parallel units exceeds the number of 

atoms in the system. 

• Scaling of PAW routines for benchmark cases (supplied by MCC) to at least four times as many 

cores as the original pure MPI code. 

WP2: OpenMP parallelisation of hybrid DFT routines – 5 months 

Tasks: 

• OpenMP parallelisation of key VASP hybrid DFT routines: “eddav” “rpro1_hf”, “*_spline”, 

“fpassm”, “ipassm”, etc. 

Output: 

• Optimised OpenMP versions of key VASP hybrid-DFT routines 

• Improved scaling of OpenMP augmented routines for benchmark cases (supplied by MCC) to at 

least four times as many cores as the original pure MPI code. 

• Profile of new code identifying further routines for OpenMP parallelisation. 



 

 

WP3: OpenMP parallelisation of remaining bottlenecks – 2 months 

Tasks: 

• OpenMP parallelisation of remaining VASP routines needed for efficient code operation. 

Output: 

• Mixed-mode version of the VASP hybrid DFT code that scales for benchmark cases (supplied by 

MCC) to at least four times as many cores than the original pure MPI code. 

WP4: Dissemination – 1 month 

Tasks: 

• Distribute new code to MCC members and other HECToR VASP users. 

• Publicise new code 

• Feed developments back to VASP developers 

Output: 

• Report on performance of mixed-mode VASP code 

• Installation of new mixed-mode, hybrid DFT version of VASP as a centrally available package on 

HECToR. 

Key Objectives 
In summary, the key objectives were to introduce OpenMP parallelization into the PAW and hybrid-

DFT calculation parts of the VASP 5 code. 

Changes to the original proposal 

New test cases 
Half way through the project, the author visited the MCC at UCL.  At this meeting, it was decided to 

replace the test cases described in this Project’s Proposal with four new test cases. These new cases 

require the use of a more recent version of VASP as the initial version employed, namely v5.2.11, did 

not contain the necessary functionality.   A more recent version of VASP, namely 5.2.12, was 

therefore obtained and installed on HECToR phase3 (Cray XE6). 

The change of version required a change of compiler and its associated libraries on HECToR.  

Specifically, the PGI compiler, 12.3.0, was replaced by the GNU Fortran compiler, 4.6.3. This change 

of compiler illuminated some minor incompatibilities in VASP which were rectified.   

The four simulations were provided by David Scanlon and Stephen Shevlin and are hereafter 

referred to as Scanlon_1, Scanlon_2, Shevlin_1 and Shevlin_2. 

The new test cases represent the simulations that MCC wish to carry out, in that they have the 

characteristics of the large simulations, and yet run in a short amount of time.  This is to aid rapid 

code development. 



 

 

Benchmarking the new test cases 
The four new test cases were ported to HECToR and benchmarked using the Cray PAT profiling tool 

to provide a baseline to permit comparison. 

For the test cases, we employ VASP 5.2.12 using the GNU compiler on HECToR phase3 (Cray XE6). 

The Scanlon Test Cases 

The first two simulations, namely Scanlon_1 and Scanlon_2, are two different simulations. They 

were designed to exercise the PAW and new hybrid DRF routines, respectively. Bot simulations were 

configured to run using 96 cores whilst under-populating the nodes by 50%.  In other words, 192 

cores are requested and each MPI task is placed on every second core.  Under-populating nodes, in 

this manner, permit each MPI task to access more memory than tasks running with fully packed 

nodes. 

Gamma version of VASP 

When investigating the Scanlon simulations, it was found that both simulations employed only a 

single k-point at the origin, i.e. they contained a single ‘gamma point’.  Such cases can employ a 

special form of the VASP executable which has been compiled employing the pre-processor flag 

-DwNGZhalf.  This can significantly reduce the execution time.  For Scanlon_1, for instance, 

running using the standard form of VASP takes 158 seconds, whilst running with the Gamma version, 

the test takes 129 seconds: an increase of speed of over 18%.   For Scanlon_2, the difference is more 

striking: the standard version runs in 2666 seconds whilst the gamma version runs in 1688 seconds: 

an increase of speed of over 36%. 

Results from Cray PAT 

The Cray PAT profiling tool was employed to profile both the Scanlon_1 and Scanlon_2 test cases, 

using a version of VASP compiled for a single k-point simulation.   

The results of the profiling are summarised in the following Table 4.  

