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Abstract

We present the results of a project working on SPRINT to imple-
ment a parallel version of the random forest classification algorithm
for R. We have chosen a task parallel approach which, on typical data
sets, shows good strong scaling on the HECToR supercomputing facil-
ity to 128 processes with a speedup of 50 over the existing serial code.
Our study also indicates where further work could be carried out to
improve performance for large datasets.
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1 Introduction

This dCSE project implements a parallel version of the random forest clas-
sifier (Breiman) [2001) for use in microarray analysis within the SPRINT
framework, enabling usage on the HECToR supercomputing facility] and
other parallel machines.

R (R Development Core Team, 2010)) is an open source software package
for statistical computing and graphics. The majority of the implementation
isin the R programming language. R is an interpreted, scheme-like, garbage-
collected language. The core of R consists of the interpreter for this language,
written in C, along with the garbage collector. Additionally, a number of
core functions are written in C for performance reasons. R provides a foreign
function interface for both C and Fortran code. The C interface is richer and
allows access to R objects directly as well as the ability to call back into R.

SPRINT (Hill et al.l [2008), the Simple Parallel R Interface is a project of
the Division of Pathway Medicine and EPCC at The University of Edinburgh
to provide parallelised workflows for microarray analysis within R. The aim
is to provide functionality that is as close to existing code as possible so that
end users, typically biostatisticians, can make use of HPC resources without
altering their workflows excessively.

2 Tree classifiers

Given some data, we may wish to construct a predictive model which maps
data observations to some conclusions about the data. For example, we may
wish to classify days of the year into seasons based on observed weather
data. One way of doing this is decision tree learning (Kotsiantis, 2007)).
We use data to construct a decision tree that makes predictions about the
data. These trees are constructed using a set of training data (for which the
data classification is known) and are then used to make predictions of the
classification of unseen data.

2.1 The training data

Microarray data consists of measurements of expression levels for a large
(typically thousands to hundreds of thousands) number of genes for a num-
ber of different individuals who are either in a control group or an “infected”
group. In constructing a tree classifier, we aim to build a model that predicts
the group of an unseen individual by looking solely at the measured expres-
sion levels of their genes. With this model we might then predict whether
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an individual is susceptible to some disease.

Our training data consists of a number of data entries d = {4, ¢} each of
which is a set of attributes (gene expression levels) plus one entry describing
the class ¢ € C of the datum. Our tree classifier is a function f : A — C.
We can then classify a further datum e = { A} that is from an unknown class
by applying the function f to its attributes.

2.2 Random forests

The random forest algorithm is an ensemble tree classifier that constructs
a forest of classification trees from bootstrap samples of a dataset. The
classification of an unseen datum is the modal class of the datum over all
trees in the forest. The random forest algorithm, and the parallelised version
described in this document, apply to any type of high-dimensional data as
long as the input data are a simple numeric variables-by-cases matrix.

Random forests can be used to classify both categorical and continuous
variables. Microarray data is always continuous, since gene expression levels
are measured as a real number, however our implementation works in both
the categorical and continuous cases.

The classification method is a popular one for microarray data since it
does not just give the classification of a datum but also estimates which
genes are important, builds an unbiased estimate of the classification error
and does not overfit with increasing forest size (Breiman, [2001)).

2.3 Building a single classification tree

The construction of a decision tree is conceptually straightforward. The
tree comsists of nodes each of which splits the dataset based on the value
of some attribute. From the root node (which contains the full dataset) we
recursively split into children until some terminating criterion is reached.
This might be that the number of cases at a particular node drops below a
threshold value, or that all cases share the same class. Such a terminal node
is a called a leaf node. Once the tree is constructed we can classify an unseen
case by sending it down the tree from the root node. The predicted class is
the leaf node it ends up in.

The splitting criterion at a node is commonly to minimize the Gini index
of the split (Breiman| 1984). This is a measure of how well the split does
in reducing the mixing of classes in the child nodes: a good split will do a
better job of reducing the mixing than a bad split. An alternative to the Gini



index is to pick the split which minimises the information entropy (Quinlan,
1986, [Kotsiantis, [2007)).

2.4 Choosing variables to split on

Most decision tree classifiers are deterministic. That is, for a particular
dataset they will always produce the same tree. The trees grown by the
random forest algorithm do not have this characteristic. This is due to the
way variables are picked to split on at each node. Rather than choosing the
best split amongst all variables at each node, a fixed size random subset of
all the variables is chosen at each node. Hence an identical datum may be
classified differently by two trees grown on the same dataset.

2.5 Data parallel tree generation

A number of papers describe data parallel approaches to the generation of
decision trees (Joshi et al., [1998a,bt Shafer et al.,(1996). All these approaches
are designed around the types of data one encounters in the social sciences.
That is, a very large number of cases (hundreds of thousands or millions)
but only a small number of variables (tens or hundreds) per case. The
parallelisation strategy is then to divide up the cases equally between parallel
processes.

These algorithms do not map well onto microarray data, since the amount
of parallelism across cases is low (there are only few cases). It would be
possible to parallelise across the variables rather than the cases, however
getting good load balance in random forest generation is tricky. We only
split on a subset of the variables at each node and so some parallel processes
will have less work than others at each split.

As a result of these issues, and since the typical microarray dataset is
easily small enough to fit in the memory of a single R process (Forster,
2010), we decided not to pursue a data parallel approach. Instead we have
implemented a task parallel random forest generator for SPRINT.

3 Growing a random forest

To construct a random forest, we generate some large number (typically
thousands) of bootstrap samples of our original dataset and grow a classifi-
cation tree for each of these samples. The data in the original dataset are
then classified by sending them down each of these trees and selecting the



modal class. That is if 100 trees vote that case A is infected, while 900 trees
vote that it is a control, the classification is as a control.

Generation of trees from each of the bootstrap samples can be carried
out independently with the results combined at the end. As such we can
naturally formulate a task parallel version of the algorithm by distributing
the bootstrap samples amongst parallel processes and combining results at
the end.

4 A task parallel implementation

Having decided on a task parallel implementation, and since one of the aims
of the SPRINT project is to provide a drop in parallel replacement for a serial
code, we decided to reuse the existing R code for serial random forest gener-
ation. Our implementation therefore exactly mimics the calling conventions
and results of the serial code.

4.1 Distributing the work

A typical serial call to generate a random forest in R is something like

library(randomForest)

# data contains N rows each with M wvariables

# classes contains N entries, each one corresponding to the
# classtification of a Tow of data

rf <- randomForest(x=data, y=classes, ntree=5000, ...)

# do further analysis of data

The parallelism here is available in the ntree argument which tells us
how many trees the forest will contain. Our task parallel approach divides
up the trees equally between available processes, generates these subforests
in parallel and then combines them into a larger forest which is returned on
the master process. The R interface is almost completely unchanged, the
script now looks like

library(randomForest)
# load parallel library

library(sprint)
# replace randomForest with prandomForest
rf <- prandomForest(x=data, y=classes, ntree=5000, ...)

# do further analysis of data then exit MPI.
pterminate ()



4.1.1 Sending R objects over MPI

R’s data structures are not simple chunks of memory that can be easily sent
to and fro over MPI. The basic datatype is a SEXP, which is a pointer to a
struct

typedef struct SEXPREC {
SEXPREC_HEADER;
union {
struct primsxp_struct primsxp;
struct symsxp_struct symsxp;
struct listsxp_struct listsxp;
struct envsxp_struct envsxp;
struct closxp_struct closxp;
struct promsxp_struct promsxp;
+oug
} *SEXP;

Depending on the tag bit in the object header, the offset of the data can
vary. Furthermore, to obtain all the data in (say) the listsxp_struct type,
we need to walk the list. Hence, we cannot do something like:

SEXP foo = ...; /* Initialize foo somehow */
MPI_Send(&foo, sizeof (SEXP), MPI_BYTE, ...);

Fortunately, R has a serialisation mechanism for writing and restoring
objects to disk between sessions. Although there is no public C interface to
this feature, we can access it through R. The serialised object is an array of
bytes with a header. To exchange the information, we just need to send the
raw bytes and unserialize at the receiving end. So to send some data, we
use

SEXP foo = ...; /* Initialize foo somehow */
SEXP bar = serialize_form(foo);

int length = length(bar);

MPI_Send(&length, 1, MPI_INT, ...);
MPI_Send(RAW(bar), length, MPI_BYTE, ...);

On the receiving side, we just do the inverse

SEXP foo;
SEXP bar;



int length;

MPI_Recv(&length, 1, MPI_INT, ...);

/* Allocate space for length bytes in bar */
MPI_Recv(RAW(bar), length, MPI_BYTE, ...);
foo = unserialize_form(bar);

4.2 Combining the results

Subforests generated on each worker process are combined at the end of
the run into one large forest that is returned on the master process for
further serial analysis. Our first implementation of this used a simple linear
algorithm. We gathered all the data onto the master process and combined it
there. Benchmarking this algorithm on more than 32 processes demonstrated
that a significant amount of time was spent in the combination stage, limiting
scalability. Interestingly, sending the data was not the bottleneck, but rather
the linear complexity algorithm used to combine the results.

The combine operator is associative, so the most natural way to do this
in an MPI environment is the MPI_Reduce function. Unfortunately, this does
not work for our purposes. The object we wish to combine changes size at
each level, which means we do not know what value to give as the COUNT
argument to MPI_Reduce. Instead, we have written our own tree reduction
code that applies the combine operator in parallel. Our implementation is
sufficiently general to be usable in other parts of SPRINT where appropriate.
We use a function signature similar to that of MPI, although the count and
datatype arguments are unnecessary, since R objects are tagged with a

type.

void reduce(SEXP in, SEXP *out, SEXP (*combine_fn) (SEXP, SEXP),
int root, MPI_Comm comm)

4.3 Comparison with previous work

There are a number of existing task parallel implementations of the random
forest algorithm. For example (Topi¢ et al., 2005 |Schwarz et al., 2010]) both
describe stand-alone programs for random forest classification. Additionally,
the foreach package (REvolution Computing, 2009) can be used to gener-
ate random forest in parallel, although the user has to do more work by
hand than in our script. None of these parallel implementations carries out
combination of results in parallel, instead they all use a gather-to-master
approach. As we show later, for our analysis using a serial gather-to-master
approach introduced a bottleneck that a tree-reduction has avoided.



5 Performance results

We report performance results of our implementation on both the XT4 and
XT6 incarnations of HECToR. The former consists of quadcore nodes, the
latter of 24 core nodes as four hexcore dies. We find the performance does
not vary significantly between the systems.

5.1 Datasets used

We have tested our code on a microarray dataset containing 62 individual
cases each described by 23292 genes. This is a typical sized microarray data.
We have also constructed larger datasets by replicating (with noise) the rows
or columns of the data.

5.2 Comparison of combination algorithms

We first present the timing behaviour of the two different combination algo-
rithms described in section 4.2l Recall that the initial implementation used a
simple linear approach combining all subforests on the master process. Our
final implementation uses a tree reduction that carries out the combination
of results in logarithmic rather than linear complexity. Figure [I] shows the
walltime for generating a random forest of 5000 trees using both linear and
tree-reduction algorithms for combining the data.

5.3 Memory contention

When running in parallel on a multicore node we observe a severe perfor-
mance degradation when processes share the same memory bus, even if there
is no communication of results at all. This is a particular issue for the XT6
incarnation of HECToR with 24 cores per node. When running multiple in-
stances of the serial code simultaneously on a single node, we see a significant
degradation in the performance. The 24 cores of an XT6 node are divided
into four hexcore dies. As long as only a single process is placed on each die,
performance does not suffer. However, when we place multiple processes on
a die, we see a drop in performance. When two processes are placed on each
die, time to solution increases by 7%, with four processes this rises to 13%
and if the dies are packed (24 processes on a node) we experience a 17% drop
in performance over a single process. This suggests it may be worthwhile
to tune the memory access patterns and serial performance of the random
forest code before investing more time in parallel scaling.
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Figure 1: Comparison of the effects of logarithmic and linear forest combina-
tion algorithms. The data used here have 23292 genes and 248 cases. Note
that the code using a serial combination of results on the master only scales
to 64 processes, whereas when combining in parallel allows good scaling to
256 processes.

5.4 Generating forests faster

Microarray data from a given experiment is a fixed size. As such, the parallel
scaling performance we are most interested in is strong scaling. That is, faster
time to solution for a fixed size input with an increasing number of parallel
processes. Modulo memory contention issues (see section , reducing the
number of trees in a forest decreases the time to generate the forest linearly.
Figure 2| shows the linearly increasing time to solution with increasing forest
size.

