
A parallel implementation of the Rank Product
method for R

Lawrence Mitchell∗

April 30, 2011

Abstract

We present the results of a project working on SPRINT to implement
a parallel version of the rank product analysis technique for R. We
have chosen a task parallel approach which, on typical data sets, shows
good strong scaling on the HECToR supercomputing facility up to 4096
processes, with speedups over the original serial code of more than
4000. Previously time-consuming analyses that would run overnight, or
even multiple days, may now be carried out in a few minutes. We also
discuss a potential data parallel approach that would allow treatment
of very large datasets.

Contents

1 Introduction 2

2 The rank product method 2

3 Implementation 6

4 Benchmark results 7

5 Conclusions 10
∗lawrence.mitchell@ed.ac.uk

1

6 Acknowledgements 11

1 Introduction

This dCSE project implements a parallel version of the rank product method
(Breitling et al., 2004; Hong et al., 2006) for detecting differentially regulated
genes in microarray experiments as part of the SPRINT library for R, enabling
usage on the HECToR supercomputing facility and other parallel machines.

R (R Development Core Team, 2010) is an open source software package
for statistical computing and graphics. The majority of the software is written
in the the R programming language (which is scheme-like, interpreted and
garbage-collected). The core of R consists of the interpreter for this language,
written in C, along with the garbage collector. Additionally, a number of
core functions are written in C for performance reasons. R provides a foreign
function interface for both C and Fortran code. The C interface is richer and
allows access to R objects directly as well as the ability to call back into R.

SPRINT (Hill et al., 2008; Petrou et al., 2010), the Simple Parallel R
Interface is a project of the Division of Pathway Medicine and EPCC at
The University of Edinburgh to provide parallelised workflows for microarray
analysis within R. The aim is to provide functionality that is as close to
existing code as possible so that end users, typically biostatisticians, can
make use of HPC resources without altering their workflows excessively.

2 The rank product method

Rank products are a method of identifying differentially regulated genes in
replicated microarray experiments. For example, we may be interested in
the gene expression levels under two different experimental conditions (for
example treated or untreated samples). Early approaches used a fold-change
criterion (DeRisi et al., 1997), the ratio of the expression level in sample
A to that in sample B. However, this method does not allow calculation of
significance levels nor is it obvious what the cutoff value for the fold change
should be. The rank product method builds on the fold-change criterion but
applies it to replicated experiments. That is, rather than just a single sample
representing each experimental condition (class) we have many samples in
each class.

The rank product method is applicable to experiments comparing two
different experimental conditions (class A and class B, say). For each gene
we compute a rank product by ranking the fold-change value of that gene in

2

http://www.hector.ac.uk/

all pairwise comparison of class A against class B, we then take the product
of these ranks across all samples. The second step is to compute a null
distribution for the rank products. This is the expected distribution if there
is differentiation between neither genes nor samples. The experimentally
observed rank product for each gene can be compared to the null distribution
which allows accurate measures of the significance level and estimation of
cutoff values (Breitling et al., 2004).

2.1 A detailed look at the algorithm

Consider some microarray data, which we may represent by an Ng × Ns

matrix measuring the expression levels of Ng genes in Ns different samples.
There are Na samples from class A and Nb from class B (Ns = Na+Nb). We
construct a matrix containing the fold-changes for all pairwise comparisons
of class A samples against class B samples (there are NaNb of these). Giving
us a matrix of fold-changes

F =

f1,1 f1,2 . . . f1,NaNb

f2,1
...

...
...

fNg ,1 fNg ,NaNb

 , (1)

where fi,j is the fold-change of gene i in the pairwise comparison j. We note
that this step is necessary only for single-channel microarrays. Two-colour
arrays measure fold-changes directly (rather than expression levels). These
latter data are described as one-class as opposed to two-class and we analyse
them in a similar way. The only difference is that we use the input data as
the fold-change matrix directly.

Next we rank the fold changes in each sample from largest to smallest
(for up-regulation) or smallest to largest (for down-regulation). Finally we
compute the rank product of gene i by taking a suitably normalised product
of the rank of that gene across all samples

ri =

NaNb∏
k=1

r
1/(NaNb)
i,k . (2)

where ri,k is the rank of gene i in comparison k.
To obtain siginificance levels for the experimentally observed rank products

(say to determine which genes are statistically strongly up-regulated) we now
need to to compare this experimentally observed value with the expected

3

distribution of rank products under the null hypothesis. Recall that our null
hypothesis is no differential expression of genes – expression levels of individual
genes are independent of one another and drawn from the same distribution
– and that all samples are independent (the expression level of gene i in
sample A is uncorrelated with the level in sample B). Unfortunately, it is not
possible to construct an analytic form for the null distribution, we therefore
construct it numerically using a bootstrap procedure. We create a random
experiment by independently permuting each sample’s gene expression vector
and calculate the rank product of all the genes in this random data. We
repeat this many times to build a distribution of rank products for the null
hypothesis.

Serial rank product analyses may be slow for a two reasons, which would
necessitate different parallelisation approaches. The first is that the data to
be analysed are very large: many genes and/or many samples. To decrease
time to solution in this case, we must make the calculation of the rank product
statistic for a single dataset faster. The second reason is that many bootstrap
samples are requested, to decrease time to solution in this latter case, we must
make calculation of bootstrap statistics faster. These two aspects naturally
lead to different parallelisation options which we discuss in section 2.2.

2.2 Parallelisation options

There are two obvious parallelisation options available to us if we wish to
speed up rank product analysis. The first is to implement a data parallel
calculation of the rank product for a single dataset. The second is to calculate
rank products in serial, but to parallelise across the bootstrap samples (a
task parallel approach).

2.2.1 Data parallel calculation of the rank product

To decide which direction we would parallelise across, we need to consider
the shape of the data. Microarray experiments typically have a small number
of samples 1 < Ns < 103 but a large number of expression measurements
104 < Ng < 107.

2.2.2 Parallelising across samples

If we distribute the input data matrix, our implementation will necessarily
require a lot of communication of the data as the following analysis shows.
Typical experimental setups will have approximately equal numbers of samples
in the two classes. Calculation of fold-changes will therefore requirement

4

movement of NsNg/2 data elements from class B to each process carrying
class A samples. There will be approximately P/2 processes with class A
samples, requiring the movement of O(PNsNg) data in total to calculate fold
changes. So this method would save absolute memory requirements at the
cost of communicating the total data P times, which does not seem like a
net win.

An alternate approach requiring less movement of data would be to
distribute the fold-change matrix. However, we would need to generate this in
serial on the master process (which has access to the input data) introducing
a bottleneck in the code. Additionally, to generate the bootstrap samples we
need the input data, rather than the fold-change data. So every bootstrap
sample would also require a serial step.

2.2.3 Parallelising across genes

The alternative approach is to distribute the rows of the data matrix across
processes. Fold changes can now be computed locally, but we must perform a
parallel sort of the fold change to rank the elements correctly. There are many
different options for parallel sorting (see Akl (1985) for an early overview).
However, recursive methods like parallel quicksort suffer because it is difficult
to load balance the work: choosing a good pivot point without communicating
excessively is not possible. Later efforts focus on heuristics for choosing better
pivots. Modern methods rely on some kind of sampling technique to choose
the pivot (Shi and Schaeffer, 1992; Helman et al., 1998). These algorithms
have good guarantees on the asymptotic worst-case behaviour of the required
data movement and show good speedup in experimental studies. When the
number of genes to be sorted, Ng ≥ P 3, a sort requires O(Ng/

√
P) data

movements. Since we must sort Ns samples, the total required data movement
is O(NgNs/

√
P). This is a factor of P 3/2 better than the previously described

approach. Bootstrap resampling would require a parallel permutation of each
gene vector, prior to the calculation of the rank product using parallel sorting.

Given this analysis, although the code complexity of parallelising across
genes would be higher, it would seem sensible to implement data parallel
distribution across genes rather than samples.

2.2.4 Task parallel bootstrapping

A simple parallelisation approach is to generate the bootstrap samples, and the
associated null distribution of rank products in parallel. We can then combine
these partial distributions into a full distribution to measure statistical

5

properties of the observed rank product.

