

D2-1 Optimisation of R support vector machine on HECToR
with SPRINT

Project Title ESPRC dCSE "Bootstrapping and support vector machines with R
and SPRINT"

Document Title D2-1 Optimisation of R support vector machine on HECToR with
SPRINT

Authorship Luis Cebamanos

Document Filename SPRINT-dCSE3-svm_D2-1_report-v0.2

Document Version 0.2

Document Number

Distribution Classification Public following PI permission

Document History

Personnel Date Comment Version

T. Sloan 15/01/2013 Renamed file and added frontpage for submission to
NAG

0.2

L.
Cebamanos

29/06/2012 Original draft 0.1

Contents
Introduction .. 3
The SVM function ... 3
Profiling ... 5

Implementation .. 7
Future work .. 9
Conclusions .. 9
Acknowledgements .. 9
References .. 10

Introduction

They key objective of this dCSE project was to implement a parallel version of the support vector

machine method, a learning method that analyzes data and recognizes patterns used for

classification and regression analysis. A user requirements survey conducted at the beginning of the

SPRINT project, highlighted the support vector machine (SVM) function as one of the candidates

for parallelisation.

The Simple Parallel R Interface (SPRINT) [1], developed by the Division of Pathway Medicine and

EPCC at The University of Edinburgh, allows R users to exploit the HECToR supercomputing

facility and other High Performance Computing (HPC) systems without expert knowledge of such

systems. R is a freely available language and environment for statistical computing (http://www.r-

project.org/).

The SVM function

The standard SVM takes a set of input data and predicts, for each given input, which of two

possible classes forms the input, making the SVM a non-probabilistic binary linear classifier. Given

a set of training examples, each marked as belonging to one of two categories, an SVM training

algorithm builds a model that assigns new examples into one category or the other. An SVM model

is a representation of the examples as points in space, mapped so that the examples of the separate

categories are divided by a clear gap that is as wide as possible. New examples are then mapped

into that same space and predicted to belong to a category based on which side of the gap they fall

on.

A classification task usually involves separating data into training and testing sets. Each sample in

the training set contains one target value (i.e the class labels) and multiple attributes (i.e. the

observed variables). The SVM method will generate a model based on the training data provided

which predicts new target values, provided through the test data, given only the test data attributes.

The R package e1071 offers an interface to the C++ implementation by Chih-Chung Chang and

Chih-Jen Lin [2], libsvm featuring:

 C- and ν-classification

 One class classification

 ϵ- and ν-regression

also includes:

 linear, polynomial, radial and sigmoidal kernels

 formula interface

 k-fold cross validation

The SVM implementation in R detects if svm is used for classification or regression depending on

the dependant variable y: if y is a factor, the engine switches to classification, otherwise it works as

a regression machine.

An example of how to use the svm function from package e1071 it is explained here using the

Golub data set. To install the Golub data set, in R type:

>source("http://bioconductor.org/biocLite.R")

>biocLite("golubEsets")

Then load the libraries needed to run svm:

>library(class)

>library(e1071)

>library(golubEsets)

The original Golub study consisted of both the training and the test samples. We load the objects to

run and test the svm function.

>data(Golub_Train)

>data(Golub_Test)

Extract the microarray data from each sample

>train <- exprs(Golub_Train)

>test <- exprs(Golub_Test)

Get the vector that contains the known leukimia type for each pacient

>samplelabels <- Golub_Train@phenoData@data$ALL.AML

We train the SVM classifier with the chosen parameters. We have chosen a radial kernel and a value

of cross validation of 10.