Table 4 Cray PAT profile of the Scanlon_1 test case, 96 MPI tasks, 50% under-population 

Routine  % Time  

MPI  44.6  

 MPI_Allreduce  31 

 MPI_Bcast  7.7 

 MPI_Barrier  2.3 

 MPI_Alltoall  2.3 

USER  40  

 paw_fock_rs_coulomb_green_func 5.8 

 Fpassm  2.7 

 dllmm_kernel  2.5 

 dgemv_t  2.4 

 Rhosyg  2.2 

 Ipassm  2.2 

ETC  15.4  

 No single routine >1%  - 

 



 

 

 

Table 5: Cray PAT profile of the Scanlon_2 test case, 96 cores in 50% under populated nodes 

Routine  % Time  

USER  68.5  

 fpassm  19.6 

 ipassm  17.1 

 dllmm_kernel  6.2 

 dgemv_n  2.8 

 rholm_kernel  2.7 

 fft3d  2.4 

 dcopy_k  2.2 

 hcomb  1.6 

 rcomb  1.4 

 dgemm_kernel  1.2 

 rhosyg  1.1 

 dgemv_t  1.1 

 racc0_hf  1.0 

MPI  17.6  

 MPI_Barrier  8.1 

 MPI_Allreduce  7.0 

 MPI_Bcast  1.7 

ETC  9.4  

 fock_MOD_fock_acc  1.8 

 nonlr_MOD_rpro1_hf  1.3 

 augfast_MOD_calc_dlmm_trans  1.1 

 remainder_piby2  1.0 

 

When comparing the two tables, it is clear that Scanlon_1 suffers from poor load-balance, due to the 

time spent in MPI routines. Further, the expensive PAW routine, namely 

pawfock_rs_coulumb_green_func from pawfock.f, constituted 5.8% of the total run 

time for the Scanlon_1 test case, whereas it does not appear in the profile for Scanlon_2 test case 

(implying it constitutes less than 1% of the total run time).   

For the Scanlon_2 test case, it is clear that the majority of execution time is taken up with 

performing the FFT, as the FFT employs the routines fpassm, ipassm, fft3d , dcopy_k, 

hcomb, rcomb and rhosyg.  These FFT routines are since been replaced with calls to the FFT3 

library (see the section WP2: OpenMP parallelisation of hybrid DFT routines). The routine dgemv_n 

is a call to the ScaLAPACK routine and is optimised for this platform.  Thus, the remaining routines, 

namely dllmm_kernel and rholm_kernel, and, to a lesser extent, dgemm_kernel and 

racc0_hf, are the routines which may benefit from OpenMP directives in an attempt to optimise 

the code further.  

It is interesting to note that the routines ear-marked for OpenMP directives in the original proposal 

we also included the dgemm and rholm kernels. 



 

 

Due to lack of time, it was decided to focus on the Scanlon_2 test case. The associated INCAR file can 

be found in the  

Appendix. 

The Shevlon Test Cases 

The Shevlon_1 test case was found to have multiple k-points, thus we employ the standard version 

of VASP (as opposed to the Gamma version). 

The test case Shevlon_1 takes around 55 minutes to run, and uses fully packed nodes employing 64 

cores in total.   

Results from Cray PAT 

The following table contains a summary of the Cray PAT profiling tool. 

Table 6 Cray PAT profile of the Shevlon_1 test case, 64 tasks, fully packed nodes 

Routine  % 

Time 

 

MPI  71.6  

 MPI_Allreduce  56.2 

 MPI_Bcast  10.1 

 MPI_Barrier  4.6 

USER  24.3  

 zlasr  5.2 

 msort_with_tmp  1.3 

 exp  1.1 

ETC  4.1  

 fock_MOD_fock_acc 1.3 

 

 

From this table, it is clear that MPI takes majority of time, suggesting that load-imbalance is this test 

case’s most significant characteristic.  The routines which spend most time in MPI_Allreduce are, in 

order, elim, david_MOD_eddav, fock_MOD_fock_acc, m_sum_z and 

MPI_Allreduce itself. The user routines which take longer than 1% of the total time, namely 

zlasr, msort_with_tmp and exp, are not part of the VASP source code but are found in LAPACK, glibc, 

etc. As such, there is no single VASP routine/loop which presents itself as a candidate for 

optimisation via OpenMP. 

The Shevlon_2 test case was found to be so similar to the Shevlon_1 test case that it was decided to 

replace this with another test.  This new test case provided difficult to get running on HECToR and, 

due to operational constraints, this final test case was not included in this project’s test suite. 

Conclusions from baseline profiling 
The two Scanlon test cases were found to behave as designed, i.e. the PAW routines and the hybrid 

DFT routines where exercised; however, due to time restrictions, only Scanlon_2 test case was 

considered further. The INCAR file associated with Scanlon_2 can be found in the  

Appendix. 



 

 

On the other hand, the two Shevlin simulations proved to be harder to locate candidates for 

OpenMP directives and, as such, were both dropped from this project’s test suite due to operational 

constraints. 

It should be noted that the change of target VASP version, along with the necessary 

compilers/libraries and compiler options, and the changing of the test cases for benchmarking 

against added a significant delay to the overall project. 