2.2.5 Memory concerns

One reason to choose a data parallel approach over a task parallel one is that
the data do not fit into memory on a single process. At first sight it appears
that the memory usage of our algorithm is dominated by the the fold-change
matrix (O(NgNaNb) bytes), and the bootstrapped distribution (O(NgNboot)
bytes). However, a little thought allows us to eliminate both of these memory
requirements. Rather than precomputing fold-changes and ranking them all,
we can just compute the rank of one fold-change and keep a running product
of the rank product for each gene. In addition to the storage for the input
data, this requires O(Ng) temporary data.

For the bootstrap samples, we note that the statistics we are interested in
are essentially

r ri
−∞ P (x)dx. Where ri is the observed rank product of gene i

and P (x) is the bootstrapped null distribution. Rather than gathering the
whole distribution and calculating this integral at the end of the computation,
we can instead just keep a running count for each gene which we increment
after every bootstrap sample. This reduces the memory requirement of the
bootstrap phase to O(Ng) bytes. An additional advantage to this approach
is a reduction in the runtime complexity of the bootstrapping phase. If we
generate B bootstrap samples the gather and count approach has complexity
O(NgB logNgB) (sorting an array with NgB elements and then searching
for the position of Ng elements in it) whereas our approach has complexity
O(NgB logNg) (sorting an array with Ng elements and searching for Ng

elements in it, carried out B times).
Very large microarray data might have 106 expression measurements per

sample and one hundred samples. As such, we have not found it necessary
to implement a data parallel approach in this project. We have instead just
implemented parallel bootstrapping. Should future data sizes require a data
parallel approach, the method outlined in section 2.2.1 could be used.

3 Implementation

As with the other parallel functions in SPRINT, our aim is to reproduce the
serial code both in results and the interface exposed to the end user. Our
parallel implementation mimics the calling convention of the serial code, for
which a typical call might look like

6

library(RankProd)
data contains N_g rows each with N_s samples; classes
contains N_s entries indicating the class of each sample
rp <- RP(data, cl=classes, num.perm=100, logged=FALSE)
do further analysis of data

The equivalent parallel analysis with SPRINT is reproduced below, where
parallelisation is carried out across the num.perm bootstrap samples. The
change to the analysis script is minimal, we must load the parallel library,
change RP to pRP and terminate MPI at the end of the script.

library(RankProd)
load parallel library
library(sprint)
replace RP with pRP
rp <- pRP(data, cl=classes, num.perm=100, logged=FALSE)
do further analysis of data then exit MPI.
pterminate()

The R interface sets up various data structures and sanitises the input before
calling out to a C function to carry out the actual computation. Results are
computed on the various slave processes before being gathered on the master
process and returned to R.

4 Benchmark results

We report results on the XT4 configuration of the HECToR supercomputing
service. Previous work (Mitchell, 2011) has shown little difference in per-
formance between the XT4 and XE6 configurations for the communications
patterns required in this SPRINT project. Our test data are a typical microar-
ray study, measuring the expression levels of 23292 genes across 62 samples
in two classes (35 in class A, 27 in class B). Calculation of the two-class rank
product therefore requires 945 pairwise comparisons to be ranked. To study
the behaviour of the one-class rank product, we only use the data from class
A samples. Calculation of the rank product in this case ranks 35 samples.
Since the algorithmic complexity is linear in the number of samples to be
ranked, we expect the one-class rank product to be calculated approximately
27 times faster than the two-class case.

7

http://www.hector.ac.uk/support/documentation/userguide/hardware.php

4.1 Expected performance

Parallelisation of the bootstrap starts with a broadcast the input data to slave
processes, calculation of the partial distribution of rank products requires
no communication, finally further communication is required to gather the
partial counts to the master process. We therefore expect that the scaling
performance should be good: we should only see a drop-off in scaling when
the number of bootstrap samples per process becomes very low.

A note on the timing data. A measure of the wallclock time for the
execution of our parallel implementations includes two serial sections. We
must calculate the experimental rank product values for up- and down-
regulated genes in serial. We then bootstrap distributions for up- and
down-regulated genes in parallel. The maximum possible parallel efficiency
for the wallclock time of the analysis on P processes relative to a serial
calculation is

ηp =
b+ 1

b+ P
(3)

where b is the number of bootstrap samples requested. To give an indication
of the performance of our code, we plot this theoretical maximum along with
the experimentally obtained values.