>svmmodel1 <- svm(x=t(train), y=samplelabels, type='C', kernel="radial", cross=10)

The trained classifier is now applied to samples of unknown leukemia type, the Golub_Test data set

>predmodel1 <- predict(svmmodel1, t(test), decision.values = TRUE)

We can now compare the predicted classes with the real one:

>table(predmodel1, Golub_Test@phenoData@data$ALL.AML)

predmodel1 ALL AML

 ALL 20 12

 AML 0 2

>classAgreement(table(predmodel1, Golub_Test@phenoData@data$ALL.AML))

$diag

[1] 0.6470588

$kappa

[1] 0.1639344

$rand

[1] 0.5294118

$crand

[1] 0.05752685

A perfect class prediction should be 0 in the table result and 100% in the class agreement.

The SPRINT parallel interface is called psvm and takes the same parameters as the sequential

implementation. It requires the loading of the sprint library and termination of MPI after the

computation is finished. Below is an example of how to call psvm:

#load libraries
>library(sprint)

>library(golubEsets)

#load data
>data(Golub_Train)

get microarray expression

>train <- exprs(Golub_Train)

#Get vector with classes

>samplelabels <- Golub_Train@phenoData@data$ALL.AML

#call psvm

>psvmmodel <- psvm(x=t(train), y=samplelabels, type='C', kernel="radial", cross=10)

#close mpi communication and quit R

> pterminate()

> quit()

Profiling

Support Vector Machine (SVM) was highlighted as one the candidates for parallelisation by a user

requirements survey conducted at the beginning of the SPRINT project.

The Golub data set [3] was selected for profiling purposes as it contains training and test data

samples that fit perfectly for SVM classification. This data set contains over 7000 genes from 38

patient samples. In order to make the data set more complex, i.e. larger, it was replicated in number

of genes and patients.

For profiling purposes we used Rprof since it was not possible to use gprof to profile the C code.

The results obtained from calling svm for classification using a radial kernel can be seen on Figure

1.

Figure 1 shows the time invested in the svm call depending on the number of genes. The line's code

colour shows the number of columns or patient samples. It is possible to see how the time invested

in svm increases with the number of genes, however there is a stronger influence from the number

of patient samples. Although the svm time always increases with the number of patient samples, it is

possible to group the lines when this number is not large. Up to 152 patient samples we see a very

similar behaviour, however the svm time dramatically increases when using more than 200 patient

samples. The blue line shows how the svm time with 608 patient samples could not be plotted for

more than 228,128 genes due to run out of memory in a machine with 8 GB of RAM memory.

While it is not common to find data sets larger than 200,000 genes/rows and 1,000 samples/columns

in a biology study, nevertheless the time consumed in the svm calculation shows that it will not be

larger than 130 seconds.

The svm function contains a large amount of input parameters. An important parameter widely used

in statistics is cross validation. If no value for cross validation is passed, svm uses 0 by default. The

uses of positive values, k, for cross validation will run the training algorithm immerse in svm k

times, on different subsets of the training set. By using multiple runs, each not using all the samples,

it is possible to get some estimates for how accurate the trained classifier is. Figure 2 shows the svm

time with cross validation value of 10.

Figure 1: Time consumed in svm depending on the number of genes and the patient samples.

As seen in Figure 1, we see similar behaviour in Figure 2 for the gene/sample runs with the only

difference of being the total time. The reason for this is the time consumed by using multiple runs.

As mentioned at the beginning of this report, svm was chosen by R users as a candidate for

parallelisation. After consultation with users at the Division of Pathway Medicine, the approach

taken was to produce an implementation of SVM in SPRINT that allows multiple instances of the R

implementation of svm to be run in parallel and to allow cross-validation runs also to be run in

parallel.

Implementation

The project has produced a full integration of the svm function using the R package e1071 and

libsvm library. The integration of libsvm library into SPRINT also means the addition of C++ code

to SPRINT. Previously SPRINT only used C code, however following this project, SPRINT is now

able to compile and run C++ code adding more functionality to SPRINT since there are lots of

interesting libraries using C++ code.

