
Improved Scaling for Direct Numerical Simulations

of Turbulence

Johnstone, R.

University of Southampton

Southampton, SO17 1BJ

August 2, 2012

1 Introduction

Two computer programs were addressed in the dCSE project summarised
here. The first, SWT, is designed for the direct numerical simulation of
turbulent flow in an infinite plane channel. It has, in the recent past, also
been used to simulate the response of such a flow to irrotational strain [3],
and turbulent Couette-Poiseuille flow (a channel flow driven both by a pres-
sure gradient as well as by moving walls, [9]). Both of these investigations
aimed at clarifying the effect of pressure gradients on turbulence. The sec-
ond, SS3F, has so far been predominantly used to simulate the dynamics of
vortices in stratified flow [2], [1], [4].

SWT is a development of the vectoral [15] channel-flow code of Kim et al
[10], parallelised and translated to modern fortran [3]. SWT uses the same
Runge-Kutta scheme, and the same FFT routines, as SS3F; one coordinate
direction uses Chebyshev basis functions, however, which are suitable for
plane channel flows with one non-periodic direction.

The SS3F code solves the incompressible Navier-Stokes equations in the
Boussinesq approximation, using a Fourier representation in all three coor-
dinate directions. The infinite boundary condition described by Corral &
Jiménez [5] is implemented in one of these directions while the other two
are periodic. The viscous terms are time advanced analytically, while a
low-storage 3rd order Runge-Kutta scheme is used for the advective and
buoyancy terms.

1

1.1 Numerical Methods

Both codes are pseudospectral - the nonlinear advective terms of the Navier-
Stokes equations are evaluated in real space; the necessary transformation
to and from wave space is carried out in slices (a one-dimensional domain
decomposition), which means that a parallel transpose (all-to-all communi-
cation) is required to transform with respect to the remaining direction.

Note that the Navier-Stokes equations are quadratically nonlinear, so
this procedure can generate nonzero coefficients for wavenumbers of up to
±2kmax, where the original wavenumber interval was [−kmax : kmax]. To
avoid, when transforming the nonlinear terms back to wave space, the alias-
ing of any outside this interval to any within, we require that

2kmax − 2N ≤ −kmax or 2kmax + 2N ≥ kmax, (1)

and thus

kmax ≤ 2N/3 (2)

Explicit zero padding of the upper third of the spectrum is therefore
sufficient to prevent this, and full dealising (kmax = N/2) is not required.
Alternatives (eg. phase shift dealiasing) are less attractive as a result.

1.2 Parallelisation

Prior to the completion of this project, the SWT and SSF3D programs
both used a 1-D domain decomposition. The domain is divided into 2-D
slices; this permits FFTs in two dimensions but not the third, so a parallel
transpose is required to transform the decomposition to another one, also of
2-D slices, but differing in one dimension.

3-D Fourier transforms are implemented here as 3 successive 1-D trans-
forms. There is therefore no need for an individual processor to have ac-
cess to more than one dimension at a time. Decomposing the domain into
‘pencils’ - a 2-D domain decomposition, into elements with two incomplete
dimensions - would obviously increase the maximum number of processors
that could be used.

However, this approach comes at a cost; an additional parallel transpose
is required for every transform. The 1-D decomposition therefore remains

2

attractive at low processor counts, though it restricts the number of proces-
sors that can be used, to, at most, the number of collocation points in one
of the three spatial dimensions. As the grid is refined, however, the memory
required, as well as the computational expense per time step, increases with
the cube of this number. The processor count, meanwhile, can only scale
linearly.

In practice the situation is even less favourable, as, in general, two dif-
ferent 1-D domain decompositions are required; if (as is usually the case)
the numbers of collocation points in each direction are not the same, the
greatest useful processor count is set by the lower of the two numbers cho-
sen. Also, further load balancing issues arise if either one of these numbers
is not exactly divisible by the processor count, and the latter is high (so that
the imbalance is significant relative to the total workload).