This means that if we can balance the trees to be generated equally
across all processes, we will get good strong scaling behaviour of the forest
generation step. To obtain good overall scaling, we then need to ensure
that the communication and computational overheads of broadcasting the
data and combining the results are low. Broadcasting the data from the
master process can be carried out with MPI_Bcast. We therefore rely on
the vendor’s MPI implementation doing this efficiently. Our approach for
combining results has already been described in section [5.2

Figure [3] shows the scaling behaviour of our code when solving a fixed
size problem on an increasing number of parallel processes. We see good
parallel efficiency up to 64 processes, giving a speedup of around 40 over
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Figure 2: Time to solution for serial generation of random forests as the
forest size increases. Dashed line shows expected timings if doubling forest
size exactly doubled execution time, indicating that we will get good parallel
speedup if we can distribute forest generation between processes.

the same serial code on HECToR. Results are essentially identical on both
the XT4 and XT6. On 64 processes, generation of this random forest takes
approximately 9 seconds, rather than 390 seconds in serial.

5.5 Weak scaling in forest size

If we increase the size of the forest, but wish to generate the result in the
same amount of time as previously we can do so by increasing the number
of parallel processes. If our implementation has good weak scaling charac-
teristics then (as shown in figure [2) when doubling the number of trees in
the forest we should be able to double the number of parallel processes and
obtain results just as quickly. Figure [4] shows the parallel efficiency of our
implementation when increasing the size of the forest. Recall (section
that a significant proportion of the inefficiency comes from poor memory ac-
cess performance. Even without any communication overheads, contention
for memory bandwidth on the local nodes causes a slowdown when running
in parallel.

10
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Figure 3: Parallel speedup (solid) and efficiency (dashed line) in the gener-
ation of a random forest with 8192 trees on both the XT4 and XT6

5.6 Weak scaling in dataset size

There are two different dimensions in which we can increase the size of the
dataset. Either the number of cases we’re considering or the number variables
measured. The former is experimentally expensive in microarray data (it’s an
additional person). The latter is less expensive, it corresponds to measuring
the expression levels of more genes.

Increasing the number of variables per case results in a linear increase
in time to solutionﬂ On a system with 4GB of RAM we can run a serial
analysis with a dataset of around 700MB (1.5 million genes and 62 cases,
see figure . Larger than this and the system starts swapping, leading to a
serious performance drop off.

If we increase the number of cases, but hold the number of variables
constant, then the time to solution increases faster than linearly. As a result,
if we double the number of cases, we need to more than double the number
of parallel processes to compensate.

6 Conclusions

We have implemented a task parallel version of the random forest algorithm
for use in R using the SPRINT library. For typical use cases, we can ob-

! As long as all the data structures fit in RAM
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Figure 4: Parallel efficiency with a constant number of trees per parallel
process. An ideal implementation would have a parallel efficiency of one for
all job sizes

tain a speedup of around 40 over the same serial code on HECToR. Rather
than implementing the algorithm from scratch, we used an existing serial
implementation and added a parallel wrapper around it. Unlike other task
parallel packages for R, we also implemented a tree-reduction algorithm to
combine results in parallel rather than serial. This had a surprisingly large
effect on the overall performance. Our interface exactly mimics the existing
serial implementation: modifying existing serial R scripts to take advantage
of this functionality is trivial.

Our implementation shows both good strong and weak scaling charac-
teristics, but has demonstrated a number of areas where the existing serial
implementation for R is suboptimal. A future useful area of work may be to
incorporate a better serial library for random forest generation into R.

Development of the code has been carried out in the main SPRINT repos-
itory. It is already available to developers and will ship as an R package in
a forthcoming release of SPRINT.

6.1 Future work
6.1.1 Serial performance

As previously mentioned, the serial random forest implementation available
in R has been written with data from the social sciences in mind: large

12
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Figure 5: Effect of increasing the number of variables per case on the serial
time to solution. Red curve shows linear time increase, indicating that in-
creasing the number of processes along with the data should give a a constant
time to solution.

numbers of cases and few variables per case. This is the exact opposite of
the type of data seen in microarray analysis. As a result, the code is not
very efficient when dealing with microarray data, especially as the number
of variables becomes very large.

These issues with large microarray data have previously been reported
in (Ziegler et al., 2007; |[Schwarz et al., 2007). The random jungle package
(Schwarz et al., 2010) has been expressly written to avoid these problems.
At present, no R interface exists to this new package. If such an interface
were developed we could usefully leverage the better performance within our
parallel framework.

6.1.2 Data parallelism

Our implementation cannot handle huge datasets, since we are limited by
the memory in a single R process. However, as discussed in section data
parallel algorithms for generating classification trees do exist. It should be
possible to adapt these for use with typical microarray data given some time
and thought. In addition, the random jungle library claims to be much more
memory efficient (Schwarz et al.l 2010) than current R implementations of
random forest which should allow for larger datasets to be analysed without
resorting to a data parallel approach.

13
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