4.2 Actual performance

We first look at the performance of the code when analysing one-class data.
The number of samples in this case is just the number of classes, which for
our analysis is 35. Figure 1 shows the speedup and parallel efficiency of the
whole analysis when bootstrapping 1024 and 16384 samples.

In comparison, the analysis of a similar sized two-class dataset takes
significantly longer since the number of pairwise comparisons increases. We
show results analysing data with 35 experimental samples in one class and
27 in another. This leads to 945 pairwise comparisons in the rank product
analysis. Increasing expected runtime over the previous one-class example by
a factor of around 27. Figure 2 shows the speedup and parallel efficiency of
the whole analysis when bootstrapping 1024 and 16384 samples. We have
not attempted to analyse 16384 samples in serial, although we would expect
the runtime to be around 120 hours. Note in both the one-class and two-class
analysis the initial decrease in parallel efficiency moving from one to four
parallel processes. This is due to increasing contention for memory on a
single HECToR node, note how in figure 2 the same effect is not seen for the
case of 16384 samples when moving from 16 to 32 processes.

8

1 2 4 8 16 32 64 128 512 2048 8192

Number of processors

1

5

10

50

100

500

1000

2162

S
p

e
e

d
u

p

1024 samples

16384 samples 0.13

0.4

0.6

0.8

1.0

P
a

ra
lle

l
e

ff
ic

ie
n

c
y

Figure 1 Speedup (solid lines) and parallel efficiency (dashed lines) for one-
class rank product analysis, blue lines show theoretical peak efficiency as given
in equation 3. Dataset has 23292 genes and 35 samples. Execution time on
a single core is 1100 seconds for 1024 samples and 17300 seconds for 16384
samples. In comparison, the original RankProd code requires 2100 seconds for
1024 samples.

The choice made by bioinformaticians for the number of bootstrap samples
is partly motivated by time constraints (Dunbar, 2011). However, if we wish
to report p-values to a high degree of accuracy, we need to choose a large
number of bootstrap samples. Typically, the size of the error in the measured
p-value with N bootstrap samples is 1/

√
N . Thus, if we want our p-values

to be accurate to three decimal digits, we need around 106 bootstrap sample
comparisons. Note that this is not the same as 106 bootstrap samples. Since
each bootstrap sample generates Ng rank products which we can compare
with our experimental value, if we have 104 genes, we only need 100 bootstrap
samples to get 106 comparisons. If we want four decimal digits, we need 108

comparisons and would require 104 bootstrap samples.

4.3 Performance for larger datasets

Future microarray data will measure upwards of 105 expression levels on each
sample, either exon markers, or single nucleotide polymorphisms (SNPs). If
we double the number of expression levels per sample we expect, all other
things being equal, that the runtime will increase by a factor of 2 log 2Ng

logNg
. This

is because the algorithmic complexity is O(N logN) in the number of genes.
Table 1 shows the expected and measured runtimes when we increase the

9

1 2 4 8 16 32 64 128 512 2048 8192

Number of processors

1

2

5

10

20

50

100

200

327

S
p

e
e

d
u

p

1024 samples

16384 samples

0.63

0.7

0.8

0.9

1.00

P
a

ra
lle

l
e

ff
ic

ie
n

c
y

Figure 2 Speedup (solid lines) and parallel efficiency (dashed lines) for two-
class rank product analysis, blue lines show theoretical peak efficiency as given
in equation 3. Dataset has 23292 genes and 35 + 27 samples, leading to 945
pairwise comparisons. Execution time on a single core is 26000 seconds for 1024
samples and estimated at 434000 seconds for 16384 samples. In comparison,
the original RankProd code requires 42300 seconds for 1024 samples.

number of gene expression values in our analysis. Our code shows correct
algorithmic scaling with increasing numbers of genes, and we can keep the
wallclock time to a reasonable level by increasing the number of parallel
processes.

5 Conclusions

We have successfully implemented a task parallel version of the rank product
method for analysis of microarray expression data. Since use cases suggested
that the time-consuming part of the calculation was the bootstrap of the
null distribution, we only parallelised this phase. Our implementation is
approximately twice as fast in serial as the existing RankProd package and
shows excellent parallel scaling. For large numbers of bootstrap samples our
code will run thousands of times faster in parallel on HECToR than in serial,
taking minutes, not days to deliver the results of an analysis. Development
of the code has been carried out in the main SPRINT repository and will be
incorporated into the next SPRINT release.

10

Table 1 Runtime (in seconds) for a one-class analysis with 35 samples as the
number of genes increases. Bracketed figures show the expected runtime using
timings for 23292 genes as a base if the algorithmic complexity of O(Ng logNg)
has the same prefactor for all data sizes

MPI processes 23292 genes 46584 genes 93168 genes 186336 genes
1 1077 2344 (2302) 5128 (4902) 10624 (10398)
2 553 1202 (1182) 2574 (2517) 5487 (5339)
4 287 622 (614) 1348 (1306) 2905 (2771)
8 143 314 (306) 679 (651) 1468 (1381)
16 73 168 (156) 351 (332) 754 (705)
32 38 91 (81) 179 (173) 385 (367)
64 20 53 (43) 96 (91) 204 (193)
128 11 34 (24) 53 (50) 114 (106)
256 7 24 (15) 33 (32) 69 (68)
512 5 19 (11) 25 (23) 46 (48)

5.1 Future work

Although our implementation is reasonably memory efficient, future microar-
ray data may necessitate a data parallel approach. We outlined one such
possible scheme in section 2.2.1. However, we do not expect this to be an
issue until data set sizes reach 1GB (around 1 million expression levels and
150 samples).

6 Acknowledgements

The SPRINT project is funded by a Wellcome Trust grant [086696/Z/08/Z].
Data were kindly provided by Thorsten Forster of the Division of Pathway
Medicine, University of Edinburgh.

This project was funded under the HECToR distributed Computational
Science and Engineering (CSE) Service operated by NAG Ltd. HECToR – A
Research Councils UK High End Computing Service – is the UK’s national
supercomputing service, managed by EPSRC on behalf of the participating
Research Councils. Its mission is to support capability science and engi-
neering in UK academia. The HECToR supercomputers are managed by
UoE HPCx Ltd and the CSE support Service is provided by NAG Ltd.
http://www.hector.ac.uk.

11

http://www.hector.ac.uk

References

S. G. Akl. Parallel Sorting Algorithms. Academic Press, Orlando, Florida,
1985.

R. Breitling, P. Armengaud, A. Amtmann, and P. Herzyk. Rank products: a
simple, yet powerful, new method to detect differentially regulated genes
in replicated microarray experiments. FEBS Letters, 573:83–92, 2004. doi:
10.1016/j.febslet.2004.07.055.

J. L. DeRisi, V. R. Iyer, and P. O. Brown. Exploring the metabolic and
genetic control of gene expression on a genomic scale. Science, 278(5338):
680–686, 1997. doi: 10.1126/science.278.5338.680.

D. Dunbar. Personal communication, 2011.

D. R. Helman, J. Jájá, and D. A. Bader. A new deterministic parallel
sorting algorithm with an experimental evaluation. Journal of Experimental
Algorithsm, 3, 1998.

J. Hill, M. Hambley, T. Forster, M. Mewissen, T. Sloan, F. Scharinger,
A. Trew, and P. Ghazal. SPRINT: A new parallel framework for R. BMC
Bioinformatics, 9(1):558, 2008.

F. Hong, R. Breitling, C. W. McEntee, B. S. Wittner, J. L. Nemhauser, and
J. Chory. Rankprod: a bioconductor package for detecting differentially
expressed genes in meta-analysis. Bioinformatics, 22(22):2825–2827, 2006.
doi: 10.1093/bioinformatics/btl476.

L. Mitchell. A parallel random forest implementation for R. Technical report,
EPCC, 2011.

S. Petrou, T. M. Sloan, M. Mewissen, T. Forster, M. Piotrowski, and B. Do-
brzelecki. Optimization of a parallel permutation testing function for the
SPRINT R package. In Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing, HPDC ’10, pages
516–521, 2010. doi: 10.1145/1851476.1851551.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2010.
URL http://www.R-project.org. ISBN 3-900051-07-0.

H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of
Parallel and Distributed Computing, 14:361–372, 1992.

12

http://www.R-project.org

	Introduction
	The rank product method
	Implementation
	Benchmark results
	Conclusions
	Acknowledgements

