
Optimising the performance of the 
VASP 5.2.2 code on HECToR
Richard Catlow, FRS, Scott Woodley, Nora De Leeuw

University College London

Andrew Turner

EPCC, University of Edinburgh, EH9 3JZ; a.turner@epcc.ed.ac.uk

9 November 2010

Abstract

This dCSE project report discusses optimisation of the parallel performance of VASP 5.2.2 on HECToR 
Phase 2b. The key aims of the project are to: 

• Determine the best values of the parameter NPAR.

• Optimise the shared memory collective communications.

• Introduce ScaLAPACK for the key linear algebra routines.

• Validate against a set of representative test cases.

The individual achievements of the project are documented within this report and they are 
summarised below:  

• Recommended settings for NPAR.

• Preprocessing directives have been developed for those users who wish to compile their 

own version of VASP 5.2.2. These include improved collective communications and the 
elimination of unnecessary zeroing of certain arrays. Furthermore, a shared memory 
approach to aggregate intra node messages for communication is also available via 
these directives.

• These performance improvements now enable scalability to more than 128 processing 
cores for certain systems.
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Introduction
VASP  (Vienna  Ab  initio  Simulation  Package)  is  one  of  the  most  widely  used  codes  in  current 
computational condensed matter science. It is based on Density Functional Theory (DFT) employing 
pseudo-potentials and a plane-wave basis set  for systems defined by three-dimensional  periodic  
boundary conditions. The code has a wide range of functionality for geometry optimisation, analysis  
of electronic structure and for location of transition states. It is essentially complementary to the 
CASTEP package; has an extensive international user base; and is widely used in the UK.

Members  of  the  Materials  Chemistry  Consortium  (MCC)  use  the  code  for  several  classes  of  
applications including:

(1) Analysis of electronic structure of bulk materials, including electron density distributions and 
band gaps.

(2) Modelling of intercalation reactions in materials, particularly in the context of solid-state  
batteries.

(3) Modelling  of  surfaces,  where  periodic  boundary  conditions  require  the  use  of  “slab”  
calculations  to  model  geometric  and  electronic  structures  of  both  clean  and  adsorbed  
surfaces.

(4) Modelling  of  reactions  on  surfaces,  including  location  of  transition  states  in  catalytic  
reactions.

(5) Modelling of nucleation and growth processes.

Despite this wide user base, VASP currently does not currently perform well on HECToR. It cannot 
exploit large partitions and indeed most usage has been confined to less than 128 MPI tasks. The aim 
of this CSE project is therefore to optimise the VASP code to allow it to exploit the HECToR facility  
thereby facilitating an extensive range of new science.

3



Parallelism in VASP
VASP 5.2.2 currently uses pure MPI to implement its parallel algorithms (rather than, say, a hybrid  
programming  model).  A  number  of  different  MPI  communicator  groups  are  used  in  VASP.  For 
example, the global communicator (which includes all parallel tasks) is used for the parallelisation of  
the pseudopotential calculation with each atom assigned to a distinct parallel task. In addition to  
this, the pool of MPI tasks is split into a two-dimensional grid of MPI communicators with each task  
having an identity in both a row and column communicator group. The row communicators are often 
referred  to  as  interband communicators  and  the  column  communicators  as  intraband 
communicators.  These  two  communicator  groups  are  used  within  the  VASP  code  for  different 
operations.

The distribution of rows and columns in the 2D communicator grid is controlled by the VASP runtime 
parameter  NPAR.  It  is  critical  for  performance  and  scaling  that  the  value  of  NPAR  is  chosen 
appropriately for the system being studied and the hardware that VASP is running. Guidance on 
choosing the value of NPAR on the HECToR phase 2a, XT4 system is available in Appendix B.

Benchmarks
Five benchmark cases have been supplied by scientists from the MCC:

• Benchmark 1 – hydrogen defect in lithium; 64 atoms; Γ-point only; GGA DFT functional; PAW 

pseudopotential; single-point energy calculation.

• Benchmark 2 – hydrogen defect in lithium; 64 atoms;  Γ-point only; hybrid DFT functional; 

PAW pseudopotential; single-point energy calculation.

• Benchmark 3 – hydrogen defect in palladium; 32 atom; 10  k-points; GGA DFT functional; 

PAW pseudopotential; single-point energy calculation.

• Benchmark 4 – hydrogen defect in palladium; 32 atom; 108 k-points; GGA DFT functional; 

PAW pseudopotential; single-point energy calculation.

• Benchmark 5 – Titanium oxide 3×3×3supercell; 750 atoms,  Γ-point only, GGA functional; 

PAW pseudopotential; 6 SCF cycles.

Benchmarks 1 and 2 represent relatively small systems (64 atoms with few electrons); Benchmarks 3  
and 4 have fewer atoms (32) with more electrons per atom;Benchamrk 5 represents a large system 
(750 atoms) with many electrons per atom. A range of calculation types including pure-DFT, hybrid-

DFT,  Γ-point and multiple  k-point calculations are included to try to represent the breadth of use 

cases found within the MCC.
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Initial Performance and Profiling

Performance and Scaling
To provide baseline performance and scaling for comparison with improvements made during this  
dCSE project we used the centrally provided VASP 5.2.2 executable available on HECToR at the start  
of the projectto run each of the supplied benchmarks for a range of core counts on the phase 2a  

system. Initial Makefiles corresponding to this VASP 5.2.2 build for the both multiple k-point and Γ-

point versions of the code have been developed.

All the performance data are available in Appendix A.Unless otherwise indicated, all results used 

fully-packed nodes on the HECToR phase 2a system (i.e. 4-cores per node); use the Γ-point version 

of the VASP 5.2.2 code; and use the optimal value of the VASP NPAR parameter. See Appendix B for  
more information about choosing the optimal NPAR value on HECToR.

Figure 1 shows the initial scaling of the smaller MCC benchmarks. Benchmark 1 and 2 use the  Γ-
point version of the code and Benchmarks 3 and 4 use the multiple k-point version of the code. All 
of the smaller systems scale reasonably up to 64 cores but beyond this the parallel performance falls  
off,thus limiting the useful scaling range for the VASP code to 64 cores and lower. There is no benefit  
for using 256 cores in preference to 128 cores.

Figure 1: Initial performance and scaling of the small MCC VASP benchmarks on HECToR phase 2a. Benchmarks 1 and 2 
use  the  Γ-point  only  code  and  benchmarks  3  and  4  use  the  multiple  k-point  code.  Speedups  are  relative  to  the 
calculation time at 16 cores.
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The initial scaling for the large MCC benchmark (Benchmark 5), using the  Γ-point version of the 

code,  is  shown in  Figure  2.  The  code  shows reasonable  scaling  up  to  512  cores  for  this  larger 
benchmark.  The  performance  at  1024  cores  is  worse  than  that  at  128  cores.  The  VASP  code 
obviously has issues in utilising large numbers of cores for this larger benchmark. 

Figure 2: Initial performance and scaling of the large MCC VASP benchmark on HECToR phase 2a using the Γ-point only 
code. Speedup is measured relative to the performance at 128 cores.

As  this  part  of  the  dCSE project  is  primarily  concerned with  the  code performance  for  Γ-point 

calculationswe concentrate on the performance of the MCC Γ-point Benchmarks (1, 2 and 5) for the 

remainder of this report. Benchmark 2 uses a hybrid-DFT functional and so excises a separate part of  
the code to the pure DFT Benchmarks  (1 and 5).  The hybrid-DFT calculation imposes additional  
restrictions on the parallelisation of VASP and so this Benchmark was not included in profiling and,  
as such, any optimisations implemented may not be as effective for hybrid-DFT calculations.

Profiling
To find how the time is distributed within the subroutines of the VASP code when performing Γ-point 

calculations we used the CrayPAT tool to profile runs with different core counts for Benchmarks 1 
and  5.  This  will  reveal  any  bottlenecks  and  where  any  additional  effort  should  be  applied  in 
optimising the code. The results of this profiling are summarised below.

Profiles for Benchmark 1 at 64 cores (where the code is scaling well) and at 256 cores (where the  
code is no longer scaling) are shown in . We can see that at 64 cores the majority of calculation time 
is spent in the serial computation routines of the VASP code (labelled as “User Routines” in the 
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CrayPAT profiles) and library routines performing, for example linear algebra and array operations)  
rather than communications (MPI routines). We can contrast this with the profiling results at 256 
cores where the majority of time is spent in communications rather than in serial computation.At  
256  cores  the  majority  of  this  communication  time  is  spent  synchronising  the  parallel  tasks 
(MPI_Waitall and MPI_Barrier). After synchronisation, the most time consumingMPI communication 
routines are the point-to-point routines (MPI_Isend and MPI_Irecv).

64 Cores 256 Cores
% Sample Time Routine Name/Group % Sample 

Time
Routine Name/Group

62.60% User Routines 50.30% MPI Routines
9.70% fpassm_ 21.80% mpi_waitall_
9.00% setylm_aug_ 10.90% mpi_barrier_
6.10% hamil_eccp_ 8.80% mpi_isend_
5.20% ipassm_ 3.70% mpi_irecv_
3.50% fft3d_mpi_ 3.10% mpi_allreduce_
3.10% vhamil_ 39.60% User Routines
2.90% racc0mu_ 14.50% setylm_aug_
2.30% nonlr_rpromu_ 3.60% fpassm_
2.10% fftwav_mpi_ 2.40% nonlr_rspher_all_
2.10% asa_setylm_ 2.20% hamil_eccp_

23.70% MPI Routines 10.10% Library Routines
8.70% mpi_waitall_
6.90% mpi_barrier_
3.00% mpi_isend_
2.70% mpi_allreduce_

13.70% Library Routines
2.20% dgemm_otcopy
2.00% dgemv_t

The profiling results for the large MCC benchmark (Benchmark 5) at 512 cores are shown in  . The 
code scales reasonably at this core count and as found for the smaller benchmarks the majority of  
the time is spent in serial computation. Moreover, the majority of the communication time is spent 
in  synchronisation  between  different  parallel  tasks  and  in  the  point-to-point  communication 
routines.
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512 Cores
% Sample 
Time

Routine Name/Group

58.70% User Routines
46.20% nonl_fornl_

3.80% crexp_mul_wave_
2.20% work_mul_crexp_
1.70% pawsym_augsym_
1.00% rhosyg_

21.60% MPI Routines
14.80% mpi_waitall_

2.30% mpi_isend_
2.00% mpi_bcast_
1.10% mpi_irecv_

19.80% Library Routines
4.60% dgemv_t
3.80% dgemv_n
3.10% dsymv_U
2.90% dgemm_kernel
2.80% __fmth_i_dsincos_gh

The profiling  results  for  the communication routines  seem rather  strange:  we would expect,  of  
course, that the amount of time spent in communications will increase as the number of cores used  
increases; but for a code such as VASP we would expect the majority of the communication time to 
be in collective communication routines (MPI_Alltoall, MPI_Alltoallv, etc.) rather than in point-to-
point communications.
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Optimisations
The optimisations on the VASP 5.2.2 code are presented in the same order that they have been 
applied. Initially, we focussed on the communication routines as they accounted for the majority of  
the time at high-core counts.

Patch files for all the source code changes have been developed.

Enforce use of MPI collectives
The initial profiling performed above revealed the surprising fact that the majority of time was spent  
in  point-to-point  MPI  communication  routines  rather  than,  as  expected,  collective  MPI  
communication routines.

Further investigation revealed that, by default, VASP uses point-to-point communication routines to  
mimic the behaviour of collective communication routines. The VASP authors found that this gave 
better performance for low core counts on Linux clusters. This is a sub-optimal solution on HECToR 
where  we  would  expect  the  best  performance  by  using  the  collective  communication  routines 
optimised for the XT high-speed network (HSN).

Our first change to the VASP code was therefore to enforce the use of MPI collective communication 
routines in appropriate places. This was achieved by using a combination of pre-processor flags in 
the VASP makefile ‘USE_COLLECTIVE’ and source code modifications to the mpi.F file (enclosed in  
‘CRAY_XT’ pre-processor flags) so that the optimisations can be dynamically applied at compile time  
for different systems.

