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Abstract

The performance and sustainability of a fully parallelised 3-dimensional
two-phase Navier-Stokes flow solver called TPLS (Two Phase Level Set)
has been improved. The most expensive area of computation in the TPLS
code is the pressure calculation which was originally implemented using
successive over-relaxation. This has been replaced by calls to the PETSc
library which allows various preconditioners and Krylov solvers to be used.
In addition some optimisation of MPI communications has been carried
out. An improvement in performance of up to 54% in the pressure solver
has been achieved. This has enabled two-phase flow simulations at ultra-
high resolution for a variety of engineering applications. For example the
TPLS solver is being used to understand two-phase counter-current flows
in carbon capture processes. There are a number of related projects in
which the code will be used, including a current EPSRC grant which is
concerned with cooling microelectronic devices via evaporating coolants
in microchannels. The work reported here contributes directly to the in-
creased accuracy of simulations used to inform the engineering design of
these channels. The optimised code has now been released to the commu-
nity under an open-source BSD license.
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1 Introduction
This is the final report for a dCSE project that ran from 1st July 2012 to 30th
April 2013.

Dr. Lennon Ó Náraigh and Dr. Prashant Valluri have developed a two-phase
Navier-Stokes flow solver called TPLS. This uses the level-set method (see [1]
for a general desription) to calculate the dynamic evolution of a 3D interface
in addition to the complete flow field information such as velocity vector and
pressure fields. It accurately describes two-phase laminar flow in channel ge-
ometries. The code uses a hybrid MPI/OpenMP parallelisation strategy and
scales well up to 1,000 CPU cores when employed to solve problems involving
up to 8 million grid points. The code can be used to gain practical understand-
ing of problems of interest to the oil and gas industry as well as for carbon
capture and storage applications, among others. In addition it can be used to
obtain theoretical insight into two-phase interfacial instability. However there is
an need to obtain results for larger grids, to obtain better accuracy, and model
wider and longer channels. There were doubts as to how well the code would
scale beyond 1,000 cores and consequent worries about the length of execution
times. This document reports on our work to improve the scalability of the code
and to optimise the pressure solver which implements the most expensive part
of the computation.

Ó Náraigh and Valluri have also developed a 3D, two-phase, Navier-Stokes
solver with a diffuse-interface method (DIM) for interface capturing (see [2] for
a general description). This is a purely OpenOMP code and so cannot employ
large numbers of cores. We planned to introduce MPI parallelisation to this
code using methods similar to those used in the TPLS code, although this was
not achieved within the duration of the project.

The primary aim of this project was to enable TPLS and DIM to utilise
HECToR for the simulation of flows on grids with at least 24 million points.
The ability to model high-resolution geometries will then help improve our un-
derstanding of complex interfacial phenomena in two-phase flows.

The project had three objectives:

1. Reducing communication overheads in TPLS. An optimised version of the
existing TPLS code will be demonstrated with an expected speedup of at
least 10% on 1,000 cores for the OpenDuct1 case (750x75x150 grid, with
Reynolds number Re=100)

2. Implementation of a Conjugate Gradient Pressure Solver for TPLS. A
performance comparison of TPLS solver using SOR and new optimised
mixed-mode CG methods on the OpenDuct1 problem (as above) will be
described. Target speedup: 28% with scalability up to 2,048 cores.

3. Implementation of a mixed-mode Conjugate Gradient Cahn-Hilliard Solver
for DIM. A fully parallel optimised DIM solver with target scalability of
1,024 cores, will be benchmarked with respect to the OpenDuct1 problem
(as above).
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Two changes were made to the work plan:

1. The OpenDuct1 case, with 8.4 million grid points, was replaced with a
512x144x152 domain, with 11.2 million grid points. This change was made
to introduce more factors of 2 into the dimensions of the problem which
made it easier to look at scaling and trade-offs between OpenMP threads
and MPI processes.

2. A bespoke conjugate gradient solver was not developed, but the PETSc
library was used instead. Whilst this would increase the time required to
achieve Objective 2 it would reduce the time required to achieve Objective
3. PETSc is a tried and tested library which provides a wide range of
Krylov solvers and preconditioners which can be configured at run time.
This gave great flexibility and allowed experimentation with a number of
solvers.