These considerations limit simulations using SWT and SS3F to a few
hundred processor cores at present, which results in relatively low perfor-
mance in terms of wall clock time required to perform a physically realistic
simulation. The most serious consequence, however, is that the scaling of
memory requirements - doubling the resolution in all three directions permits
at most a doubling of the core count, but guarantees the octupling of the
total memory required. The expected reduction in the ratio of memory to
core count arising from the increasing prevalence of multicore architectures
only exacerbates the problem.

The applicability of turbulence simulations to the real world depends
critically on good grid resolution (see [14] for a counterexample). In its ab-
sence, fidelity must be compromised, or the problem to be studied modified
in some way - for instance, by a reduction in Reynolds number, which could
adversely affect the generality of the result.

The Reynolds number is the parameter governing the range of scales
present in a direct simulation of turbulence. The grid resolution required
for a particular problem is expected to scale with this number. The required
number of collocation points

N ∝
(

L

η

)3

, (3)

where L is the integral length scale of the largest eddies, roughly proportional
to the channel height h, and η, the Kolmogorov scale, is that of the smallest,
equal to

3

η =

(

ν3

ǫ

)1/4

, (4)

where ν is the viscosity, and ǫ the dissipation rate. In the case of the channel
flows the SWT code is designed to simulate, the following is approximately
true:

ǫ ∝ u3

τ/h, (5)

where uτ is the friction velocity at the wall, equal to the square root of the
ratio of wall shear stress and fluid density,

√

τ/ρ. Substituting 5 into 4 and
3, we obtain

N ∝
(

uτh

ν

)9/4

∝ Re9/4

τ , (6)

where Re is the Reynolds number. The memory requirements of a simulation
therefore scale as Re9/4, however, because the time step must also be reduced
to resolve the smallest eddies.

Using the same assumptions made above to obtain the lengthscale ratio,
we may derive a ratio of large to small time scales T/τ , where T is the ratio
of h to the mean flow velocity U (assumed above roughly ∝ uτ) and the
Kolmogorov time scale τη =

√
ν/η. This turns out to vary as

T/τ ∝ Re1/2, (7)

a finding confirmed by the computational results of Kim et al [10].

This has implications for the scaling of computational workload with
Reynolds number - i.e. that it is nearly cubic - but also for the scaling of
total computational workload with grid points, namely that it is superlinear.
If domain decomposition alone is relied upon for parallelisation, then - absent
improvements to parallel scaling - we can probably only hope to scale the
processor count with the size of the grid. A complete DNS is not, therefore,
expected to scale in accordance with Gustafson’s law [7], which requires a
constant workload per processor - performance over a fixed number of time
steps, however, may do so, if the solution algorithm scales linearly in the
number of grid points.

4

For a DNS as a whole, Snyder’s [13] Corollary of Modest Potential ap-
plies; the problem takes

nt ∝ N
1

2
·
4

9 = cN2/9 (8)

time steps nt, and the work per grid point varies at least in the same pro-
portion (assuming, optimistically, an O(N) algorithm). The total work, or
wall clock time, would be

t = cN11/9. (9)

This is a limitation essentially imposed by the physics of turbulence;
algorithms with scaling in N inferior to O(N) would raise the exponent
further, and time integration schemes with stability constraints might do
the same.

If the application of p processors permits an increase in the problem size
by a factor m, then

t = c(mN)11/9/p, (10)

and, if we require the wall clock time t to remain fixed,

m ≤ p9/11 (11)

Doubling p, therefore, allows at best an increase of 76% in N , which
permits, as long as 6 holds, about a 29 % increase in Re. Large increases
in p are therefore needed to allow significant increases in Re, and so good
parallel scaling is mandatory.

Note further that for DNS of wall bounded turbulence, the ratio L/η
that needs to be simulated may increase faster with Re than is indicated by
the relationship 6 given above. The reason for this is that the very largest
scale motions in such flows do not measurably affect flow statistics at low
Re [8], so that a low Re DNS may employ a domain too small to capture
them; but this ceases to be true at higher Re. The Reynolds numbers that
have so far been considered using DNS are believed to fall, on the whole,
into the former category.

5

This implies that such simulations as have already been performed are
not fully independent of Re, and the results therefore lack a degree of uni-
versality that might be (and, on the basis of experimental work, is) expected
at higher Re. Experimental data do not contain the same information as
DNS, and so cannot always be used to address the same questions. It is
therefore desirable to carry out such simulations. However, the difficulty
of scaling Re implied by 6 and 11 above, added to the need to resolve still
greater turbulent lengthscales, does call into question the feasibility of doing
so.

2 The dCSE Project

A dCSE project to improve the performance and parallel scaling of the SWT
and SS3F programs began in November 2011, approximately one month
before the introduction of the HECToR phase 3 service. Final results, and
comparisons with the original versions of both codes, are therefore produced
on that machine, but the initial performance analysis motivating the project
was carried out on phase 2b, and is summarised below.

2.1 Initial performance analysis

Both of the programs described above have properties that are bound, ulti-
mately, to limit their parallel scalability, and these limits had, at the time
of writing, been reached. In pursuit of the lines of inquiry opened in [4] and
[9], simulations were planned which would require grids of approximately 3
and 1 billion collocation points, using SS3F and SWT respectively. In both
of these cases, more cores would need to be allocated than can in fact be
used, owing to the requirement that each core store and process an integer
number of planes at a time. This follows from the use of a 1-D domain
decomposition.

Initial investigations showed that, in addition, neither code performed
particularly well - either in terms of per-processor performance, or of parallel
scaling - on the HECToR architecture (phase 2b at the time), and that this
state of affairs had worsened relative to phase 2a. Test cases smaller than
the problem sizes (3 & 1 billion grid points) actually planned were used, as
scaling tests would not be meaningful otherwise (certainly the core count
would be completely meaningless, as many if not most cores would be left
idle).

Figure 1 shows parallel scaling for SS3F on a grid (128 x 720 x 1440

6

Figure 1:

modes) previously used to obtain the results published in [4]. This appears
acceptable; however, it is not possible to increase the core count for this
problem beyond 360 without suffering load imbalance; perfect load balance
requires that the second and third dimension should both be divisible by the
core count, the former without dealiasing (i.e. 1080), the latter with (1440).
At the beginning of the project, this code was in fact restricted to permit
only very slight load imbalance (fixed computational load was enforced for
all but one process). It is reasonable to assume that merely loosening this
restriction would not be a particularly good use of development effort; for
the test case considered here, for instance, each process is responsible for 3
x − z planes, so an imbalance of 1 would be fairly significant.

Figure 2: Figure 3:

The results for SWT (figures 2 and 3) appear less satisfactory, and scaling

7

is also notably poorer on the XE6 than the XT4 for both simulation sizes (in
spite of the fact that the XT4 data were collected before the introduction
of the Gemini interconnect). It would appear that the SWT parallelisation
may not be well suited to architectures with large numbers of cores per CPU.
Performance per core, however, was superior on phase2b.

Both codes originally implemented a parallel transpose using MPI non-
blocking sends and receives. On Cray machines, this approach performs less
well than MPI ALLTOALLV (used by 2DECOMP&FFT), so some parallel
efficiency gains are likely to arise from this substitution.

In-depth profiling of the SWT code, using the 864 x 325 x 324 grid on
324 cores, was carried out by Dr. Ning Li of the NAG HECToR CSE team,
and the results (obtained using CrayPAT) are shown below.

Time % | Time | Imb. Time | Imb. | Calls |Experiment=1

| | | Time % | |Group

| | | | | Function

| | | | | PE=’HIDE’

100.0% | 110.186539 | -- | -- | 85892.9 |Total

|--

| 63.9% | 70.354830 | -- | -- | 7983.9 |USER

||---

|| 19.7% | 21.745259 | 5.791653 | 21.1% | 1.0 |MAIN_

|| 13.8% | 15.219145 | 8.783854 | 36.7% | 2181.8 |radb3_

|| 9.1% | 10.063469 | 8.069853 | 44.6% | 722.2 |radf3_

|| 3.6% | 3.998016 | 2.350367 | 37.1% | 180.6 |radb4_

|| 3.3% | 3.680287 | 2.335971 | 38.9% | 180.6 |radf4_

|| 3.1% | 3.427989 | 1.016561 | 22.9% | 722.2 |passb3_

|| 2.8% | 3.075736 | 1.263592 | 29.2% | 722.2 |passf3_

|| 2.6% | 2.817066 | 1.345977 | 32.4% | 545.4 |radb4l_

|| 1.7% | 1.910091 | 1.269967 | 40.1% | 180.6 |radf4f_

|| 1.0% | 1.110035 | 0.026740 | 2.4% | 545.4 |rfftb1_

||===

| 25.9% | 28.577012 | -- | -- | 77845.0 |MPI

||---

|| 25.4% | 27.943499 | 18.023463 | 39.3% | 38880.0 |MPI_WAIT

||===

| 10.2% | 11.254697 | -- | -- | 64.0 |MPI_SYNC

||---

|| 9.9% | 10.945641 | 10.932999 | 93.6% | 11.0 |mpi_reduce_(sync)

|==

8

These results reveal that 25% of run time was spent in MPI WAIT, and
a further 10% in MPI SYNC. This suggests load imbalance, which could
be reduced by introducing a 2-D domain decomposition, by increasing the
number of ways in which a grid could be divided for a given processor count.

Of the routines in the USER section, all but the main program (much
of the runtime of which is associated with one-time initialisations, and not
significant in a production run) are part of the existing FFT package (vecfft).
It is important, therefore, that these should be efficient.

However, profiling of the most heavily used FFT routine (rad3b) using
hardware performance counters showed that:

⇒ D1+D2 cache utilisation is 90.1% (which is quite poor).

⇒ There is no SSE vectorisation at all.

The first result may explain the good per-core performance on phase2b
relative to phase2a; poor caching means the performance of the FFT routines
is likely bounded by memory access speed, and the memory bandwidth per
core of phase2b is superior. Note that the vecfft routines were designed to
perform optimally on traditional vector processors (SWT and SS3F have
previously been used on the X2 component of the HECToR service). The
second result shows that the vecfft optimisations are unsuitable for the short
SSE vector instructions.

A good case can therefore be made that the serial performance of both
codes is poor on HECToR. However, it also appears that this is largely
attributable to the poor performance of the FFT routines used by them,
which dominate the run time.

2.2 Plan of Work

On the basis of the measurements summarised in section 2.1 above, it was
considered that both SWT and SS3F would benefit from a modernisation of
the FFT routines used, and conversion to a 2-D domain decomposition, to
improve per-core performance and parallel scaling respectively.

The 2DECOMP&FFT library [12], [11] enables applications using a
three-dimensional structured mesh to use a 2-D (pencil) domain decom-
position, providing the parallel transpose operations required by some nu-
merical methods (such as FFTs) to use such a decomposition. In addition, a

9

higher-level interface (a ‘black-box’ 3-D FFT) is provided, as are routines for
parallel I/O and halo support (relevant to hybrid spectral-finite difference
methods). These were not to be used in this project; both SWT and SS3F
already use MPI-I/O to read and write restart files, and neither uses finite
differences.

Although 2DECOMP&FFT supports several FFT routines, a decision
was made to begin by converting the existing FFT routines to instead use
the FFTW library [6]. This course of action was adopted in part because
SWT requires Chebyshev transforms; although these can be implemented
using FFT routines, 2DECOMP&FFT does not yet support these directly.
They could, however, be implemented by using SWT’s Chebyshev trans-
forms and replacing the FFTs with those of an FFT library supported by
2DECOMP&FFT (one such is FFTW). In addition, it was reasoned that
early conversion to FFTW would aid development work, by separating any
possible slight numerical differences arising from the use of a different FFT
library from those arising from parallelisation. Results from the existing
codes (modified to use FFTW) could be compared with those obtained us-
ing the new versions in the knowledge that the underlying FFT library would
be the same (provided, of course, that 2DECOMP&FFT was compiled to
use FFTW).