With these changes in place, the performance and scaling were re-evaluated and are shown below 
compared to the original performance.
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Figure  3:  Performance  and  scaling  of  the  small  MCC  VASP benchmarks  on  HECToR  phase  2a  with  the  use  of  MPI  
collective communication routines enforced. The pale curves indicate the speedup of the original code.Using the Γ-point 
only code.

Figure 4: Performance and scaling of the large MCC VASP benchmark for the code with the use of MPI collective routines  
enforced. The pale curve indicate the speedup of the original code. Using the Γ-point only code.
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We see a vast improvement in both theperformance and scaling of Benchmarks 1 and 5 from this  
relatively simple change. The improvement to Benchmark 2 is less marked, possibly due to the fact 
that the value of NPAR cannot be altered to take full advantage of the faster routines.

After this change, the code was re-instrumented using CrayPAT and the Benchmarks re-profiled with  
the results shown in  and .

64 Cores 256 Cores
% Sample 
Time

Routine Name/Group % Sample 
Time

Routine Name/Group

44.80% User Routines 46.30% Library Routines
5.60% fpassm_ 13.80% __c_mzero8
4.90% fft3d_mpi_ 8.00% pgf90_str_copy
3.60% vhamil_ 7.00% pgf90_strcmp
3.40% fftwav_mpi_ 2.40% dlaebz_
3.20% ipassm_ 2.00% fr_move_fwd
3.00% map_forward_ 38.60% MPI Routines
2.40% racc0mu_ 14.90% mpi_barrier_
2.30% rcomb_ 9.70% mpi_allreduce_
2.10% hamil_eccp_ 5.80% mpi_alltoall_

37.10% Library Routines 5.70% mpi_alltoallv_
7.40% __c_mzero8 2.40% mpi_bcast_
4.60% pgf90_str_copy 15.10% User Routines
4.10% pgf90_strcmp 2.00% fpassm_
2.80% daxpy_k
2.80% dgemv_t
2.60% dgemm_otcopy
2.00% dgemm_kernel

18.10% MPI Routines
4.80% mpi_alltoall_
4.30% mpi_allreduce_
4.10% mpi_barrier_
3.80% mpi_alltoallv_

11

Table  3:  CrayPAT sampling  results  for  code using  collectives,  benchmark  1 on 64 and 256  



512 Cores
% Sample 
Time

Routine Name/Group

42.90% Library Routines
9.70% dgemv_t
7.70% dgemm_kernel
7.40% dsymv_U
7.00% dgemv_n
3.30% __fvdsincos_gh

32.20% MPI Routines
14.40% mpi_alltoall_
11.70% mpi_allreduce_

3.90% mpi_bcast_
24.90% User Routines
14.70% nonl_fornl_

3.10% crexp_mul_wave_
2.40% work_mul_crexp_

We now see that the largest proportion of the communication time for Benchmark 1 at 64 cores and  
Benchmark  5  is  spent  in  the  MPI_Alltoall  routine  (found  to  be  in  the  PAW  pseudopotential  
calculation). Closer investigation of these routines revealed that the MPI_Alltoallroutine was being  
used as a substitute for a global reduce and scatter operation. On the XT architecture this operation 
is most efficiently performed using the MPI_Allreduce routine.

The MPI_Alltoall calls were replaced by MPI_Allreduce giving a large improvement in performance 
and scaling for benchmark 2 (see Figure 5). For benchmark 5 we only see a small improvement in 
performance at the highest cores counts (see Figure 6), profiling () reveals that the MPI_Allreduce 
routine now accounts for the largest proportion of communication time.
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Table  4:  CrayPAT  sampling  results  for  code  using  collectives,  benchmark  5  on  512 



Figure 5: Performance and scaling of the small MCC VASP benchmarks for the code with MPI_Allreduce used in the PAW 
pseudopotential calculation. The pale curves indicate the performance of the previous optimisation phase. Using the Γ-
point only code.

Figure 6: Performance and scaling of the large MCC VASP benchmark for the code with MPI_Allreduce used in the PAW 
pseudopotential calculation. The pale curves indicate the performance of the previous optimisation phase. Using the Γ-
point only code.
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The updated profiles of the modified VASP are shown in  and .

64 Cores 256 Cores
% Sample 
Time

Routine Name/Group % Sample 
Time

Routine Name/Group

41.30% User Routines 58.20% MPI Routines
6.80% fpassm_ 18.60% mpi_alltoallv_
4.40% vhamil_ 18.00% mpi_allreduce_
4.00% ipassm_ 13.50% mpi_barrier_
3.30% racc0mu_ 5.50% mpi_alltoall_
2.90% fftwav_mpi_ 2.60% mpi_bcast_

33.00% Library Routines 28.40% Library Routines
10.70% __c_mzero8 15.70% __c_mzero8

3.80% dgemv_t 2.60% dlaebz_
3.50% dgemm_otcopy 13.40% User Routines
2.50% dgemm_kernel 2.30% fpassm_
2.30% daxpy_k

25.70% MPI Routines
7.60% mpi_allreduce_
6.00% mpi_barrier_
5.70% mpi_alltoallv_
5.40% mpi_alltoall_

512 Cores
% Sample 
Time

Routine Name/Group

42.10% Library Routines
9.30% dgemv_t
7.50% dgemm_kernel
7.30% dsymv_U
6.60% dgemv_n
3.20% __fvdsincos
2.00% dgemm_oncopy

32.40% MPI Routines
22.50% mpi_allreduce_

4.20% mpi_bcast_
3.30% mpi_alltoallv_

25.50% User Routines
14.10% nonl_fornl_

3.90% crexp_mul_wave_
2.50% work_mul_crexp_
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Table 5: CrayPAT sampling results for code using MPI_Allreduce, benchmark 1 on 64 and 256 cores.

Table 6: CrayPAT sampling results for code using MPI_Allreduce, benchmark 5 on 512 cores.



Remove array zeroing operations
The latest CrayPAT sampling run on Benchmark 1 () suggests that around 16% of the runtime at 256 
cores (10% at 64 cores) is being spent in zeroing arrays. Analysis of the VASP code suggested that in  
many cases this was not needed on the Cray XT and, as such, the offending lines were removed in 
the CRAY_XT version of the code. As can be seen from Figure 7 and Figure 8 this change improved 
the performance and scaling of benchmark 1 but had little effect on benchmarks 2 and 5.