VASP on GPU clusters 
During the latter half of this project, a new version of VASP 5.2.12 was kindly made available by 

Carnegie Mellon University, where the authors of this new code had introduced C and CUDA into 

VASP to introduce parallelism to the hybrid DFT part of VASP to exploit GPU clusters [5].  

This hybrid DFT part of VASP is, of course, exactly the same part of the VASP code that this project 

was attempting to parallelise using OpenMP statements inserted to the Fortran code to addresses 

the poor performance of the new hybrid DFT/HF functional. 

The GPU version has provided alternative C/CUDA code within the main fock_acc and 

fock_force routines within VASP, which can be used for a particular limited set of simulations. If 

the simulation in question cannot employ the new GPU code, then the code gracefully resorts to the 

original code. Simulations that can exploit the GPU code provided that the pre-processor flag 

gammareal is not set and the following logical statements are all TRUE. 

o (.not. WDESK%GRID%LREAL)  

o (WDESK%NRSPINORS == 1)  

o (maxval(abs(KPOINTS_FULL%TRANS(:,:))) <= TINY)  

o (WHF%WDES%LOVERL)  

o (FAST_AUG_FOCK%LREAL)  

o (GRIDHF%MPLWV == GRIDHF%RC%NP)  

o (GRIDHF%RC%NP == WDESK%GRID%RL%NP) 

o (LSIF)  

o (WHF%WDES%COMM_INB%NCPU == 1)  

o (WHF%WDES%NPRO_TOT == WHF%WDES%NPRO)  

o (.not. WHF%WDES%LNONCOLLINEAR)  

 

The GPU code parallelises over the k-point bands: this was achieved by restructuring code within the 

fock_acc and fock_force routines thereby changing the algorithm within VASP so that the k-

point bands of the new hybrid DFT calculation are no-longer independent.   

In the original code, the loop over k-point bands contains loops over each of the ion types and, in 

turn, these ion type loops contain loops over the number of ions of each type.  In the new GPU 

version, the k-point band loop has been split into multiple k-point loops which remove the k-point 

band interdependency present in the original code. This major code refactoring (both in terms of 

algorithmic changes and using C rather than Fortran) permits the introduction of CUDA to exploit 

GPUs. 

It was realised that this version of VASP for GPU clusters could be used as a reference for producing 

an F90/OpenMP version of the same routines, since the method of introducing CUDA into a code is 

strongly similar to that of introducing OpenMP, in that both CUDA and OpenMP require a high 



 

 

degree of small-grain parallelism. In other words, work suitable for GPUs is work suitable for 

OpenMP threads 

In light of the delays in the project arising from the change of benchmark cases; the introduction of a 

new version of the VASP code; and the associated change in compilers and compiler options it was 

decided to replace WP3, namely the piecemeal introduction of OpenMP around expensive loops, 

with the creation of a set of completely new routines written in Fortran/OpenMP that introduced 

OpenMP parallelism at a higher level in a similar way to the GPU-enabled version of the code. 

Moreover, these new set of routines would involve restructuring the existing VASP algorithm to that 

of the structure employed in the GPU-enabled version, i.e. creating independent k-point band 

calculations and, as a direct consequence, increasing the total memory required. It was also noted 

that the time assigned to WP3 might not be sufficient, thus WP1, the parallelisation of the PAW 

routines, would be undertaken if, and only if, the new WP3 is completed.  

Work done against Work Packages 

WP1: OpenMP parallelisation of PAW routines 
Not attempted due to prioritisation of the new WP3 (see below). 

WP2: OpenMP parallelisation of hybrid DFT routines 
This project’s proposal demonstrated that FFTs were very expensive. Indeed, they are employed by 

both pure and hybrid DFT and thus any improvement benefits would benefit all VASP users. 

As per workplan, we attempted to introduce OpenMP into local FFT routines.  Unfortunately, this 

was found to be too complex. We therefore recompiled the code using the FFTW 3 library for the 

FFT functionality as FFTW 3 includes a threaded version of the library which could potentially be 

exploited when using threads in other parts of the code. The results below (Table 7) reveal that using 

the non-threaded version of FFTW in preference to the default VASP internal FFT routines yields a 

performance improvement of between 14% and 35% depending on the number of cores used. 

Table 7: Performance comparison between VASP 5.2.12 using internal FFT routines to using the FFTW 3 routines. All 
tests on the 'bench2' benchmark on HECToR phase2b with fully-populated nodes. 

 Runtime (secs)  
Cores Internal FFT FFTW 3 Improvement 

48 1719 1509 1.14× 

96 1173 866 1.35× 

192 1140 879 1.30× 

 

Using more than one thread in the FFTW routines does not improve the performance however 

(Table 8). In fact, it reduces performance drastically. It is likely that the dimensions of the vectors 

that are to be transformed are too small for the threaded version of the library to be able to exploit 

effectively.  