The following work plan was therefore adopted:

⇒ The vecfft routines would be replaced by FFTW equivalents, in both
codes, for both Fourier and Chebyshev transforms.

⇒ A 2-D domain decomposition would be provided for SS3F by rewriting
it to use the ‘black-box’ 3-D FFTs provided by the 2DECOMP&FFT
library.

⇒ A package of Chebyshev transforms would be produced for the 2DE-
COMP&FFT library.

⇒ These transforms would then be used to convert SWT in the same way
as SS3F.

2.3 Implementation

2.3.1 FFT conversion

The replacement of the FFT routines was reasonably straightforward; a
naive approach using 1-D individual transforms was chosen. Multiple cosine

10

Domain size Wall clock time per time step % reduction
FFTW3 vecfft

128 x 720 x 1440 6.66 s 13.5 s 51%
256 x 1440 x 2880 32.3 s 72.3 s 55%

Table 1:

transforms were tested for the Chebyshev transform routines described in
section 3 below, but there was no significant performance benefit in that
case (testing was carried out using the SWT code and a 3072 x 325 x 1024
mode problem on 6144 cores).

FFTW planning flags were also investigated; FFTW ESTIMATE was
found to perform just as well as FFTW PATIENT. The relevant test was
carried out with the SS3F code on the test case described in section 2.1
above, using 360 cores over 12 nodes.

In spite of the simplicity of this implementation, substantial performance
gains were realised for both codes. Test results for SS3F are summarised in
table 1.

A similar test was carried out for SWT, using a domain size of 3072 x
325 x 1024; a percentage reduction of 53 % was observed in that case (see
section 4.2 below).

2.3.2 2-D domain decomposition using the 2DECOMP&FFT li-

brary

The original work plan called for use of 2DECOMP&FFT’s FFT API - that
is, its ‘black-box’ 3-D FFT routines. On investigation, it turned out that a
lower-level approach was required. It is in fact more convenient to do so,
because the original codes have been programmed in the expectation that
optimisations involving intermediate arrays (that would be hidden by a 3-
D FFT) are possible; removing these would mean writing new code that
would probably be less efficient. The need to implement dealiasing is also
an impediment.

Dealiasing is most efficiently performed by pruning the array at each
parallel transposition. The order of operations eventually adopted is as
follows (the initial letter of each item denotes the direction in which the
domain is not decomposed, e.g. y implies y-pencils containing all points in
y but only a subset in x and z):

11

⇒ y : In wave space - global domain size Nx x 3Ny/2 x Nz.

⇒ y : SS3F - Fourier transform in y, SWT - Chebyshev transform in y.

⇒ Transpose y to z.

⇒ z : Expand domain size to Nx x 3Ny/2 x 3Nz/2.

⇒ z : Fourier transform in z.

⇒ Transpose z to x.

⇒ x : Expand domain size to 3Nx/2 x 3Ny/2 x 3Nz/2.

⇒ x : Fourier transform in x.

⇒ x : In real space - calculate non-linear terms of Navier-Stokes equations.

⇒ x : Fourier transform in x.

⇒ x : Prune domain to Nx x 3Ny/2 x 3Nz/2.

⇒ Transpose x to z.

⇒ z : Fourier transform in z.

⇒ z : Prune domain to Nx x Ny x 3Nz/2.

⇒ Transpose z to y.

⇒ y : SS3F - Fourier transform in y; SWT - Chebyshev transform in y.

⇒ y : If dealiasing in y - zero high wavenumbers.

This significantly reduces the total data volume that requires transposi-
tion, relative to operating using a 3Nx/2 x 3Ny/2 x 3Nz/2 global domain
size. For backward and forward transformation of a single variable, the cost
is 3/2+9/4+9/4+3/2 = 15/2, rather than 27/8+27/8+27/8+27/8 = 27/2,
a saving of 44 %. A general 3-D FFT supporting this approach would re-
quire information relating to the nature of the dealiasing to be performed
in each direction (for instance, as noted in section 1 above, the 3/2 rule is
specific to equations with quadratic nonlinearity).