Figure  7:  Performance and scaling  of  the small  MCC VASP benchmarks  for  the code with array  zeroing  operations  
removed. Using the Γ-point only code.
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Figure  8:  Performance  and  scaling  of  the  large  MCC  VASP benchmark  for  the  code  with  array  zeroing  operations  
removed. Using the Γ-point only code.

 shows the profiling results for the new version of the code for Benchmark 1 and  the profiling results 
for Benchmark 5. It is obvious that the proportion of time spent zeroing arrays has been reduced  
drastically for Benchmark 1 (down to 2.2% at 64 cores and 3.8% at 256 cores). Array zeroing was not  
a  large  proportion  of  the  time  for  Benchmark  5  which  explains  why  there  was  not  change  in  
performance or the profile for this case.

16



64 Cores 256 Cores
% Sample 
Time

Routine Name/Group % Sample 
Time

Routine Name/Group

45.70% User Routines 50.20% MPI Routines
7.60% fpassm_ 17.70% mpi_allreduce_
4.90% vhamil_ 15.70% mpi_barrier_
4.50% ipassm_ 7.90% mpi_alltoallv_
3.70% racc0mu_ 4.70% mpi_alltoall_
3.10% fftwav_mpi_ 3.60% mpi_bcast_
2.00% nonlr_rpromu_ 25.30% Library Routines

27.70% MPI Routines 3.90% dlaebz_
8.10% mpi_allreduce_ 3.80% __c_mzero8
6.40% mpi_alltoallv_ 2.50% dgemm_kernel
6.20% mpi_barrier_ 2.50% dgemv_t
5.70% mpi_alltoall_ 24.50% User Routines

26.60% Library Routines 3.50% fpassm_
4.20% dgemv_t 2.20% vhamil_
3.80% dgemm_otcopy 2.10% ipassm_
2.80% dgemm_kernel
2.50% daxpy_k
2.20% __c_mzero8
2.00% dlaebz_
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512 Cores
% Sample 
Time

Routine Name/Group

54.50% Library Routines
24.10% dgemv_t
15.80% dgemv_n

4.50% dgemm_kernel
3.70% dsymv_U

24.70% User Routines
11.00% nonl_fornl_

6.30% crexp_mul_wave_
3.80% work_mul_crexp_

20.80% MPI Routines
14.70% mpi_allreduce_

2.50% mpi_bcast_

Introduce ScaLAPACK for linear algebra
As the latest profiling for the large Benchmark 5 reveals () the majority of time for large systems in 
the current version of VASP is spent in the LAPACK linear algebra subroutines (dgemv and dsymv).  
For  larger  systems  at  high  core  counts  we  would  expect  that  distributing  these  linear  algebra 
calculations across all the cores could lead to both a significant improvement in scaling performance  
and a reduction in the amount of memory needed per core. We investigated this by using the VASP  
‘ScaLAPACK’ pre-processor directive in the Makefiles to includeScaLAPACK routines for the subspace  
rotation.

The profile for Benchmark 1 () indicates that the linear algebra performance is not as critical for 
smaller calculations and we would expect the inclusion of parallel linear algebra routines to have a  
smaller  impact  for  these  cases.  This  is  presumably  due  to  the  fact  that  the  matrices  being  
manipulated are much smaller than for the large benchmark.

Figure  10 below  reveals  that  inclusion  of  these  parallel  linear  algebra  routines  improves  the 
performance and scaling for the Benchmark 5, particularly at high core counts. As expected from the 
profiles  above,  inclusion  of  ScaLAPACK  does  not  improve  the  performance  for  the  smaller  
benchmarks (1 and 2). In fact, the additional overhead associated with using the ScaLAPACK routines  
degrades the performance for benchmark 1 considerably.
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Figure  9: Performance and scaling of the small  MCC VASP benchmarks for the code using ScaLAPACK for the linear  
algebra operations. Using the Γ-point only code.

Figure  10: Performance and scaling of the large MCC VASP benchmark for the code using ScaLAPACK for the linear  
algebra operations. Using the Γ-point only code.
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The CrayPAT profile for the large Benchmark 5 using code with ScaLAPACK included ( ) show that the 
time spent in the dsymv and dgemm_kernel routines have gone from the library routines section  
and the proportion of time spent in communications has risen slightly as would be expected when  
using a distributed linear algebra routine.

For Benchmark 1 () the profile reveals that the proportion of time spent in communication routines 
has  risen  relative  to  previous  profiles  reflecting  the  additional  communication  needed  for  the  
ScaLAPACK routines.

64 Cores 256 Cores
% Sample 
Time

Routine Name/Group % Sample 
Time

Routine Name/Group

44.10% User Routines 73.60% MPI Routines
7.30% fpassm_ 20.60% mpi_alltoallv_
4.70% vhamil_ 20.20% mpi_allreduce_
4.50% ipassm_ 12.30% mpi_barrier_
3.40% racc0mu_ 9.70% MPI_Bcast (ScaLapack)
3.00% fftwav_mpi_ 5.30% mpi_alltoall_
2.00% nonlr_rpromu_ 2.80% mpi_bcast_

34.40% MPI Routines 15.10% User Routines
8.80% mpi_allreduce_ 2.60% fpassm_
7.30% mpi_barrier_ 11.40% Library Routines
6.30% mpi_alltoallv_ 3.10% __c_mzero8
5.30% mpi_alltoall_
4.00% MPI_Bcast (ScaLapack)

21.50% Library Routines
4.00% dgemv_t
3.90% dgemm_otcopy
2.30% daxpy_k
2.10% __c_mzero8
2.00% dgemm_kernel
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Table  9: CrayPAT sampling results for code using ScaLAPACK for linear algebra, benchmark 1 on 64 and 256  



512 Cores
% Sample 
Time

Routine Name/Group

48.90% Library Routines
23.90% dgemv_t
17.70% dgemv_n

2.60% __fvdsincos_gh
27.50% User Routines
12.30% nonl_fornl_

6.40% crexp_mul_wave_
4.40% work_mul_crexp_

23.60% MPI Routines
16.00% mpi_allreduce_

2.80% mpi_bcast_

It is clear from these profiles that one of the largest barriers to scaling of the VASP code is the fact  
that a large amount of time is spent in MPI_Allreduce. Analysis of the VASP code revealed that this 
time consuming collective operation is in the PAW pseudopotential calculation and that the large  
amount of time spent here is not solely due to the speed of the communication but often due to  
load imbalance in the code.