Reinterpreting the deliverables with these changes in mind one can say that

1. If output is excluded from the calculation a 12% speed-up was achieved
so Objective 1 was achieved.

2. It is difficult to make sensible comparisons between the two versions of
the code because they work so differently. Nevertheless, taken over a
representative run of 25,000 time steps, with the time required for output
excluded from consideration, the speed-up was 32% so the target speed-
up of Objective 2 was achieved. If only the pressure calculation itself is
considered a speed-up of 54% has been achieved. The PETSc version of
the pressure solver shows much better strong scaling behaviour than the
original version when the number of cores used is increased from 1,024 to
2,048, whilst the weak scaling behaviour is unchanged (and is excellent).

3. This objective was not achieved as all of the available effort had been used
on Objectives 1 and 2. However this work is being continued under the
aegis of an EPSRC research grant.

In all of the work reported here the Fortran compiler used was gfortan 4.7.2,
with the -O3 flag. The version of PETSc used was 3.3. All timings are given in
seconds.

This dCSE project was carried out on HECToR, the UK National Supercom-
puting service, and its associated Test and Development System. HECToR was
in its Phase 3 configuration. Full details of the system are available on its website
http://www.hector.ac.uk.

2 The Original TPLS Code
In the initial version of the code, the pressure is calculated using a combination
of Jacobi’s method and successive over-relaxation (S.O.R.) iterative solvers. A
single iteration consists of a red-black S.O.R. scheme with a single Jacobi step
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between the red and black updates. Whilst some information on residuals is
generated it is not used to control the iterative process, instead fixed numbers
of iterations are used. For each of the first 100 hundred time steps 1000 iterations
are performed by the pressure solver. After that 300 iterations are performed
per time step.

One of the boundary conditions employed was found not to be suitable for
use with a Krylov solver. The code was re-written slightly by Ó Náraigh so
that a standard von Neumann boundary condition was used instead, with no
measurable impact on the output of the code.

2.1 Trade-Off between MPI and OpenMP
In this subsection timings are given for simulations of a 512×144×152 domain
using 1,024 cores. The first row shows how the cores are employed: the first
number is the number of MPI processes in the x-direction, the second is the
number of MPI processes in the y-direction, whilst the third number is the
number of OpenMP threads per MPI process. There is always a single MPI
process in the z-direction as TPLS employs a 2D data decomposition.

Figures are given for both the original code and the code with modified
boundary conditions.

16×8 - 8 32×8 - 4 32×16 - 2 64x16 - 1
Original 22095 20523 17921 19906
New BC’s 21736 20722 17292 19507

Table 1: Overall time for 25,000 time steps excluding initialisation

16×8 - 8 32×8 - 4 32×16 - 2 64x16 - 1
Original 12955 11480 8205 7169
New BC’s 12984 11488 8222 7095

Table 2: Time for 25,000 time steps excluding output and initialisation

As was expected the change of boundary conditions does not affect the exe-
cution speed of the code.

What was unexpected is that better performance is achieved when using
only one OpenMP thread. This contradicts what was found in a previous study,
prior to the dCSE project. The choice of using several threads was optimal
on HECToR Phase 2b, but is no longer the case on Phase 3, where the ’Gem-
ini’ interconnect can comfortably sustain traffic from a larger number of MPI
processes per node.

Note that a lot of time (over 50% in some cases) is spent performing output.
In the subsequent analysis this must be taken into account in order to reveal
the behaviour of other parts of the code.
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In what follows, unless there is a statement to the contrary, exactly one
OpenMP thread is used per MPI process. Also the term ’reference code’ means
the TPLS code with modified boundary conditions.

2.2 Scaling Behaviour of the Reference Code
In this subsection the scaling of the reference code is discussed.

Strong scaling refers to how the performance of the code varies with the
number of cores for a fixed problem size (domain). Weak scaling refers to how
the performance of the code varies with the number of cores for a problem
size proportional to the number of cores (so that the size of the sub-domain
associated with each core remains constant). For strong scaling the efficiency of
one run compared to another run is defined as

(t1 ∗ cores1)/(t2 ∗ cores2)

where the subscripts refer to the run (1 indicating that the smaller number
of cores were used and 2 the larger), t denotes a timing and cores is the number
of cores used in the run. For weak scaling the efficiency of one run compared to
another run is defined as

t1/t2

Cores Total Time Output Total Comp. Pressure Other
1024 19507 12412 7095 4084 3011
2048 17734 12410 5322 3243 2079

Efficiency 0.5 0.5 0.7 0.6 0.7

Table 3: Strong scaling for a 512×144×152 domain

Cores Total Time Output Total Comp. Pressure Other
1024 19507 12412 7095 4084 3011
2048 32253 25095 7158 4132 3026

Efficiency 0.6 0.5 1 1 1

Table 4: Weak Scaling for 512×144×152 versus 1024×144×152

The output does not scale at all. This is because the data is gathered onto
the master process and written out from there i.e. the output is serialised.

For the computational part of the code (the non-output part) weak scaling
is excellent. Strong scaling is less good (although still reasonable) due to the
relative increase in cost of halo swapping compared to computation.
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3 MPI and OpenMP Optimisations
In this subsection the performance of an optimised version of the reference
code is described. Some redundant code has been removed (such as a number
of MPI barriers and some OpenMP collective operations) and some tuning of
the OpenMP directives has been attempted. Also non-blocking point-to-point
communications have been introduced to allow multiple communications to be
overlapped, reducing latency. Speed-up is defined as

t1/t2

where the subscript 1 refers to the reference code whilst 2 refers to the optimised
code and t denotes a timing.

Only the introduction of non-blocking point-to-point communications pro-
duced a measurable speeding up of the code.

16×8 - 8 32×8 - 4 32×16 - 2 64x16 - 1
Reference 21736 20722 17292 19507
Optimised 21516 20200 17065 18780
Speed-Up 1% 2.6% 1.3% 3.9%

Table 5: Timings for the codes including output.

16×8 - 8 32×8 - 4 32×16 - 2 64x16 - 1
Reference 12984 11488 8222 7095
Optimised 12390 11041 7538 6333
Speed-Up 4.8% 4% 9.1% 12%

Table 6: Timings for the codes excluding output.

1,024 cores were used. Again there is no benefit in using OpenMP threads
but using non-blocking sends and receives produces a measurable benefit. When
output is excluded the target speed-up is slightly exceeded.

4 The PETSc Version of the TPLS Code
The pressure solver of the reference code was replaced by calls to routines in
the PETSc library. As in the reference code only the x an y dimensions were
parallelised. The PETSc library is written in C but it has a Fortran 90 interface
which was used in this work. It took considerable time to learn how to use
the PETSc library because of a lack of good documentation (particularly of the
Fortran interface).

When initialising the Krylov solver, and when extracting data from it at
each time step, the data had to be rearranged to conform to the arrangement
of the data in the rest of the code. This was for two reasons:

7



• Whilst the boundary conditions used by the Krylov solver were the same
as those used by the pressure solver in the reference code the way they were
implemented was different. For instance in the reference code the periodic
boundary condition is handled by explicit extra grid points with associated
duplicated data. With PETSc the user simply tells the solver that there
is a periodic boundary condition and the PETSc system implements it via
a mechanism that is hidden from the user.

• The first two dimensions of the array of pressures had to be swapped
because C and Fortran lay out arrays differently.

The performance penalty associated with this rearrangement was small (al-
though it could be removed entirely if the rest of the code was converted over
to use PETSc).

Experimentation with the PETSc library demonstrated that stability was
a problem in the initial stages of the simulation. The only satisfactory solver
that we found was the Generalised Minimal Residual (GMRES) solver. The
Conjugate Gradient solver did not converge at first but could be used after 4,000
time steps. However, even then, it displayed no performance improvement over
GMRES. All of the results reported below for the PETSc version of the code
were generated using GMRES with a Block Jacobi preconditioner.

The convergence criterion that was used in the runs was that the relative
decrease in the preconditioned residual norm should be less than 0.0001. Using
PETSc it is not possible to fix the number of iterations that the solver uses (as
is the case in the reference code) but, as will be discussed later, one can limit
the number used.

4.1 Scaling Behaviour
In this subsection the scaling of the PETSc version of the code is examined.

Cores Total Time I/O Total Comp. Pressure Other
1024 18680 12497 6183 3432 2751
2048 16270 12560 3710 1784 1926

Efficiency 0.6 0.5 0.8 1 0.7

Table 7: Strong scaling 512×144×152

Cores Total Time I/O Total Comp. Pressure Other
1024 18680 12497 6183 3432 2751
2048 34188 24842 9346 6597 2749

Efficiency 0.5 0.5 0.7 0.5 1

Table 8: Weak Scaling - 512×144×152 versus 1024×144×152
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In these experiments the ’other’ (i.e. non-pressure) part of the computation
(excluding output) was identical to that of the optimised code described above.
By comparing Tables 7 and 8 to Tables 3 and 4 respectively we can see that the
scaling of this part of the code is the same as that of the reference code. The
improvement in performance produced by the optimisations is also evident.

The weak scaling performance of the PETSc version of the code is so poor
because of the large number of iterations required to achieve convergence in
the first 4,000 (approximately) time steps. In the case of the 512×144×152
domain the maximal number of iterations required for a time step was 1,770
(with about 14 needed for time steps towards the end of the run) whilst for the
1024×144×152 domain it was 4,697 (again with about 14 needed for time steps
towards the end of the run). If only later time steps are considered the efficiency
of the pressure calculation is 1 as will be shown below.

The larger domain has more than 22 million grid points. The largest domain
that has been simulated had 27 million grid points. The dimensions of the latter
domain did not suit the analysis reported here and it is not discussed further.

4.2 Comparison with the Reference TPLS Code
In this subsection the performance of the PETSc version of the code is compared
to that of the reference code as the number of OpenMP processes is varied whilst
employing a fixed number of cores (1,024). Inspection of residual norms in a
few cases near the ends of the simulations suggested that the final accuracy of
the reference and PETSc codes was similar.

16×8 - 8 32×8 - 4 32×16 - 2 64x16 - 1
Reference 21736 20722 17292 19507
PETSc 25527 21512 19220 18680

Speed-Up -15% -4% -10% 4%

Table 9: Timings for the codes including output

16×8 - 8 32×8 - 4 32×16 - 2 64x16 - 1
Reference 12984 11488 8222 7095
PETSc 16378 12417 7537 6183

Speed-Up -21% -7% 9% 15%

Table 10: Timings for the codes excluding output

Again one can see that there is no benefit form using OpenMP threads.
This is not surprising for the PETSc code as the PETSc library does not use
OpenMP at all.

Excluding output, the best speed-up achieved over 25,000 time steps is 15%.
Next the performance of the pressure solver excluding transient behaviour at

the beginning of the run will be examined. Throughout three runs of 25,000 time
steps the time taken by the pressure solver to complete blocks of 100 time steps
was measured. The three runs were characterised by the following parameters:
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1. 512×144×152 domain, 1,024 cores

2. 512×144×152 domain, 2,048 cores

3. 1024×144×152 domain, 2,048 cores

These are the runs previously used to examine the scaling behaviour of the code.
Figure 1 shows the results. Rather than plotting the absolute time required

for each block of 100 time steps the natural logarithm of the ratio of the time
required by the block to the time required by the corresponding block of 100
time steps in the reference code is plotted. In more detail:

1. The time for pressure calculation is accumulated in blocks of 100 so 25,000
time steps gives rise to 250 aggregated times.

2. This is done for both the reference code and the TPLS PETSc code giving
tref(n) and tpetsc(n) for block n.

3. The ratio tpetsc(n) / tref(n)1 is calculated for each n.

4. The X-axis shows block number, n.

5. The Y-axis shows ln(ratio(n)) .

The peak for each run does not occur for block 1 because of the fact that
1,000 iterations used by the reference code in the first one hundred time steps
after which the average time required for 300 iterations is used to perform the
comparison.

As can be seen there is strong transient behaviour during the first 4,000
or so iterations. The speed-up of the pressure calculation in the PETSc code
relative to the reference code for the last 20,000 time steps is given in Table 11
and is excellent. Strong and weak scaling of the PETSc code are examined in
Tables 11 and 12 respectively. They too show excellent behaviour for the last
20,000 time steps. So the PETSc code easily outperforms the reference code if
the initial period of the simulation is ignored (or can be improved, as we now
show).

1024:512 2048:512 2048:1024
Reference 3237 2570 3276
PETSc 1291 702 1303

Speed-Up 151% 266% 151%

Table 11: Timings for the pressure calculation excluding the first 5000 time
steps

1In fact for the reference code when n>1 the average time for a block is used.
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Cores Pressure
1024 1291
2048 702

Efficiency 0.9

Table 12: PETSc strong scaling 512×144×152 excluding the first 5000 time
steps

Cores Pressure
1024 1291
2048 1303

Efficiency 1

Table 13: PETSc weak Scaling - 512×144×152 versus 1024×144×152
excluding the first 5000 time steps

Figure 1 - Relative performance of the pressure calculation. The series are
labelled x_dim:core_count

Note that after 50 blocks the plots for the runs employing 1,024 cores on
a 512×144×152 domain and 2,048 cores on a 1024×144×152 domain coincide.
This demonstrates perfect weak scaling for these grid sizes beyond the 50th

block.
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It is possible to restrict the number of iterations that PETSc performs. Given
that the reference code produces acceptable results whilst using a fixed number
of iterations we investigated if the PETSc code would do the same. If this were
the case then the overall performance of the PETSc code would be improved.
This has yet to be investigated thoroughly but preliminary results look promis-
ing. A simulation of a 512×144×152 domain on 1,024 cores has been performed
with the number of iterations performed by the Krylov solver restricted to a
maximum of 200 in any one time step. 200 is an order of magnitude larger than
is required for convergence after the initial transient.

25,000 time steps were performed and the results were physically sensible.
Table 14 shows some timings. The speed-ups given are for the restricted PETSc
code relative to the reference code. Note that the speed-up measured can vary
somewhat between runs so the negative value is not significant.

Total Time Output Total Comp. Pressure Other
Reference 19507 12412 7095 4084 3011
PETSc 18680 12497 6183 3432 2751

Restricted PETSc 17892 12497 5395 2651 2744
Speed-Up 9% -1% 32% 54% 10%

Table 14: Effect of restricting number of iterations

Figure 2: Comparison of the performance of the restricted and unrestricted
pressure calculations
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In Figure 2 one can see that after about 10 blocks the time taken by the run
with a restricted number of iterations coincides with that of unrestricted run.
This suggests that the runs are producing very similar results - a conclusion
that has been confirmed by examining the physical results in more detail.

5 Conclusion
In summary, this project has achieved two of the three planned objectives, and
the third is being carried forward under an EPSRC research grant. By replacing
the existing bespoke Jacobi/SOR pressure solver with a a Krylov Subspace
method from the PETSc library, and implementing a number of optimisations
to both MPI and OpenMP in the code, we have been able to to speed up
calculations on a physically relevant grid size (11 million elements) by over 50%
in the pressure solver alone. We have also demonstrated excellent strong and
weak scaling of the code well beyond 20 million elements.

Our investigations of the behaviour of TPLS have led to several suggestions
for further work. The most urgent need is for the current serial I/O strategy
to be replaced by parallel I/O (for example as described in [3]), as this is a
significant bottleneck to further scaling and currently takes over half the run-
time for the calculations we have used for testing. In addition, the other main
computational parts of the code - the momentum and interface solvers - would
also benefit from being ported to PETSc. As well as giving a direct performance
increase, this would remove the need for frequent copying between PETSc and
TPLS data structures, reducing time and memory overheads, and also allow the
flexibility to move to a full 3D domain decomposition. Thirdly, we believe that
using multi-grid preconditioners may give further speed improvements in the
pressure solver. Working versions of these are available in PETSc 3.4, which we
have not yet been able to test.

Finally, as a direct result of this dCSE project, we have made the entire TPLS
code available under the open-source BSD license. The code can be downloaded
from https://sourceforge.net/projects/tpls/ and as we continue to develop and
improve TLPS we hope to grow a community of users and developers who can
now take advantage of our work.
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