Note that x, y and z above correspond to the notation used in SWT and
SS3F, but not that of 2DECOMP&FFT. To translate, exchange y and z.

It proved reasonably straightforward to implement the above approach
using the domain decomposition API of 2DECOMP&FFT, and the results
of doing so are discussed in section 4 below.

12

3 Chebyshev Transforms

A necessary side product of the conversion of the SWT code to use FFTW
was a routine to carry out Chebyshev transforms. Had the FFT API of
2DECOMP&FFT been used, it would have been necessary to incorporate
this into that library; as it stands, the domain decomposition API was chosen
instead, so this is not necessary. However, it was considered appropriate to
adapt and generalise this routine so as to make it suitable for use in or with
2DECOMP&FFT. This would broaden the capabilities of this library by
reusing a side-product of this project.

Given a function f(x) on the interval −1 ≤ x ≤ 1, and making a change
of variable

x = cos(θ), (12)

where 0 ≤ θ ≤ π, we define φ(θ) = f(cos(θ)). φ can be expanded in a
cosine series

φ(θ) =
1

2
a0 +

∞
∑

k=1

ak cos(kθ) (13)

The Chebyshev polynomials Tk of the first kind are defined

Tk(x) = Tk(cos(kθ)) = Tk(k arccos(x)) (14)

so

φ(θ) =
1

2
a0 +

∞
∑

k=1

akTk(x) (15)

Note that the coefficients ak in 13 and 15 are the same. It is, therefore,
possible to obtain them using a cosine transform, computable with the FFT
algorithm. It is also possible, with some manipulation, to use a standard
FFT. The SWT code originally used a complex-to-real FFT for this purpose,
and Chebyshev transform routines in x, y and z (or rather the array indeces
usually corresponding to those dimensions) were developed from this. How-
ever, as FFTW3 supports cosine transforms, an alternative set of routines
was created taking advantage of these. Both sets have been made available
to Dr. Ning Li, the developer of 2DECOMP&FFT.

Collocation methods based on Chebyshev polynomials usually use the
Chebyshev-Gauss points located at the roots of Tk, and given by

13

xk = cos

(

2k + 1

2N
π

)

, k = 0, 1.., N (16)

or the Gauss-Lobatto points, located at the extrema of Tk (in other
words, at the zero points of T ′

k rather than Tk). These are given by

xk = cos

(

k

N
π

)

, k = 0, 1.., N (17)

For applications such as SWT - which is designed to simulate flow
through a channel of fixed depth - the Gauss-Lobatto points are preferred;
the zeroth and Nth points are at 1 and -1, and do not depend, as the
Chebyshev-Gauss points do, on N . Both grids are supported; at present,
the default is to use the Gauss-Lobatto points, and an optional argument is
used (if present) to switch to Chebyshev-Gauss.

4 Results

4.1 SS3F

Figure 4 shows parallel scaling for a planned simulation using SS3F. The
original code is included for reference (open square), although it was neces-
sary to reduce the cores used per node from 32 to 6 in order to run this case.
Node count is therefore chosen in preference to core count for the x-axis;
this reflects the actual resources occupied in running this simulation in a
way that core count does not.

The improvement in efficiency - ie. performance at the minimum (192)
node count relative to the original code - appears at first glance to be en-
tirely due to the use of all 32 cores per node (it is a factor of approximately
5, not far off 32/6). If true, the contribution expected from the replacement
of the original FFT routines - and confirmed for smaller test cases - is ab-
sent. However, the 32 AMD Interlagos processors on each node share many
resources, notably L3 cache and interconnect bandwidth, so this may not be
a fair comparison.

Scaling to over 12000 cores is efficient, but in this case the same good
efficiency does not extend to >18000 cores.

14

Figure 4:

Figure 5:

4.2 SWT

Figure 6 shows absolute performance plotted against node count, for a test
case (3072 x 321 x 1024 modes) chosen to be representative of the simulations
planned using SWT in the near future. Node count is again chosen in
preference to core count, because the original code was not quite able to run
this case using all 32 cores per node, owing to its 1-D domain decomposition.
The original code is represented in the figure with an empty square symbol.
Replacing the original FFT routines with FFTW3 equivalents resulted in a

15

significant performance improvement - using the same number of cores, wall
clock time per time step fell by about 53%.

Figure 6: SWT, parallel scaling for 3072 x 321 x 1024 modes.

In addition, memory requirements were slightly reduced. This made it
possible to reduce the required node count by 1 to 11, with all nodes but one
fully populated (the last could almost certainly also have been fully utilised
but for the fact that one grid dimension was not a multiple of 32). This
(11 node) run is shown in the figure as an empty diamond; using 12 nodes
instead improved performance by about 5% (this is not shown in figure 6).

Scaling to a higher number of processors was not possible in either of
these cases, owing to the 1-D domain decomposition (nor would it have
been possible to use fewer nodes; reducing the core count would only have
been possible by reducing the number of cores used per node). This case
therefore represents the limit of what could realistically be achieved using
the 1-D decomposition. Note that - perhaps owing to the dimensions of
the large static arrays used - both 1-D code versions could in fact only be
successfully compiled for this particular case by using the pathscale compiler.
This compiler is no longer supported on HECToR, and it is likely that it
no longer produces optimal code for phase 3 of this machine. Some of the
observed performance improvement is probably due to its replacement by the
Cray compiler. Recall, however, that large performance benefits (> 100%)
were obtained by replacing the same FFT routines in the SS3F code, even
when the Cray compiler was used in both cases.

16

Figure 7: SWT, efficiency for 3072 x 321 x 1024 modes.

The implementation of a 2-D decomposition using the 2DECOMP&FFT
library has made it possible to reduce by at least an order of magnitude the
wall clock time required to run the most challenging case possible with the
original code version, without giving up efficiency gains resulting from the
modification of the FFTs. Note that even using 256 nodes (8192 cores),
although scaling less efficiently than at lower node counts, the new version
still requires about 34% fewer AUs to perform the same amount of work
as the original (see figure 7), and does so about 30x faster. More impor-
tant, however, is probably the fact that still larger grids are now thinkable,
something that was not necessarily true prior to this work (eventually the
memory required per core would have exceeded the total memory per node,
at which point progress becomes impossible rather than merely very expen-
sive - unless out of core algorithms or simply paging to disk are considered
acceptable). The scaling of the simulation program with problem size, as
well as processor count, is therefore of interest.

The four symbol styles shown in figure 8 illustrates the scaling of the
SWT code with the total number of gridpoints N , for four different simu-
lation sizes, each over a range of decompositions. Low values on the x-axis
correspond to a large number of cores relative to the N , while high val-
ues imply a lesser degree of parallelism. The y-axis variable is a measure
of efficiency - the number of gridpoints that can be advanced by one time
step by expending one allocation unit. Perfect parallel scaling, therefore,
would mean that all like symbols would align horizontally - i.e. efficiency
independent of decomposition. In practice, we would expect to see a pos-
itive slope on the left hand side of the graph, and this is indeed the case.
Above approximately 106 modes per core, however, scaling is quite good,
independently of the total problem size N .

17

Figure 8:

The horizontal lines in figure 8 show the expected maximum efficiency
for each N , based on the best efficiency obtained for the smallest N (the
1024x221x384 grid), and assuming O(N log(N)) scaling. O(N) scaling would
correspond to collapse of all symbols onto one curve (at least towards the
right hand side of the graph), while O(N log(N)) - the computational com-
plexity scaling of the fast Fourier transform - would correspond to good
alignment of each set of symbols with the horizontal line of the same colour.
It appears that the real N scaling is intermediate between the two - the
best efficiency obtained at a given N shows a tendency to decline a little
more slowly than implied by O(N log(N)) complexity. This is very encour-
aging, as it suggests that - apart from the superlinear scaling in N that
results from the increasing range of time scales (equation 7) - approximate
Gustafson scaling holds. The wall clock time required per time step will
therefore increase only very slowly if both N and the processor count p
are increased in the same proportion; although the number of time steps
required will increase.