The  load  imbalance  arises  from  the  parallelisation  strategy  used  for  the  PAW  pseudopotential 
calculation. The PAW pseudopotential calculation in parallelised by assigning the calculation for each 
atom to an individual  parallel  task.  This  strategy effectively caps the scaling of  the code by the  
number of atoms in the system. As soon as there are more atoms than parallel tasks, some of the  
tasks will be sitting idle. This is particularly apparent in the profile for Benchmark 1 at 256 cores ( ) as 
the system only contains 64 atoms. During the PAW pseudopotential part of the calculation three  
quarters of the parallel tasks are sitting idle. This manifests itself as an extremely large amount of  
time spent in the MPI_Allreduce routine. This effect can also be seen in a profile of Benchmark 5 at  
2048 cores () where 1298 cores will be idle.
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2048 Cores
% Sample 
Time

Routine Name/Group

46.40% MPI Routines
28.10% mpi_allreduce_

6.20% mpi_alltoallv_
5.80% mpi_bcast_
2.70% mpi_barrier_
2.30% MPI_Bcast

42.00% Library Routines
18.50% dlasr_

5.30% dgemv_t_
4.20% dgemv_n_
3.10% dgemm_kernel
3.10% __fvdsincos

11.60% User Routines
3.60% nonl_fornl_

Table 11: CrayPAT sampling results for code using ScaLAPACK for linear algebra, benchmark 5 on 2048 cores.

Fixing this issue is beyond the scope of the 4 months of effort assigned to this dCSE project but it will  
be the object of a future dCSE project proposal.

Include shared-memory modifications for MPI_Alltoallv
The last profile for Benchmark 1 () indicates that a large amount of time is spent in the MPI_Alltoallv 
routine (part of the 3D FFT calculation). (It is worth noting, however, that this is not an important 
routine for Benchmark 1 at 64 cores or for Benchmark 5.) As each HECToR node is made up of  
multiple cores and, in the limit of small messages, the communication is limited by the latency of the 
interconnects; there may be some advantage to be gained by aggregating small messages on a node 
using  shared  memory  segments.  These  larger  messages  can  then  be  sent  off-node  using  the 
standard MPI_Alltoallv routine. As more and more cores are added to a single node we would expect  
this approach to have more of an effect on performance.

David Tanqueray of Cray Inc. has previously produced a set of modifications for the VASP 4.6 code 
that add this functionality. To gauge the impact of using this approach in VASP 5.2 we ported the  
modifications in the VASP 5.2.2 codebase.Note that we would not expect these changes to have  
much effect on the performance of Benchmark 1 at lower core counts or Benchmark 5 as they do 
not spend a large proportion of time in the MPI_Alltoallv routine.

As can be seen from the plots below the modifications to the MPI_Alltoallv routines do not give any  
real improvement on the HECToR phase 2a XT4 system. In fact, the modifications have a detrimental  
effect on performance for the large system in benchmark 5at high core counts.
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Figure 11: Performance and scaling of the small MCC VASP benchmarks for the code with shared memory optimisations 
in the MPI_Alltoallv operations. Using the Γ-point only code.

Figure 12: Performance and scaling of the large MCC VASP benchmark for the code with shared memory optimisations in  
the MPI_Alltoallv operations. Using the Γ-point only code.
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The  profiling  results  ()  reveal  that  there  is  no  longer  a  large  amount  of  time  spent  in  the 
MPI_Alltoallv routine in Benchmark 1 at 256 cores. As we have seen above, this change in the profile  
does not lead to any performance or scaling improvements on the XT4 system.

64 Cores 256 Cores
% Sample 
Time

Routine Name/Group % Sample 
Time

Routine Name/Group

41.20% User Routines 64.70% MPI Routines
6.50% fpassm_ 18.80% mpi_barrier_
4.50% vhamil_ 17.90% mpi_allreduce_
3.90% ipassm_ 13.60% MPI_Bcast (ScaL)
3.20% racc0mu_ 6.30% mpi_alltoall_
2.80% fftwav_mpi_ 3.50% mpi_bcast_

38.00% MPI Routines 2.70% MPI_Recv (ScaL)
13.30% mpi_barrier_ 21.00% User Routines

9.70% mpi_allreduce_ 2.90% fpassm_
6.90% mpi_alltoall_ 2.00% vhamil_
3.90% MPI_Bcast (ScaL) 14.30% Library Routines

20.90% Library Routines 3.10% __c_mzero8
3.80% dgemv_t 2.00% dgemv_t
3.70% dgemm_otcopy
2.10% daxpy_k
2.00% __c_mzero8

512 Cores
% Sample 
Time

Routine Name/Group

34.80% MPI Routines
24.40% mpi_allreduce_

4.50% mpi_bcast_
2.00% MPI_Bcast (ScaL)

33.40% Library Routines
13.80% dgemv_t

9.80% dgemv_n
3.80% __fvdsincos

31.80% User Routines
17.20% nonl_fornl_

4.70% crexp_mul_wave_
3.10% work_mul_crexp_

If we rerun the calculations for the large benchmark 5 on the HECToR phase 2b XT6 system we see  
that the shared memory modifications give a real increase in performance for the VASP 5.2.2 code  
but do not provide any improvement in the scaling (Figure 13).
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Table 12: CrayPAT sampling results for code with the MPI_Alltoallv shared memory routines, benchmark 1 on 64 and 256 
cores.

Table  13:  CrayPAT sampling results for code with the MPI_Alltoallv  shared memory routines,  benchmark 5 on 512 



Figure  13:  Comparison  of  performance  on  HECToR  phase  2a  and  phase  2b  (with  and  without  shared  memory  
optimisations) for benchmark 5. Using the Γ-point only code.All nodes fully-packed.

As there are more cores attached to a single network interface on phase 2b (24 cores) compared to 
phase  2a  (4  cores)  there  is  more  contention  for  off-node  network  access.  The  shared-memory 
optimisations reduce this competition and improve the code performance marginally.
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Final Performance and Profiling
Our final, optimised version of the VASP 5.2.2 code on the HECToR phase 2a XT4 system includes all  
of  the  modifications  outlined  above  except  for  the  shared-memory  modifications  to  the 
MPI_Alltoallv  routines.  These are  left  out  as  they both degrade performance andalso introduce  
additional restrictions on the value of NPAR that can be selected by the VASP user and so reduce the  
flexibility of the VASP parallel performance that is such an excellent feature of the code. The shared-
memory modifications also increase the likelihood that the code will  crash with a memory error  
leading to wasted HECToR resources by the user. For the small benchmarks, the performance of the  
final  optimised  version  is  slightly  lower  than  the  best  version  (which  is  the  version  without 
ScaLAPACK) but as the brief of this project was to provide optimisations for large VASP calculations 
at large numbers of cores the best performing code for Benchmark 5 was selected.

On  HECToR  phase  2b  XT6  system  a  version  of  the  VASP  5.2.2  code  with  the  shared  memory 
modifications has been provided for all licensed VASP users as the performance gains on this system  
often outweigh the disadvantages.

The plots and tables below summarise the performance gains on the MCC supplied benchmarks on  
the HECToR phase 2a system from this dCSE project.

Figure  14:  Final  performance and scaling  of  the small  MCC VASP benchmarks.  Performance gains from the original 
version of VASP 5.2.2 are indicated as multiplicative factors  next to each point.  The faint lines indicate the original  
speedup curves. Using the Γ-point only code.
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Figure  15: Final performance and scaling of the multiple k-point MCC VASP benchmarks. Performance gains from the  
original  version of VASP 5.2.2 are indicated as multiplicative factors next to each point.  The faint  lines indicate the  
original speedup curves. Using the Γ-point only code.

Figure 16: Final performance and scaling of the large MCC VASP benchmark. Performance gains from the original version 
of VASP 5.2.2 are indicated as multiplicative factors next to each point. The faint line indicates the original speedup  
curve. Using the Γ-point only code.
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These benchmarks represent a variety of calculation types and we would expect all VASP users on  
HECToR to gain substantially from the improvement made.

The final profiles for benchmarks 1 and 5 are shown below and reveal the bottleneck to VASP scaling  
on the XT system is the performance of the PAW pseudopotential calculation (as indicated by the 
proportion of time spent in MPI_Allreduce).

64 Cores 256 Cores
% Sample 
Time

Routine Name/Group % Sample 
Time

Routine Name/Group

44.10% User Routines 73.60% MPI Routines
7.30% fpassm_ 20.60% mpi_alltoallv_
4.70% vhamil_ 20.20% mpi_allreduce_
4.50% ipassm_ 12.30% mpi_barrier_
3.40% racc0mu_ 9.70% MPI_Bcast (ScaLapack)
3.00% fftwav_mpi_ 5.30% mpi_alltoall_
2.00% nonlr_rpromu_ 2.80% mpi_bcast_

34.40% MPI Routines 15.10% User Routines
8.80% mpi_allreduce_ 2.60% fpassm_
7.30% mpi_barrier_ 11.40% Library Routines
6.30% mpi_alltoallv_ 3.10% __c_mzero8
5.30% mpi_alltoall_
4.00% MPI_Bcast (ScaLapack)

21.50% Library Routines
4.00% dgemv_t
3.90% dgemm_otcopy
2.30% daxpy_k
2.10% __c_mzero8
2.00% dgemm_kernel

512 Cores
% Sample 
Time

Routine Name/Group

48.90% Library Routines
23.90% dgemv_t
17.70% dgemv_n

2.60% __fvdsincos_gh
27.50% User Routines
12.30% nonl_fornl_

6.40% crexp_mul_wave_
4.40% work_mul_crexp_

23.60% MPI Routines
16.00% mpi_allreduce_

2.80% mpi_bcast_
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Table  14: CrayPAT sampling results for the final  version of the code, benchmark 1 on 64 and 256  

Table  15:  CrayPAT sampling  results  for the final  version of  the code,  benchmark 5 on 512 



Conclusions and Further Work
This project has exceeded the aims set out in the project plan to improve the performance and 
scaling of the VASP 5.2.2 code with speedups of between 3.11× and 12.79× at 256 cores and above 
for the supplied benchmarks. The improvements have been made available to all HECToR users via  
central installations on both the phase 2a and phase 2b systems. On the phase 2b system a version  
that includes shared memory optimisations for the MPI_Alltoallv routines is also included.

Due to the reduction in allocated resource from what was requested in the initial project proposal  
we  have  not  been  able  to  investigate  the  gains  that  could  be  made  by  introducing  further 
optimisations to the collective communications routines via a dedicated library.

The major barrier to scaling of the VASP 5.2 code is the by-atoms parallelisation strategy used for the  
PAW pseudopotential calculation. The development of these routines is beyond the scope of this  
project and will be the subject of a future dCSE application.
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Appendix A: Performance Data

Original version

Time / s
Cores NPAR Run #1 Run #2 Speedup

16 2 186 186 1.00
32 4 109 109 1.71
64 8 79 77 2.42

128 8 69 70 2.70
256 16 81 89 2.30

Table 16: Performance data for benchmark 1 using the original version of VASP. Speedup is relative to run time at 16  
cores.
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Time / s
Cores NPAR Run #1 Run #2 Speedup

16 16 4130 4043 1.00
32 32 1848 1882 2.19
64 64 1331 1300 3.11

128 128 1204 1194 3.39
256 256 Fail Fail

Table 17: Performance data for benchmark 2 using the original version of VASP. Speedup is relative to run time at 16  
cores.

Time / s
Cores NPAR Run #1 Run #2 Speedup

16 4 1714 1716 1.00
32 4 948 949 1.81
64 4 663 665 2.59

128 8 510 514 3.36
256 16 665 578 2.97

Table 18: Performance data for benchmark 3 using the original version of VASP. Speedup is relative to run time at 16  
cores.

Time / s
Cores NPAR Run #1 Run #2 Speedup

16 2 20277 20245 1.00
32 4 10830 10814 1.87
64 8 7178 7104 2.85

128 8 6153 6098 3.32
256 16 6009 5939 3.41

Table 19: Performance data for benchmark 4 using the original version of VASP. Speedup is relative to run time at 16  
cores.

Time / s
Cores NPAR Run #1 Run #2 Speedup

128 2 4520 4456 1.00
256 8 2576 2515 1.77
512 32 1851 1717 2.60

1024 32 6040 5628 0.79
Table 20: Performance data for benchmark 5 using the original version of VASP. Speedup is relative to run time at 128  
cores.

Enforcing use of MPI collectives

Time / s
Cores NPAR Run #1 Run #2 Speedup

16 2 164 161 1.16
32 4 93 96 2.00
64 8 63 61 3.05

128 16 47 46 4.04
256 32 39 38 4.89

Table  21:  Performance  data  for  benchmark  1  on  HECToR  phase  2a with  the  use  of  MPI  collective  communication  
routines enforced. Using the Γ-point only code. Speedup is relative to the original run time at 16 cores.

30



Time / s
Cores NPAR Run #1 Run #2 Speedup

16 16 2878 2882 1.40
32 32 1636 1638 2.47
64 64 1216 1249 3.32

128 128 1090 1084 3.73
256 256 Fail Fail

Table  22:  Performance  data  for  benchmark  2  on  HECToR  phase  2a with  the  use  of  MPI  collective  communication  
routines enforced. Using the Γ-point only code. Speedup is relative to the original run time at 16 cores.

Time / s
Cores NPAR Run #1 Run #2 Speedup

128 4 1600 1557 2.86
256 8 997 983 4.53
512 32 716 685 6.51

1024 32 568 562 7.93
Table  23:  Performance  data  for  benchmark  5  on  HECToR  phase  2a with  the  use  of  MPI  collective  communication  
routines enforced. Using the Γ-point only code. Speedup is relative to the original run time at 16 cores.

Time / s
Cores NPAR Run #1 Run #2 Speedup

16 2 159 159 1.17
32 4 94 95 1.98
64 8 60 61 3.10

128 16 44 45 4.23
256 32 36 37 5.17

Table 24: Performance data for benchmark 1 on HECToR phase 2a with MPI_Allreduce used in the PAW pseudopotential 
calculation. Using the Γ-point only code. Speedup is relative to the original run time at 16 cores.

Time / s
Cores NPAR Run #1 Run #2 Speedup

16 16 1597 1588 2.55
32 32 1020 1010 4.00
64 64 635 625 6.47

128 128 584 575 7.03
256 256 702 709 5.76

Table 25: Performance data for benchmark 2 on HECToR phase 2a with MPI_Allreduce used in the PAW pseudopotential 
calculation. Using the Γ-point only code. Speedup is relative to the original run time at 16 cores.

Time / s
Cores NPAR Run #1 Run #2 Speedup

128 4 1468 1490 3.04
256 8 977 934 4.77
512 32 708 658 6.77

1024 32 508 548 8.77
Table 26: Performance data for benchmark 5 on HECToR phase 2a with MPI_Allreduce used in the PAW pseudopotential 
calculation. Using the Γ-point only code. Speedup is relative to the original run time at 16 cores.
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Remove array zeroing operations

Time / s
Cores NPAR Run #1 Run #2 Speedup

16 2 104 104 1.79
32 4 58 58 3.21
64 8 35 36 5.31

128 16 23 28 8.09
256 32 18 22 10.33

Table 27: Performance data for benchmark 1 on HECToR phase 2a with array zeroing operations removed. Using the Γ-
point only code. Speedup is relative to the original run time at 16 cores.

Time / s
Cores NPAR Run #1 Run #2 Speedup

16 16 1561 1558 2.59
32 32 991 985 4.10
64 64 608 606 6.67

128 128 553 550 7.35
256 256 671 680 6.03

Table 28: Performance data for benchmark 2 on HECToR phase 2a with array zeroing operations removed Using the Γ-
point only code. Speedup is relative to the original run time at 16 cores.

Time / s
Cores NPAR Run #1 Run #2 Speedup

128 4 1486 1492 3.00
256 8 925 924 4.82
512 32 661 675 6.74

1024 32 540 562 8.25
Table 29: Performance data for benchmark 5 on HECToR phase 2a with array zeroing operations removed. Using the Γ-
point only code. Speedup is relative to the original run time at 16 cores.

Introduce ScaLAPACK for linear algebra

Time / s
Cores NPAR Run #1 Run #2 Speedup

16 2 106 104 1.79
32 4 60 59 3.15
64 8 49 40 4.65

128 16 25 25 7.44
256 32 22 23 8.45

Table  30: Performance data for benchmark 1 on HECToR phase 2ausing ScaLAPACK for the linear algebra operation.  
Using the Γ-point only code.. Speedup is relative to the original run time at 16 cores.
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Time / s
Cores NPAR Run #1 Run #2 Speedup

16 16 1571 1604 2.57
32 32 1004 1015 4.03
64 64 621 628 6.51

128 128 566 573 7.14
256 256 685 703 5.90

Table  31: Performance data for benchmark 2 on HECToR phase 2ausing ScaLAPACK for the linear algebra operation.  
Using the Γ-point only code.. Speedup is relative to the original run time at 16 cores.

Time / s
Cores NPAR Run #1 Run #2 Speedup

128 4 1435 1435 3.11
256 8 860 843 5.29
512 32 577 566 7.87

1024 32 440 480 10.13
Table  32: Performance data for benchmark 5 on HECToR phase 2ausing ScaLAPACK for the linear algebra operation.  
Using the Γ-point only code.. Speedup is relative to the original run time at 16 cores.

Include shared-memory modifications for MPI_Alltoallv

Time / s
Cores NPAR Run #1 Run #2 Speedup

16 2 104 104 1.79
32 4 59 58 3.21
64 8 36 36 5.17

128 16 27 26 7.15
256 32 21 21 8.86

Table  33:  Performance  data  for  benchmark  1  on  HECToR  phase  2awith  shared  memory  optimisations  in  the  
MPI_Alltoallv operations. Using the Γ-point only code. Speedup is relative to the original run time at 16 cores.

Time / s
Cores NPAR Run #1 Run #2 Speedup

16 16 1612 1609 2.51
32 32 1010 1005 4.02
64 64 639 621 6.51

128 128 566 567 7.14
256 256 695 705 5.82

Table  34:  Performance  data  for  benchmark  2  on  HECToR  phase  2awith  shared  memory  optimisations  in  the  
MPI_Alltoallv operations. Using the Γ-point only code. Speedup is relative to the original run time at 16 cores.

Time / s
Cores NPAR Run #1 Run #2 Speedup

128 4 1449 1420 3.14
256 8 868 869 5.13
512 32 643 640 6.96

1024 32 520 515 8.65
Table  35:  Performance  data  for  benchmark  5  on  HECToR  phase  2awith  shared  memory  optimisations  in  the  
MPI_Alltoallv operations. Using the Γ-point only code. Speedup is relative to the original run time at 16 cores.
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Final optimised version

Time / s
Cores NPAR Run #1 Run #2 Improvement

16 2 106 104 1.79
32 4 60 59 1.85
64 8 49 40 1.93

128 16 25 25 2.76
256 32 22 23 3.68

Table 36: Final performance data for benchmark 1. Improvement is relative to run time using original version of VASP.

Time / s
Cores NPAR Run #1 Run #2 Improvement

16 16 1571 1604 2.57
32 32 1004 1015 1.84
64 64 621 628 2.09

128 128 566 573 2.11
256 256 685 703 NA

Table 37: Final performance data for benchmark 2.Improvement is relative to run time using original version of VASP. 
Original version failed at 256 cores.

Time / s
Cores NPAR Run #1 Run #2 Improvement

16 2 977 978 1.75
32 4 545 548 1.74
64 8 335 338 1.98

128 16 226 226 2.26
256 32 177 177 3.27

Table 38: Final performance data for benchmark 3.Improvement is relative to run time using original version of VASP.

Time / s
Cores NPAR Run #1 Run #2 Improvement

16 2 11344 11144 1.82
32 4 6429 6255 1.73
64 8 3947 4065 1.80

128 16 2541 2552 2.40
256 32 1972 1895 3.13

Table 39: Final performance data for benchmark .Improvement is relative to run time using original version of VASP.

Time / s
Cores NPAR Run #1 Run #2 Improvement

128 4 1435 1435 3.11
256 8 860 843 2.98
512 32 577 566 3.03

1024 32 440 480 12.79
Table 40: Final performance data for benchmark 5.Improvement is relative to run time using original version of VASP.

34



Appendix B: Selecting NPAR

Experiences of choosing number of cores and NPAR for VASP 5.2 on 
HECToR

A. R.  Turner, EPCC, University of Edinburgh, 14 May 2010

This document summarises the experience I have had in running VASP 5.2 on HECToR. It may be of 
some use in helping to select the number of cores you should run on and the value of the VASP 
parameter NPAR.

Note: I do not provide any guidance beyond that available in the VASP manual on whether to set  
LPLANE to TRUE or FALSE.

Note: All the benchmarks I have used use the PAW method to describe the core electrons so I have  
not evaluated the performance of the US pseuopotential method.

Note: All runs were performed using the version of VASP 5.2 that can be accessed by loading the  
vasp5/5.2_dev module on HECToR Phase 2a.

Benchmark Systems

Bench 1: Li defect in ZnO (GGA)
• Γ-point

• 64 atoms

• GGA functional

• Single-point SCF 

Bench 2: Li defect in ZnO (Hybrid-DFT)
• Γ-point

• 64 atoms

• GGA functional

• Single-point SCF 

Bench 3: TiO2 5×5×5 Supercell
• Γ-point

• 750 atoms
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• GGA functional

• 6 SCF cycles

Results

Bench 1: Li defect in ZnO (GGA)
Γ-point code.  For this calculation I would recommend using 128 cores and NPAR = 16.

Cores NPAR Time / s
16 1 115
16 2 106
16 4 123
32 2 63
32 4 60
32 8 68
64 2 59
64 4 41
64 8 49

128 8 46
128 16 25
128 32 29
256 16 25
256 32 22
256 64 25

Figure 17:  Values of NPAR versus time to solution for various numbers of cores for Bench 1.
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Figure 18: Plot of number of cores versus time to solution for Bench 1. The optimum value of NPAR is indicated for each  
point.

Bench 2: Li defect in ZnO (Hybrid-DFT)
Γ-point code. For this calculation I would recommend using 64 cores.

Note: you cannot change the value of  NPAR for hybrid functional calculations;  it  is  fixed at the  
number of cores.

Cores NPAR Time / s
16 16 1571
32 32 1004
64 64 621

128 128 566
256 256 671
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Figure 19: Plot of number of cores versus time to solution for Bench 2.

Bench 3: TiO2 5×5×5 Supercell
Γ-point code. For this calculation I would recommend using 512 cores and NPAR = 32.

Cores NPAR Time / s
128 2 1530
128 4 1435
128 8 1584
128 16 2662
256 8 852
256 16 870
256 32 1423
512 16 624
512 32 572
512 64 850

1024 16 483
1024 32 460
1024 64 475
1024 128 591
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Figure 20: Values of NPAR versus time to solution for various numbers of cores for Bench 3.

Figure 21: Plot of number of cores versus time to solution for Bench 3. The optimum value of NPAR is indicated for each  
point.

Summary
• PAW calculations in VASP 5.2 do not scale well when (number of cores) >> (number of 

atoms) as the PAW calculation is parallelised over number of atoms.
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• Value of NPAR depends on size of system you are studying and the number of cores you are 

running on.

Here are some tentative guidelines for running VASP 5.2 on HECToR efficiently:

• If you can test to find the optimal NPAR value with a single SCF cycle you should do this.

• The more cores you are using the less critical the value of NPAR becomes.

• For the smaller benchmarks (32 and 64 atoms) a good rule of thumb seems to be to choose 
NPAR = (number of cores) / 8.

• For the larger benchmark (750 atoms) the rules are not so clear cut but a good starting point 
would be NPAR = (number of cores) / (16 or 32).
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