 

 

Table 8: Performance comparison between VASP 5.2.12 using single-threaded FFTW 3 routines to using multithreaded 
FFTW 3 routines. All tests on the 'bench2' benchmark on HECToR phase2b with fully-populated nodes. ‘Cores’ indicates 

total cores used – threads × MPI tasks. 

 Runtime (secs)  
Cores 1 thread 2 threads Improvement 

48 1509 2863 0.53× 

96 866 2752 0.31× 

192 879 5280 0.17× 

 

The overhead introduced by spawning the threads outweighs the gains by performing the 

transformation in parallel. Further performance improvements in the FFT calls could possibly be 

gained by: 

1. Saving and reusing the plan for the transform rather than generating and destroying it every 
time. 

2. Performing more than one transform simultaneously by placing the transform inside a 
threaded loop over the transforms. 
 

Neither of these possibilities was explored due to time constraints on the project. 

Threaded Cray LibSci library performance 

We also investigated the possibility of using a threaded version of the Cray LibSci library (which 

provides the BLAS, LAPACK, BLACS and ScaLAPACK linear algebra routines used in VASP) rather than 

the standard single threaded version. The results (see Table 9), however, were disappointing with 

the threaded versions actually increasing runtime compared to the non-threaded versions at most 

core counts. As for the threaded FFTW routines above, the overhead introduced by spawning the 

threads generally outweighs the gains by performing the transformation in parallel. The exception is 

at 192 cores where we see a 23% speedup when using the multithreaded library. This result suggests 

that there may be gains in using multithreaded LibSci at higher core counts. As multithreaded LibSci 

will be enabled automatically when using more than one thread on HECToR, these gains should be 

automatically available to the user. 

Table 9: Performance comparison between VASP 5.2.12 using single-threaded LibSci routines to using multithreaded 
LibSci routines. All tests on the 'bench2' benchmark on HECToR phase2b with fully-populated nodes and used the single-

threaded FFTW 3 library. ‘Cores’ indicates total cores used – threads × MPI tasks. 

 Runtime (secs)  
Cores 1 thread 2 threads Improvement 

48 1509 1645 0.92× 

96 866 1263 0.69× 

192 879 712 1.23× 

 

WP3: OpenMP parallelisation of remaining bottlenecks 
Using the test cases described in the original proposal, the subroutines DLLMM and RHOLM kernels 

were found to be expensive, alongside the FFTs and the PAW routines. 

OpenMP was introduced into source for the DLLMM_KERNEL subroutine, but initial results 

demonstrated that this had very poor performance for the “bench2” test case. 



 

 

Whilst these routines are called many times, the loops within these routines which can be 

parallelised using OpenMP are simply not large enough to be efficient.  One solution would be to 

raise the occurrence of the OpenMP statement further up the call tree; however, it was felt that, the 

original workplan would not provide the speed up required by simply introducing OpenMP without 

algorithmic changes. 

Original WP3 with new test cases 

The work done in WP3 was copied to the new version, namely v5.2.12, within the aug_fast.F file 

around the main loops within DLLMM_KERNEL and RHOLM_KERNEL. This new code was timed using 

the second of the new test cases, namely Scanlon_2.   

Performance results of mixed-mode version of VASP 

In this section, we present the results of running the Scanlon_2 simulation using either 48 or 96 

cores, using 50% under-populated nodes, with none, one or two OpenMP threads per MPI task. Here 

we employ HECToR phase3 (a Cray XE6), using the GNU gfortran compiler (v4.6.3) and FFTW3 

(v3.3.0.0). 

Table 10 Performance comparison between VASP 5.2.12 (single-threaded LibSci routines) with the standard VASP and 
when recompiling to exploit the single gamma-point. All tests on the Scanlon_2 test case on HECToR phase3 with fully-
populated nodes and used the single-threaded FFTW 3 library. ‘Cores’ indicates total cores used – MPI tasks. 

 Runtime (secs)  
Cores Standard Gamma Improvement 

48 4147 2398 1.7× 

96 2526 1726 1.5× 

Efficiency 82% 72% - 

 

From Table 10, we can see that when doubling the number of cores, both the standard and the 

gamma versions of VASP scale well, but that the gamma version gives at least 1.5 speed up. 

Table 11 Performance comparison the standard and gamma versions of mixed-mode VASP 5.2.12 (includes multi-
threaded LibSci routines. Executions times (and parallel efficiency) 

Runtime (secs) (parallel efficiency) 

tasks x threads 48 x 1 48 x 2 48 x 4 96 x 1 96 x 2 96 x 4 

Standard 4976 (100%) 3429 (73%) 4662 (27%) 3063 (100%) 2189 (70%) 2702 (28%) 

Gamma 3308 (100%) 2371 (70%) 2854 (29%) 2077 (100%) 1534 (68%) 1697 (31%) 

 

There are a number of important results that we may deduce from above. Firstly, comparing the 

times in Table 10 and Table 11, we can see that when running the simulations with just one OpenMP 

thread, the overall time is increased when compared to running with no OpenMP threads 

whatsoever: switching on one OpenMP threads makes the Standard code run a factor of 0.8 slower, 

and makes the Gamma simulation run a factor of 0.7 slower, at most. 

To run with one OpenMP thread, we set the environment variable OMP_NUM_THREADS=1.  This, 

not only, sets the number of OpenMP threads per MPI task to 1, but also ensures the Cray LibSci 

library runs with thread.   



 

 

If we consider Table 11 again, and calculate the parallel efficiency of the OpenMP parallelism based 

on running one thread per MPI task, then we can see that the code is not efficient when running on 

more than 2 threads per MPI task, but does run at around 70% efficiency when running 2 threads 

per MPI task.  Alternatively, if we calculate the parallel efficiency of the OpenMP parallelism based 

on running no threads per MPI task, then we can see that the code runs at around 50% efficiency 

when running 2 threads per MPI task. 

Cray PAT profiling results for Scanlon_2 

The Scanlon_2 simulation was run three times using the Gamma version of VASP 5.2.12, and profiled 

using the Cray PAT profiler.  

The code was run with 96 MPI tasks, using 50% under-populated nodes with no OpenMP threads, 

one OpenMP thread per MPI task and two OpenMP threads per MPI task. Below we present the 

percentage times, and the actual time in seconds, for the USER, MPI and ETC routines as given by the 

PAT profiler. 

Table 12 Cray PAT profile of VASP gamma version, no threads, 96 MPI tasks, 50% under-populated nodes 

Routine  % Time  Time (secs) 

USER  68.5  1183  

 fpassm  11.0  190 

 ipassm  10.6  183 

 dllmm_kernel  9.9  171 

 dgemv_t  7.9  136 

 rholm_kernel  5.5  95 

 dgemv_n  4.2  73 

 pw_charge_trace  2.5  43 

 vhamil_trace  2.3  40 

 dlasr  1.6  28 

 fft3d  1.4  24 

 rcomb  1.2  21 

 dgemm_kernel  1.2  21 

 racc0_hf  1.1  19 

 hcomb  1.1  19 

MPI  22.4  387  

 MPI_Allreduce  11.0  190 

 MPI_Bcast  9.2  159 

ETC  9.1  157  

 nonlr_MOD_rpro1_hf 2.0 
 

35 

 fock_MOD_fock_acc 1.7 
 

29 

 remainder_piby2  1.3 
 

22 

 augfast_MOD_calc_dllmm_trans 1.3 
 

22 

 

From Table 12, it can be seen that the profiling results of running with no OpenMP threads differs 

from the baseline results,  presented in Table 5.  Despite great care to employ the same GNU 

Programming Environment on HECToR, and the same FFT3 library, the “perftools” module employed 



 

 

when producing the baseline results was no longer available. Further to this, it maybe that, despite 

employing the same Programming Environment, certain runtime libraries, etc, will have changed in 

the interim and this changing environment explains why the profiles differ. 

Specifically, three routines have appeared in the profile, that were not present in the baseline 

profiles.  These are pw_charge_trace and vhamil_trace from the VASP source file 

hamil.F, and dlasr from LAPACK. 

Table 13 Cray PAT profile of mixed-mode VASP gamma version, one OpenMP thread per task, 96 MPI tasks, 50% under-
populated nodes 

Routine  % Time  Time (secs) 

USER 
 

71.1 
 

1477  

 fpassm  10.3 
 

214 

 ipassm  10.3 
 

214 

 dgemv_t  9.5 
 

197 

 dllmm_kernel 9.2 
 

191 

 dgemv_n  5.2 
 

108 

 rholm_kernel 4.9 
 

102 

 pw_charge_trace 3.0 
 

62 

 vhamil_trace 2.7 
 

56 

 dlasr  2 
 

42 

 fft3d  1.7 
 

35 

 rcomb  1.4 
 

29 

 racc0_hf  1.4 
 

29 

 dgemm_kernel 1.1 
 

23 

 hcomb  1.0 
 

21 

MPI  19.2 
 

399 
 

 MPI_Allreduce 8.3 
 

172 

 MPI_Bcast 8.1 
 

168 

 MPI_Barrier 1.1 
 

23 

ETC  9.1 
 

189 
 

 nonlr_MOD_rpro1_hf 2.0 
 

42 

 fock_MOD_fock_acc 1.7 
 

35 

 remainder_piby2 1.3 
 

27 

 augfast_MOD_calc_dllmm_trans 1.3 
 

27 

 

When comparing Table 12 with Table 13, we can see that the overall time has increased. The order 

of the USER routines, and their percentage of the total time, is roughly the same: the wall clock time 

has increased, uniformly, for all the USER routines.  

The reason for the increase in time for computation is solely due to setting OMP_NUM_THREADS=1 

in the batch script. Setting this environment variable to one ensures the Cray LibSci library runs with 

a single thread. The ETC (which include the LibSci library calls) and MPI routines take slightly longer, 

but not to a significant degree.  As expected, the routines with OpenMP statements, namely 

dllmm_kernal and rholm_kernel, take longer to run, however, there are USER routines that contain 



 

 

no OpenMP statements which exhibit a significant increase in execution time, and that this warrants 

further investigation.   

Table 14 Cray PAT profile of mixed-mode VASP gamma version, two OpenMP thread per task, 96 MPI tasks, 50% under-
populated nodes 

Routine  % Time  Time (secs) 

USER  75.5 
 

1158 
 

 dgemv_t  11.8 
 

181 

 gomp_barrier_wait_end 11.0 
 

169 

 Fpassm  7.1 
 

109 

 dllmm_kernel 7.1 
 

109 

 Ipassm  6.6 
 

101 

 dgemv_n  6.5 
 

100 

 rholm_kernel 3.6 
 

55 

 gomp_team_barrier_wait_end 3.2 
 

49 

 pw_charge_trace 2.3 
 

35 

 vhamil_trace 2.0 
 

31 

 dgemm_kernel 1.2 
 

18 

 Dlasr  1.1 
 

17 

 racc0_hf  1.0 
 

15 

MPI  17.7 
 

272 
 

 MPI_Bcast 8.3 
 

127 

 MPI_Allreduce 7.6 
 

117 

ETC  6.9 
 

106 
 

 nonlr_MOD_rpro1_hf 1.6 
 

25 

 remainder_piby2 1.1 
 

17 

 fock_MOD_fock_acc 1.1 
 

17 

 

When running with two OpenMP threads, we can see that there are now two OpenMP routines 

which take significant effort, namly gomp_barrier_wait_end and gomp_team_barrier_wait_end. This 

suggests that the two loops within dllm_kernal and rholm_kernel are not well balanced.  This, in 

turn, explains why this mixed-mode code does not scale to more than two OpenMP threads per MPI 

task.   

When running with no OpenMP threads, one thread per task and two threads per task, the wall-

clock times for the dllmm_kernel is 171s, 191s and 109s, respectively.  Thus, when doubling the 

number of threads per MPI task from one to two, we see a parallel efficiency of 88% for this routine 

alone. 

When running with no OpenMP threads, one thread per task and two threads per task, the wall-

clock times for the rholm_kernel is 95s, 102s and 55s, respectively.  Thus, when doubling the 

number of threads per MPI task from one to two, we see a parallel efficiency of 93% for this routine 

alone. 



 

 

Memory usage 

Lastly, let us now consider the memory use of these three cases.  In the following small table, we 

present the highest ‘memory high water mark’ for each case over all cores. 

Table 15 Memory High Water Mark for mixed-mode VASP running Scanlon_2 test case 

Memory High Water Mark 

Number of OpenMP threads per MPI Task None One Two 

Memory High Water Mark over all cores (Mbytes) 471.9 471.8 488.0 

 

From Table 15, we can see that setting OMP_NUM_THREADS does not alter the amount of memory 

required significantly. However, it is interesting to note that, when running two OpenMP threads per 

MPI task, when running one task on every second core, the high water mark does not increase by a 

large amount (only 3.4%) as expected. 

Summary of profiling results 

For the Scanlon_2 test case, the Gamma version of VASP should be used, rather than the default 

standard version of VASP: the Gamma version if 1.5 times faster when using 96 MPI tasks. 

When running this test case in mixed-mode, one should employ as many MPI tasks as VASP permits, 

given that it scales, and then one may then run two OpenMP threads per task. This ensures that, 

when running with one MPI task on every 2nd core, the alternate cores are busy running the second 

OpenMP thread.  Further, comparing running no threads per task with two threads per task, we see 

a parallel efficiency of 50%. 

Whilst the resultant mixed-mode code is not efficient for more than two OpenMP threads per MPI 

task, this implementation does permit the use of a larger number of cores than before.  Without 

OpenMP, users can only employ up to a fixed number of cores for the hybrid simulations, but now 

the mixed-mode version permits users to employ twice as many cores as before.  Thus, new science 

is now possible, as more memory per task is now available, but at a cost of inefficiency. 

For this version of the mixed-mode VASP, the next step is to improve efficiency by moving OpenMP 

parallel regions to a higher level, and to introduce OpenMP statements around declaration 

statements to ensure that the correct threads are aligned to the matching data structures (so-called 

“First Touch”).  We can also consider introducing OpenMP directives into pw_charge_trace and 

vhamil_trace. Finally, OpenMP directives could be introduced to the PAW routines.  This will not 

benefit the Scanlon_2 test case specifically, as the PAW routine’s execution time was very small, but 

will benefit other VASP simulations. Having said this, it should be noted we believe the most fruitful 

path forward is to employ the mixed-mode version based on the GPU code (see below). 

New WP3: description of work undertaken 
The process of creating new Fortran/OpenMP code, using the new GPU code as inspiration, was 

initially considered a large but straight-forward task, but proved to be far more complex and took 

much longer than expected. 

Many of the routines called in the GPU code shared or had similar names to extant Fortran routines 

within VASP, and it was thought that these extant routines could simply be called instead of the C 

routines. However, this was found not to be the case: the GPU routines did not match the Fortran 



 

 

routines but were similar to loops within either the associated Fortran routines or else from very 

different routines.   

Further to this, the data layout of the GPU version is quite different to that of the VASP code, 

primarily to facilitate an efficient GPU implementation: the GPU code introduces a number of very 

large data structures.  This is not only to permit the efficient use of the GPUs but also due to a direct 

consequence of the algorithmic change employed by the GPU code, specifically, to permit the 

parallelisation over k-point bands, the code must retain the wave-function values for all k-point 

bands, whereas this is not necessary in the original VASP code.  In other words, the GPU is able to 

parallelise over k-point bands at the expense of increased memory use.   

The logic behind the large data structures employed by the GPU code was copied directly in the new 

Fortran routines, using types rather than structures.  Whilst this initially increases the memory 

footprint, it benefits the process of producing this new code as the new code and the GPU code can 

be compared directly, line by line, when debugging.  Thereafter, once the code was running 

correctly, some of the intermediate large data structures can be removed.  Further, some of the 

other large data structures could be replaced with the extant data structures of VASP, although 

these extant data structures would themselves have to be extended to retain all the k-point band 

wave functions. 

All routines that were run on the GPU have been rewritten in F90 and can now be parallelised using 

OpenMP.  Indeed, the most basic of OpenMP implementations are now included in the new Fortran 

routines. Further the routines which pack and unpack the data to and from the new data structures 

is also complete.  The source file fock.F has over 300 new lines, and there is a new file named 

fock_openmp.F which is 1713 lines long. 

The routine fock_acc_omp (which mimiks the computation in fock_acc_cu of the GPU code, 

which runs on the host rather than the GPU card) is also now complete, including all its child 

routines.  However, due to lack of time, the larger routine fock_force_omp has not been 

completed.  This latter routine employs ten “directions” whilst fock_acc employs just one. This 

multi-directional code section of fock_force_omp is complete; however, time did not permit the 

two most awkward child routines, namely eccp_nl_fock_sif_k and 

eccp_nl_fock_forhf_k, to be completed correctly.   As such, the resultant VASP only runs the 

packing and unpacking routines, and the fock_acc_omp routine, and the code avoids running 

incomplete fock_force_omp routine by simply running the extant routines. 

Testing the new code 

The GPU version of VASP can be ported to HECToR GPU and it will be possible to debug the new 

code by a direct comparison.  The GPU version had been ported to the HECToR GPU cluster using the 

PGI compiler; however, an upgrade to that compiler illuminated a well-known incompatibility in the 

VASP code and the GNU compiler had to be used in its stead.  The installation of the GPU version of 

VASP using the GNU compiler was not completed as the GNU BLACS routines were not found and 

locally it was felt that a working version of the new code should take priority. 

Despite a lack of an operational GPU version, we were able to debug the new code using the 

standard VASP code using a simulation which employs a single k-point band, specifically the 

“bench2” test case. 



 

 

Current Status of the Mixed-Mode Version of VASP 5.2.12 
We now have two version of the mixed-mode version of VASP: firstly, the basic VASP 5.2.12 version 

with OpenMP introduced in two places, parallelising the main loops within the two subroutines 

DLLMM_KERNEL and RHOLM_KERNEL in the file fast_aug.F; and secondly, a new version of 

VASP.5.2.12, with new code based on the GPU version, where the force_acc routines are now 

complete, but two of the many routines associated with fock_force  are currently incomplete. 

The version that was inspired by the GPU version needs further work to complete the two 

incomplete routines, and to iron out the final bugs but we feel that the majority of code is in place to 

provide an efficient hybrid implementation.  

Conclusions 
The key objective of this project was to produce an efficient mixed-mode version of VASP.  This has 

been partially met, in that the mixed-mode version is not particularly efficient, however, this new 

version can run at 50% efficiency on twice the number of cores than before and, as such, new 

science can now be undertaken that was previously prohibited by VASP itself.  

This new mixed-mode version of VASP 5.2.12 has been made available to the MCC. The code 

employs FFTW instead of the internal FFT routines, and two loops have been parallelised using 

OpenMP.   

For the Scanlon_2 test case, we gained a factor of 1.5 speed-up by using the Gamma version of 

VASP. Further, this test case can employ two OpenMP threads per MPI task with a parallel efficiency 

of around 50%, when compared to running no OpenMP threads per task.  (Alternatively, the 

efficiency is around 60% when running two OpenMP threads per MPI task compared to one OpenMP 

threads). 

This version will also be made available centrally on HECToR.  This is especially interesting as the 

increase in speed due to the introduction of FFTW benefits all users of VASP and not just those 

interested in the new hybrid DFT/HF routines.  All HECToR users will be alerted to this new mixed-

mode version once it is made available.   

This new version constitutes an investment in the future, in terms of both a saving of cost when 

running the code using the new FFTW routines rather than the older internal FFT routines, and in 

terms of new science that can now be run when using the mixed-mode DFT/HF routines. 

Perhaps more importantly, significant inroads have been achieved by a major piece of work to 

implement another new version of VASP 5.2.12, where new F90+OpenMP routines have been 

written from scratch using a new GPU version of VASP as inspiration. This code is currently 

incomplete but does represent a significant step towards what appears to be an essential refactoring 

of the DFT/HF routines.   

Lastly, it should be noted that during the closing stages of this work, a significant new version of 

VASP was released, namely 5.3. 



 

 

Future Work 
Currently, it is recommended that users employ OMP_NUM_THREADS=1 when running VASP and 

initial investigations confirm that this is indeed the case.  However, for a particular VASP simulation 

employing the internal FFT routines, it was found that introducing the environment variable 

OMP_NUM_THREADS=1 slowed down USER routines that contained no OpenMP statements: this 

warrants further investigation. 

For the running mixed-mode version, the work to introduce OpenMP into the PAW routines remains 

outstanding and should be addressed in the future to avoid the inherent load imbalance.  The 

routines pw_charge_trace and vhamil_trace should also be investigated with a view to 

introducing OpenMP. Lastly, the OpenMP work can be optimised further but looking at “first touch” 

parallelisation, to ensure data elements are aligned to the same thread throughout execution. 

In the other mixed-mode version, inspired by the GPU version of VASP, the two routines called by 

fock_force_omp should be completed and, once the code is shown to be running correctly, the 

large intermediate data structures should be either reduced or removed altogether. Special care 

should be taken to note the increase in required memory, as this may have a negative effect on the 

size of future simulations 

We are confident that this latter version will prove to be more efficient that the former version and, 

as such, its development work should take priority. 
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Appendix 

Scanlon_2 INCAR file 
SYSTEM =  MgO rock salt 

 

 Startparameter for this Run: 

   NWRITE =      2 

   LPETIM=F    write-flag & timer 

   ISTART =      1    job   : 0-new  1-cont  2-samecut 

 

 Electronic Relaxation 1 

   PREC   = normal    

   ENMAX  = 300.00 eV 

   NELM   =     10 

   INIWAV = 1         random initial wavefunctions 

   EDIFF = 1E-04  

 Ionic Relaxation 

   EDIFFG = -0.01     stopping-criterion for IOM 

   NSW    =     0     number of steps for IOM 

   NBLOCK =      1;   KBLOCK =     40    inner block; outer block 

   IBRION =      1    ionic relax: 0-MD 1-quasi-New 2-CG 

   ISIF   =      2    stress and relaxation 

   IWAVPR =      1    prediction:  0-non 1-charg 2-wave 3-comb 

   ISYM   =      1    0-nonsym 1-usesym 

   LCORR  =      T    Harris-correction to forces 

   ISMEAR =      0 

 

!!Hybrid-DFT Calculations: 

 LHFCALC = .TRUE. (Activate HF) 

 PRECFOCK = FAST   

 !!ENCUTFOCK = 0    (Reduced HF FFT grid--Cheaper, but loose 

accuracy) 

 !!NKRED   =   2    (Reduce k-grid: even k only) 

 !!ALGO    = DAMPED (Dampen: IALGO=53: Metals/Insulators) 

 ALGO    = ALL    (IALGO=58: Insulators--Converges best) 

 TIME    = 0.30   (Timestep for IALGO5X) 

 HFLMAX  = 4      (Max. quantum number: 4d,6f) 

 HFSCREEN= 0.207  (Switch to screened exchange-HSE06) 

 AEXX    = 0.25   (X% HF exchange) 

   

 LASPH = .TRUE. 

 LREAL = AUTO 

 ROPT = 1E-03 1E-03 

 ICORELEVEL = 1 

 LVHAR = .TRUE. 

 