5 Acknowledgments

This project was funded under the HECToR Distributed Computational Sci-
ence and Engineering (CSE) Service operated by NAG Ltd. HECToR - A
Research Councils UK High End Computing Service - is the UK’s national
supercomputing service, managed by EPSRC on behalf of the participating

18

Research Councils. Its mission is to support capability science and engi-
neering in UK academia. The HECToR supercomputers are managed by
UoE HPCx Ltd and the CSE Support Service is provided by NAG Ltd.
http://www.hector.ac.uk.

References

[1] P.J. Archer, T.G. Thomas, and G.N. Coleman. Direct numerical simu-
lation of vortex ring evolution from the laminar to the early turbulent
regime. Journal of Fluid Mechanics, 598:201–226, 2008.

[2] P.J. Archer, T.G. Thomas, and G.N. Coleman. The instability of a
vortex ring impinging on a free surface. Journal of Fluid Mechanics,
642:79–94, 2010.

[3] G.N. Coleman, D. Fedorov, P.R. Spalart, and J. Kim. A numerical
study of laterally strained wall-bounded turbulence. Journal of Fluid

Mechanics, 639:443–478, 2009.

[4] G.N. Coleman, R. Johnstone, C.P. Yorke, and I.P. Castro. DNS of
aircraft wake vortices: the effect of stable stratification on the develop-
ment of the Crow instability. In V. Armenio, B. Geurts, and J. Frolich,
editors, ERCOFTAC Workshop: Direct and Large-Eddy Simulation 7,
pages 519–525. Springer, 2008.

[5] R. Corral and J. Jiménez. Fourier/Chebyshev methods for the incom-
pressible Navier-Stokes equations in infinite domains. Journal of Com-

putational Physics, 121:261–270, 1995.

[6] M. Frigo and S.G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93:216–231, 2005.

[7] J.L. Gustafson. Reevaluating Amdahl’s law. Communications of the

ACM, 31:532–533, 1988.

[8] N. Hutchins and I. Marusic. Evidence of very long meandering features
in the logarithmic region of turbulent boundary layers. Journal of Fluid

Mechanics, 579:1–28, 2007.

[9] R. Johnstone, G.N. Coleman, and P.R. Spalart. The resilience of the
logarithmic law to pressure gradients: evidence from direct numerical
simulation. Journal of Fluid Mechanics, 643:163–175, 2010.

[10] J. Kim, Moin. P., and R. Moser. Turbulence statistics in fully developed
channel flow at low reynolds number. Journal of Fluid Mechanics,
177:133–166, 1987.

19

[11] N. Li. 2DECOMP&FFT - library for 2d pencil decomposition and
distributed fast fourier transform. http://www.2decomp.org/.

[12] N. Li and S. Laizet. 2DECOMP&FFT - a highly scalable 2d decom-
position library and FFT interface. Cray User Group 2010 conference,
Edinburgh, 2010.

[13] L. Snyder. Type architectures, shared memory, and the corollary of
modest potential. Annual Review of Computer Science, 1:289–317,
1986.

[14] P.R. Spalart, G.N. Coleman, and R. Johnstone. Retraction: Direct
numerical simulation of the Ekman layer: A step in Reynolds number,
and cautious support for a log law with a shifted origin [phys fluids 20,
101507, 2008]. Physics of Fluids, 21:109901, 2009.

[15] A. Wray. Vectoral: only by trying new things will we ever get computer
languages right. http://merrimac.stanford.edu/brook/vectoral.pdf.

20

	Introduction
	Numerical Methods
	Parallelisation

	The dCSE Project
	Initial performance analysis
	Plan of Work
	Implementation
	FFT conversion
	2-D domain decomposition using the 2DECOMP&FFT library

	Chebyshev Transforms
	Results
	SS3F
	SWT

	Acknowledgments