In order to properly run and compile C++ within SPRINT some changes were needed to make in

the Makefile file:

sprint.so: $(INTERFACE_OBJS) $(SHARED_ALGORITHM_OBJS) $(SHLIB_OBJS) $(IMPLEMENTATION_OBJS)

ifeq (mpicc,$(findstring mpicc,$(MPICC)))

 $(MPICXX) -shared -o $@ $^

else

Figure 2: Time consumed in svm depending on the number of genes and patient samples

with cross validation 10.

slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:

 $(CC) -shared -o $@ $^ $(MPILIBS)

endif

.cpp.o:

 $(MPICXX) $(LOCAL_CFLAGS) -I$(R_INCLUDE_DIR) -c -o $@ $<

.c.o:

 $(MPICC) $(LOCAL_CFLAGS) -I$(R_INCLUDE_DIR) -c -o $@ $<

Makevars file:

MPICC = mpicc -std=gnu99

MPICXX = mpicxx

MPILIBS =

and to Makevars.in file

MPICC = @MPICC@

MPICXX = @MPICXX@

MPILIBS = @MPILIBS@

In addition to all these changes, the C++ code has to be called from a C wrapper which is called

from the R interpreter. SPRINT uses a C interface to call the C implementation, which is also

responsible for calling the C++ classes and other structures included in C++ code.

Figure 1 shows the communication process in a function that uses c++ code, psvm for instance,

where the C code, integrated in the implementation file, is able to call a pool of C++ classes and

other structures.

The R interface of psvm is almost identical to the svm implemented in package e1071 therefore

there are no big differences in the fashion that they are called by the user. All the parameters not

used are defined by default as was the case in the svm function provided by package e1071.

slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:

psvm is able to run totally independent instantiations of svm on different processors through MPI.

Given the parameters to an svm function, psvm will run the svm function on a number N of

processors indicated by the user providing similar results.

Furthermore, if positive values of cross validation are passed as arguments, psvm is able to run

those multiple runs in parallel, where each run will be running independently on different

processors and will gather the results back to the master.

Future work

Our effort to track the bottleneck in SVM points to the svmtrain function. Since the standard R

profiler does not give much information about the C code, timing areas were used for that purpose.

That allowed us to track that svmtrain was the function where SVM spent most of its time.

However, the SVM function calls many other functions which depend on the arguments of the SVM

function. It will be worthwhile profiling the C code to understand its behaviour depending on the

arguments. In this project SVM classification was investigated and this indicated the sequential

minimal optimization (SMO) algorithm included in the class Solver is a bottleneck. Future effort at

parallelizing SVM should focus on this algorithm which is thought to be the core of the application.

Conclusions

We have presented an R implementation of SVM integrated with the SPRINT package and

successfully run this on HECToR. Furthermore, this implementation of SVM is able to run some

sections in parallel, such as the cross validation section. We have identified areas to tackle in a full

parallelization of the R svm function Our current implementation has an identical interface to the

svm included in e1071 package thus making it very easy to adapt existing R scripts to use it.

Furthermore, we have been able to adapt SPRINT package to run C++ code which gives more

functionality to SPRINT for future implementations.

Acknowledgements

The SPRINT project is funded by a Wellcome Trust grant [086696/Z/08/Z]. This project was funded

under the HECToR distributed Computational Science and Engineering (CSE) Service operated by

NAG Ltd. HECToR – A Research Councils UK High End Computing Service – is the UK’s national

supercomputing service, managed by EPSRC on behalf of the participating Research Councils. Its

mission is to support capability science and engineering in UK academia. The HECToR

supercomputers are managed by UoE HPCx Ltd and the CSE

slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:
slot:

References

[1] J. Hill, M. Hambley, T. Forster, M. Mewissen, T. Sloan, F. Scharinger, A. Trew, and P. Ghazal.

SPRINT: A new parallel framework for R. BMC Bioinformatics, 9(1):558, 2008.

[2] Chang, C.-C. & Lin, C.-J., LIBSVM: a library for support vector machines.,

[3] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.

Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander, Molecular Classification

of Cancer: Class Discovery and Class Prediction by Gene Expression,

slot:

