
T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Project Title SPRINTing with HECToR

Document Title SPRINT – D3.2 Final project report

Authorship Savvas Petrou (SP)

Document Filename SPRINT-D3.2 Final report

Document Version v1.0

Distribution Classification DPM-EPCC-NAG-Internal

Distribution List Project Board; Project Team; NAG

Approval List Project Board



Abstract

In this report the outcome of the distributed Computer Science and Engineer-
ing (dCSE) project “SPRINTing with HECToR” is presented. The objective of the
project was to port the SPRINT R package on HECToR and implement two parallel
functions that perform well for process counts of up to 512.

In the first work package the performance of an already parallelised version of a
correlation function was investigated. After identifying the bottlenecks a new par-
allel implementation was developed. The new version takes advantage of the high
performance file system on HECToR to solve the bottlenecks of the original imple-
mentation. The second work package parallelises a permutation testing function. A
suitable serial implementation was first identified and then extensively analysed. A
parallel approach was then implemented.

The benchmarks performed on the HECToR system showed very good scaling
behaviour for both functions.
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1 Introduction

As mentioned in the dCSE [1] proposal ‘SPRINTing with HECToR‘ [2], the analysis of
genetic data requires large amounts of computational processing power and memory to
complete. The last few years have seen the widespread introduction of high throughput
and highly parallel experiments in biological research. Microarray-based techniques are
a prominent example, allowing for simultaneous measurement of thousands to millions of
genes or sequences across tens to thousands of different samples. These studies generate
an unprecedented amount of data and test the limits of existing bioinformatics comput-
ing infrastructure. Emerging whole genome associative studies and clinical projects will
require from several hundreds to several thousands of microarray experiments. Microar-
ray experiment repositories such as GPX-MEA [3] and ArrayExpress [4] are continuously
growing in size but the research community is lacking the computing resources to analyse
and extract novel scientific knowledge from the data contained in these databases. This
trend is expected to continue as advances in technology are continually contributing to
an increase in the amount of data to be analysed. Increase in coverage allows for more
gene sequences to be analysed on one single array. The reducing cost of this technology
has also fuelled its popularity. As a consequence an even larger amount of data is being
produced. A popular free statistical software package for carrying out the data analysis
is R [5]. R was identified as one of the key pieces of code used by the Bio Life Sciences in
a recent BBSRC [6] consultation.

Recently, EPCC [7] along with the Division of Pathway Medicine (DPM) [8], designed
and built a prototype package for R, called SPRINT [9], which parallelised a key statistical
function of use to genomic analysis [10]. This prototype successfully demonstrated that
parallelised statistical functions could be interfaced with R, providing biologists with an
easy route into HPC. The aim of SPRINT is to require minimal HPC knowledge, minimal
changes to existing R scripts, and yet give maximum performance. SPRINT is written
in C and MPI [11] and as such should be portable to a number of platforms, from multi-
core desktops, University-scale clusters, to national HPC services, such as HECToR [12].
Whilst SPRINT was designed to run on a number of hardware platforms, porting SPRINT
onto HECToR would be a big advantage and will facilitate future grant applications from
a number of communities. We are and will publicise SPRINT heavily as part of existing
projects and as a result SPRINT has already appeared in a number of publications [13, 14].

This dCSE project ported SPRINT to HECToR, optimised key routines, and added
additional functionality. The purpose of this report is to present the outcome of the
parallelisation and optimisation process of two parallel functions implemented for the
SPRINT package. The aim of the first work package [15] was to investigate the scaling
of the currently available parallel correlation function and implement a new version that
scales for 512 processes. The second work package [16] aimed to implement a parallel
version of a permutation testing function that also scales for 512 processes.

In Chapter 2 background information on R, SPRINT and the HECToR system are
given. Chapter 3 explains how the SPRINT package can be installed on the HECToR
system. In Chapters 4 and 5 the parallelisation of the two functions is explained in detail.
The last chapter, Chapter 6, summarises the achievements and suggests future plans for
the SPRINT project.
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2 Background

2.1 The R statistical language

R is an interpreted programming language and a statistical environment. It is an open
source GNU package which is similar to the S language and environment. Over the past
few years the R community has grown significantly and many new libraries are developed
and published on a monthly basis. In its current release, R offers no inbuilt parallel
features, something that makes it difficult to use with HPC resources. In recent years,
a few open source groups in the R community have got involved in an ongoing effort to
develop packages [17, 18, 19, 20, 21] that enable parallelism in R. SPRINT is one of these
packages.

2.2 The SPRINT R package

The Simple Parallel R INTerface is an R package that offers both a parallel functions
library and an interface for adding parallel functions to R. SPRINT started as a three
month project in 2007 with the primary aim to prove that a package could offer easy
access to HPC resources through the R language. The current project started in April
2009 and is a two years project funded by the Wellcome Trust [22]. Its primary target is
to extend the functionality of SPRINT. The SPRINT project is a collaboration between
two departments of the Edinburgh University, the Edinburgh Parallel Computing Centre
(EPCC) [7] and the Division of Pathway Medicine (DPM) [8].

The SPRINT package is based on three components, the R statistical language pack-
age, the C language and the MPI parallel programming interface. Extending the currently
available package requires the knowledge of all three.

2.3 HECToR

For the tests and benchmarks of the new parallel functions the UK National Supercom-
puting service, the HECToR Cray XT system [12], was used. At the time of writing the
configuration of the system (Phase2a) consists of 1416 compute blades, each having four
quad core processor sockets. The CPUs used are AMD 2.3 GHz Opteron chips with 8 GB
of memory. This gives a total of 22,656 active cores with a total of 45.3 TB of memory
and a theoretical peak performance of 208 TFLOPS.

Additionally the system also incorporates a vector Cray X2 system. This system
has 28 vector compute nodes, each having four Cray vector processors sharing 32 GB of
memory. This gives a total of 112 vector processors and a total memory of 896 GB of
memory. The theoretical performance of each Cray processor is 25 GFLOPS which gives
a total of 2.87 TFLOPS.
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3 Compiling SPRINT on HECToR

On HECToR the R package (version 2.9.2) is available as a third party software. Un-
fortunately, in order to successfully compile and use SPRINT a new R installation is
required. The back-end system has no support for the system shared libraries and the
dynamic loading of SPRINT fails due to dependencies. These dependencies involve the
MPI library and the Portals network protocol.

In more detail, the libportals.so.1 shared object is not currently available on HEC-
ToR. Moreover, the corresponding static library libportals.a can only be used to pro-
duce executables. Static libraries intended for use with shared objects must be compiled
with the Position Independent Code (-fPIC) option enabled. The static library is not
compiled with this option enabled and thus it cannot be used.

Figure 1 shows how the new R installation manages to resolve the static library issue
by using the interpreter executable. When the executable is compiled the following options
are passed to the GCC compiler :

-Wl,--whole-archive -L/opt/xt-service/2.1.56HDB/lib/snos64/ -lportals

These options will enforce the static library inside the interpreter executable and make
it available to SPRINT. A dummy shared object is also needed in order to satisfy the
shared object dependency when SPRINT is dynamically loaded. A detailed installation
guide explaining how the R interpreter is compiled can be found on SPRINT website
[9]. In the near future a new, compatible installation of R is expected to be available on
HECToR which will also include SPRINT as a pre-installed library.

sprint.so

dynamic load

libmpich.so.1.1

dynamic load

R (binary)

libpmi.so libalpslli.so.0 libalpsutili.so.0 libportals.so.1

libportals.a

dummy shared object

actual code used

dynamic load

Figure 1: HECToR shared object diagram.
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4 Parallel correlation function: pcor

In the first SPRINT project [10] Hill et al made an attempt to parallelise the Pearson’s
pair-wise correlation function (Eq. 1).

ρ =
COV (X,Y )

√

V AR(X)V AR(Y )
=

n
∑

i=1

(Xi − X)(Yi − Y )

n − 1
√

√

√

√

√

√

n
∑

i=1

(Xi − X)2
n

∑

i=1

(Yi − Y )2

n − 1

(1)

The results from the benchmarks on the Edinburgh Compute and Data Facility [23]
showed a poor scaling for executions with more than 4 processes. The first step performed
in this dCSE project was to benchmark Hill’s parallel implementation of pcor on HECToR
using the same datasets and parameters.

Hill et al’s implementation performs the following steps:

• Step 1: The master process broadcasts the input dataset to all worker processes.

• Step 2: The worker processes are assigned one row at a time. They compute the
correlation coefficients of that row with every other row of the input dataset and
store the coefficients into a local buffer.

• Step 3: When the work assignment is finished they send their results back to the
master process and request a new row. The master process will receive the results
and assign work to the process as long as more work is available. When all results
are computed the master terminates the worker processes.

• Step 4: The final step is to write the results into an output file. All correlation
coefficients are stored on the master process thus this step is performed in serial.
The write out is executed using the write.table R function.

The benchmarks were executed with a dataset containing 11,001 rows (genes) and
320 columns (samples). In Table 1, the timings measured are shown. Figure 2 shows a
graphical representation of the scaling.

The observations drawn from there results are:

1. The scaling of the computational kernel stops when more than 64 worker processes
are used.

2. The code fails when more than 256 processes are used.

3. The write out step is not scaling due to its serial implementation and it also con-
sumes a significant amount of time.
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Process Input data Computational Write to file
count broadcast kernel

1 0.028 103.824 240.810
2 0.052 54.890 240.119
4 0.075 31.317 241.812
8 0.096 16.861 241.709

16 0.137 9.980 241.475
32 0.147 6.589 241.671
64 0.168 4.888 241.680

128 0.186 4.259 242.276
256 0.197 4.188 241.406
512 — — —

Table 1: Profile of original pcor implementation.
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Figure 2: Profile of original pcor (Broadcast times are so low in comparison to other times
and hence cannot be seen on the graph).
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In addition to the previous list the following implementation observations where noted:

1. The size of the entire coefficients array is many times larger than the input dataset.
This creates a need for sufficient memory space on the master process and signifi-
cantly limits the amount of input data the implementation can handle.

2. Sending the results back to the master processes after each work assignment can
potentially overload the master and queue pending requests for a significant amount
of time. This will cause worker processes to block and wait, thus wasting useful
processing time.

3. The code recomputes a few of the parameters needed by the Pearson’s correlation
rather than storing and reusing them.

4.1 Proposed parallel algorithm

In this next section the parallelisation strategy is explained.

The writing of the output file in the original parallel implementation is carried out by
the master process only. As mentioned earlier, the worker processes send their results to
the master process after each work assignment is finished. The issues arising from this
implementation are:

1. The master process must have sufficient memory to store the entire results array.
This array is a square symmetric array with a rank value equal to the number of rows
of the input array. This is a limiting factor for the size of data the implementation
can process.

2. A large amount of data are exchanged during the computational kernel, something
that has a negative effect on the response time of work requests.

The solution is to take advantage of the parallel I/O support of the MPI [11] library.
By introducing parallelism on the write process both issues can be addressed efficiently.
The correlation coefficients will be stored locally on the worker processes and written
into the file in parallel and collectively. The master process will no longer need to store
the entire results array since the results will be distributed among the worker processes.
The parallel write will take advantage of the high performance features of the Lustre file
system on HECToR and reduce the time needed by the write out step. Moreover, it
will scale as the number of processes increases until the point where the maximum I/O
throughput of the underlying file system is reached.
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MPI-I/O however, can only handle files in a binary format. By using binary repre-
sentation MPI-I/O can locate, read and write values arbitrary in the file. It is also able
to split the file into non overlapping sections among the worker processes and perform
time and bandwidth efficient collective reads and writes. Both the C language and the R
environment use the same binary representation of data thus the files created at C level
using MPI-I/O can be handled using the R package binary file functions.

The writing out of the results into a file will enable the new implementation to pro-
cess input arrays that produce large results arrays. By adding more worker processes the
collective memory increases and thus more memory is available for storing results. How-
ever, the size of the input data has a limit. The memory available for storing correlation
coefficients on each worker process depends on the size of the input. Equation 2 gives
an estimate of the minimum number of worker processes needed in order to successfully
process an input data set with dimensions (rows × col).

worker count =
(col ∗ col ∗ 8)

mem − (col ∗ rows ∗ 8) − (col ∗ 4 ∗ 8)
(2)

Note: The memory is counted in bytes. All arrays/vectors contain double precision
values (8 bytes).

The (col∗col∗8) factor represents the size of the final results array. Factor (col∗rows∗8)
represents the size of the input data set and factor (col ∗ 4 ∗ 8) represents an estimate of
all temporary memory needed. Dividing the size of the results array to the available, for
results only, memory on each worker process, gives an estimate of how many workers are
needed in order to have sufficient collective memory. When the size of the input dataset
is large enough to occupy a significant amount of memory, the computation might not be
possible. Nevertheless, the size of input dataset this new parallel implementation will be
able handle is increased many times.

The theoretical minimum worker counts for a few input datasets can be seen in Table
2. The numbers apply to the current system configuration of HECToR (see Section 2.3).

Input array Final Minimum No
dimensions and size array size of workers

11, 000 × 320 923.15MB 1
26.85MB 0.9GB

22, 000 × 320 3, 692.62MB 2
53.7MB 3.6GB

35, 000 × 320 9, 346MB 6
85.44MB 9.12GB

100, 000 × 320 76, 293.94MB 47
244.14MB 74.50GB

300, 000 × 320 686, 645.5MB 590
732.42MB 670.55GB

Table 2: Theoretical minimums for pcor code.
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The ease of use of the binary output file was investigated. The R FF package [24] offers
a memory mapped file support for the R environment. It uses the C library support for
memory mapped files to open, read and write binary files. The structure of the binary files
FF can manipulate is identical to the file structure created by the parallel implementation.
This means that the output file created by MPI-I/O can easily be handled in R through
the use of an FF object. When the writing of the final results array finishes, and the
control returns back to the R environment, an FF object will be created and the handle
returned to the user. Using this handle the user can read and write the contents of the
file as if it was a normal R array in memory.

4.2 Parallel implementation

Based on the proposed parallel algorithm the necessary changes were made to the original
parallel implementation. The correlation coefficients are now stored locally and written
into the file in parallel at the end. The new implementation performs the following steps:

• Step 1: The master process broadcasts the input dataset to all worker processes.

• Step 2: The worker processes are assigned one row at a time. They compute the
correlation coefficients of that row with every other row of the input dataset and
store the coefficients into a local buffer.

• Step 3: When the work assignment is finished they notify the master process. The
master process will assign a new row to the worker as long as more work is available.
When all results are computed the master notifies the worker processes by assigning
them a negative index. All processes will then proceed to the next step.

• Step 4: The final step is to write the results into the output file. This step is
performed using the MPI-I/O functions.

The worker processes store information on which rows they computed in order to be
able to write them in the correct positions in the file. Figure 3 shows an example of how
the local results map to various sections of the final output file. Using the MPI datatype
MPI Type indexed, each process describes the sections of the file that its results map
onto. Afterwards, a call to the MPI File write all function will gather and write the
results into the file collectively and in parallel.

.

.

.

Figure 3: Parallel I/O in pcor.
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The interface of the new parallel function is:

pcor(x, caching_ = "mmeachflush", filename_ = NULL)

Compared to:

cor(x, y = NULL, use = "everything",

method = c("pearson", "kendall", "spearman"))

The optional parameters caching and filename are FF object parameters. If they
are omitted the default values shown above will be used. When the filename parameter
is omitted, a temporary file is created and later deleted when the FF object is closed.

The current parallel version of pcor implements one of the three correlation coef-
ficients the serial cor function offers, the Pearson’s pair-wise correlation. The method

parameter, which is used for choosing method, is thus not available in the parallel imple-
mentation. Moreover, there is no support for correlating the rows between two arrays.
The y parameter, which is used to specify the second array, is also not available. The use
parameter specifies the method for computing the correlation in the presence of missing
values. This parameter is again not available in the current parallel version.

Following the success of the new parallel implementation, the remaining functionality
of the correlation function will be added in future releases.

4.3 Results

Table 3 shows the timings of the new implementation and Figure 4 shows the new runtime
profile. Because of the parallel I/O the runtime profile has changed significantly. The
computational kernel is now scaling linearly for process counts up to 512 and the time
taken by the write process is reduced by more than 200 times.

Process Input data Computational Write to file
count broadcast kernel

1 0.028 100.402 0.013
2 0.049 54.498 1.689
4 0.074 34.228 1.806
8 0.097 17.159 1.508

16 0.113 8.594 1.249
32 0.141 4.321 1.103
64 0.177 2.179 1.127

128 0.179 1.114 1.178
256 0.191 0.555 0.957
512 0.213 0.305 0.992

Table 3: Profile of new pcor implementation.
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According to the write out timings measured, the 12 I/O nodes on HECToR can
deliver a bandwidth of approximately 1 GB/s.
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In addition, benchmarks were executed to test the size of input data set the new
implementation can process. Table 4 shows the total run time of pcor for various input
data sets. The produced final arrays are very large and cannot fit in a single processor
memory. These executions fail to complete using the previous implementations of the
correlation function due to memory limitations. All executions were performed with 256
processes.

This new parallel implementation is able to process data sets that were impossible to
process using the previous parallel or serial version of the function. Moreover, the code
takes a reasonable run time to perform the computations.

Input array Final array Total runtime
dimension and size dimension and size (in seconds)

35, 000 × 320 35, 000 × 35, 000 36.64
85.44MB 9.12GB

35, 000 × 3200 35, 000 × 35, 000 68.40
854.49MB 9.12GB

35, 000 × 5000 35, 000 × 35, 000 98.46
1335.14MB 9.12GB

45, 000 × 320 45, 000 × 45, 000 40.18
109.86MB 15.08GB

45, 000 × 3200 45, 000 × 45, 000 123.79
1098.66MB 15.08GB

45, 000 × 5000 45, 000 × 45, 000 171.35
1716.61MB 15.08GB

Table 4: Processing time of pcor for various input datasets.
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5 Parallel permutation testing function: pmaxT

A permutation test is one of the statistical analysis methods used for measuring the
statistical significance of data sets. It quantifies how likely it is to obtain data with the
same properties as the one being tested, should the experiment be performed again. The
serial function chosen to be parallelised in this dCSE project is the mt.maxT [25] function
from the multtest [26] package. It computes the adjusted p-values for step-down multiple
testing procedures, as they are described in Westfall and Young [27].

The main limiting factor of a permutation testing function is the count of permuta-
tions. As the count increases, the run time of the function becomes excessively costly. The
precision of the statistical significance depends on the count of permutations. Ideally, one
would like to perform the complete permutations of the data set in order to get a value
as precise as possible. However, the count of complete permutations can get remarkably
high for even small data sets (multiple millions or billions). For such a high count the
serial implementation will need days to perform the complete permutations.

In Table 5 the estimated total run times for a few cases are shown. Executions with
lower permutation counts (2000, 3000 and 5000) showed that the time taken by the
function is increasing linearly as the count increases. According to these measurements
the timings in Table 5 were estimated.

Input array Permutation Serial runtime
dimension and size count (estimate)
(genes × samples) (in seconds)

36, 612 × 76 500, 000 20,750
21.22MB (6 hours)

36, 612 × 76 1, 000, 000 41,500
21.22MB (12 hours)

36, 612 × 76 2, 000, 000 83,000
21.22MB (23 hours)

73, 224 × 76 500, 000 35,000
42.45MB (10 hours)

73, 224 × 76 1, 000, 000 70,000
42.45MB (20 hours)

73, 224 × 76 2, 000, 000 140,000
42.45MB (39 hours)

Table 5: Processing time of mt.maxT for various input datasets and permutation counts.
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5.1 The serial implementation

The mt.maxT function supports six statistic methods.

• t: Tests based on a two-sample Welch t-statistics (unequal variances).

• t.equalvar: Tests based on two-sample t-statistics with equal variance for the two
samples.

• Wilcoxon: Tests based on standardised rank sum Wilcoxon statistics.

• F: Tests based on F-statistics.

• Pair-T: Tests based on paired t-statistics.

• Block-F: Tests based on F-statistics which adjust for block differences.

The serial code implements two permutation generators. One for random and one for
complete permutations. Moreover, it supports six statistic methods, used for testing the
null hypothesis of no-association between the class labels and the variables. Both gener-
ators are used with all six statistic methods. In addition, the user can choose whether
to save the permutations in memory prior to the computations or compute them one
at a time. Taking into consideration all options there are 24 combinations of genera-
tor/method/store. For four of the statistic methods the same generators can be used.
Figure 6 shows how many combinations are implemented.

For a few of the cases (combinations 2, 6, 10 in Figure 6) the execution paths are iden-
tical. When the complete permutations generator is used, the implementation never saves
the permutations in memory. Although the user can select this option, it is implemented
using the on-the-fly generation of permutations. In a similar way, the permutations for
the Block-F statistic method are never stored in memory either. The option is again
available to the user but it is implemented using the on-the-fly generator. The number of
distinct combinations implemented in the code are therefore eight (combinations 1, 3, 4,
5, 7, 8, 11 and 12 in Figure 6).

14
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Figure 6: Combinations of mt.maxT function
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5.2 Proposed parallel algorithm

In order to produce the exact same results as the serial implementation the permutations
performed by each process have to be selected with care. Figure 7 shows how the per-
mutations are distributed among the available processes. The first permutation uses the
initial labelling of columns and it should only be taken into account once by the master
process. All other processes will skip this permutation. In addition, the generator on each
process needs to be forwarded to the appropriate permutation. An additional variable
will be passed to the initialisation function and depending on its value the generators will
waste a number of cycles and initialise their generators to the appropriate permutation.

Serial permutations

Parallel permutations

1 2 3 4 65 7 22158 9 16 23

1 2 3 4 65 7 8 9 15 16 22 231 1 1

Skip

Figure 7: Permutations generator forward logic

All processes will need to have a copy of the whole data set and also know the options
the user selected. Before the computations take place, the data set and the user options
will be broadcast to all processes. Moreover, at the end of the computational kernel
the partial observations will be gathered on the master process. According to these
observations the final p-values will be computed.

5.3 Parallel implementation

The parallel implementation performs the following steps:

• Step 1: The master process executes a pre-processing R script to check the format
of the input data set and the correctness of the options chosen by the user.

• Step 2: All processes, apart from the master, allocate memory to accept the user’s
options. A few of these options are strings, thus the master needs to broadcast
their lengths first. Along with the lengths, all the scalar integer options are also
broadcast for convenience. The values are received in a statically allocated buffer
vector (necessary to ensure that they can be received). All dynamically allocated
memory is then allocated, initialised and checked.

• Step 3: A global sum is performed to synchronise all processes and ensure that the
necessary memory is allocated.
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• Step 4: All processes initialise their generators and compute their local observa-
tions.

• Step 5: The master process gathers all partial results and computes the raw and
adjusted p-values. The computed values are saved in a memory space allocated by
the pre-processing script in the R environment. This is necessary in order for the
values to be returned back to R when the computations are finished.

• Step 6: All processes free their dynamically allocated memory.

The processes in this parallel implementation communicate only at the beginning of
the function and at the end. When the main computational kernel executes, processes have
no dependencies. The parallel version has an additional step between the pre-processing
step and the call to the kernel. This new step broadcasts the data to all processes and it
is also responsible for gathering the data and computing the final results.

The second major change was to make sure the generator is initialised correctly. The
necessary changes on the generator interface were made and code was added for wasting

cycles when needed. Code was also added to make sure that only the master process
executes the first permutation the generator returns.

The interface of the pmaxT is identical to the interface of mt.maxT. All functionality
was successfully ported to the parallel version:

pmaxT(X, classlabel, test = "t", side = "abs", B = 10000,

na = .mt.naNUM, fixed.seed.sampling = "y", nonpara = "n")

Compared to:

mt.maxT(X, classlabel, test = "t", side = "abs", B = 10000,

na = .mt.naNUM, fixed.seed.sampling = "y", nonpara = "n")

Parameters test, side, fixed.seed.sampling, B, na and nonpara are optional. If
omitted, the default values shown above are used. The description of the input parameters
follows.

• X : The input dataset array.

• classlabel : The class labels of the columns of the input dataset.

• test : The method for statistics, used for testing the null hypothesis.

• side : The type of rejection region. Available options are abs for absolute difference,
upper for the maximum and lower for the minimum.

• fixed.seed.sampling : The choice between computing the permutations on the fly
or save all permutations in memory prior to computations. Available options are y

(yes) for the on the fly generator and n (no) for storing them in memory.
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• B : The number of permutations. When this value is set to 0, the code will try to
perform the complete permutations of the data. In case the complete permutations
exceed the maximum allowed limit, the user is asked to explicitly request a smaller
number of permutations.

• na : The code for missing values. All missing values will be excluded from the
computations.

• nonpara : The option for non-parametric test statistics. Available options are y

for yes and n for no.
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5.4 Results

The first graph (Figure 8) shows the runtime profile of the parallel version. The graph
is in logarithmic scale in order to be able to observe the behaviour of all sections timed,
even the ones that consume very little time. The benchmarks are performed using a data
set with 6102 rows (genes) and 76 columns (samples), executing a permutation count of
150,000. The results are shown in Table 6.

Process Pre-processing Broadcast Create data Computational p-values Speedup Speedup
count parameters kernel computations (computations)

1 0.260 0.001 0.010 795.600 0.002 1.00 1.00
2 0.261 0.004 0.012 406.204 0.884 1.95 1.95
4 0.259 0.009 0.013 207.776 0.005 3.82 3.82
8 0.260 0.013 0.013 104.169 0.489 7.58 7.63

16 0.259 0.015 0.013 51.931 0.713 15.03 15.32
32 0.259 0.017 0.013 25.993 0.784 29.40 30.60
64 0.259 0.020 0.013 13.028 0.611 57.11 61.06

128 0.259 0.023 0.013 6.516 0.662 106.48 122.09
256 0.260 0.024 0.013 3.257 0.611 190.99 244.27
512 0.260 0.028 0.013 1.633 0.606 313.09 487.20

Table 6: Profile of pmaxT implementation.

 0.1

 1

 10

 100

 1000

5122561286432168421

T
im

e
 -

>
 s

Process count

Scaling chart

P-values
Permutations

Create data
Setup

Pre-processing

Figure 8: Runtime profile of pmaxT in logarithmic scale.
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By examining the results it can be seen that the computational kernel alone (last
column in Table 6) is scaling close to optimal. Two of the sections timed (columns 2
and 4) are executed in serial and thus consume a constant amount of time. For collective
communications (columns 3 and 6) the time increases as more processes are used. How-
ever, the additional time needed as the process count doubles is very small due to the
optimised implementation of the collective operations on HECToR.

Figure 9 shows the scaling of the total execution time compared to the optimal speedup
curve.
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Figure 9: Speedup graph of pmaxT.
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In addition, benchmarks were executed to measure the run time of the new parallel
implementation when a very high permutation count is executed. Table 7 shows the
timings measured. By examining the timings it can be seen that the process count is
linearly related to the run time. The same relation is also observed between the row
count and the run time.

Input array Permutation Total runtime Serial runtime
dimension and size count (in seconds) (estimate)
(genes × samples) (in seconds)

36, 612 × 76 500, 000 73.18 20,750
21.22MB (6 hours)

36, 612 × 76 1, 000, 000 146.64 41,500
21.22MB (12 hours)

36, 612 × 76 2, 000, 000 290.22 83,000
21.22MB (23 hours)

73, 224 × 76 500, 000 148.46 35,000
42.45MB (10 hours)

73, 224 × 76 1, 000, 000 294.61 70,000
42.45MB (20 hours)

73, 224 × 76 2, 000, 000 591.48 140,000
42.45MB (39 hours)

Table 7: Processing time of pmaxT for various input datasets and permutation counts.
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6 Conclusions and Future Work

Considering the objectives of the dCSE SPRINT project, we can say that the project is
completed with success. The first step was to make sure that SPRINT is able to install
and run on the HECToR system. After investigation a minor issue was identified and a
solution found. An installation guide on how to compile the package was written and is
available on the SPRINT project web site [9].

The first task after that was to analyse the performance of the original parallel version
of the correlation function and implement a new version on HECToR which scales for up
to 512 processes. After extensive profiling two bottlenecks were identified. The first was
the file I/O and the second the fact that all results were gathered on the master process.
By using the underlying high performance Lustre filesystem we managed to address both
issues. The results are now distributed among all processes and written into the file at
the end, collectively and in parallel.

The second task of the project was to parallelise a permutation testing function. After
finding a suitable serial implementation, the code was analysed and a parallel version
proposed. The parallelism is introduced by dividing the permutation count equally to
the available processes. Each process gathers a few of the observations and at the end
all partial observations are reduced on the master process. Using this information the
p-values are computed.

Based on the benchmarks performed on the HECToR system, both functions are able
to scale close to optimal for process counts up to 512. Statisticians can now use the
parallel versions of these functions to process their large data sets and also get results
within reasonable run times.

In addition to the primary objectives, the SPRINT team had the opportunity to
present the work performed under the dCSE project in two occasions. The first presen-
tation was given at the R User Group Meeting [28] and the second at the Data-Intensive
Research Workshop [29]. Moreover, a paper was submitted and accepted to the Emerging
Computational Methods for the Life Sciences Workshop [30] at the ACM International
Symposium on High Performance Distributed Computing (HPDC) [31]. An abstract was
also submitted and accepted to the useR! 2010 International Conference [32].

The source code of the SPRINT project is published under the GNU license and it
is available for download on the project web site. An action for adding the package in
the CRAN [33] public repository is under-way. Also, a newer version of the R package
is going to be available soon on the HECToR system and it will provide SPRINT as a
service.
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6.1 Future Work

Following the success of the current project, future work plans are already in place. A new
follow-up dCSE SPRINT project is scheduled to begin in the near future. Its objective
is to add more parallel functions that perform well on the HECToR system. Moreover,
SPRINT functionality is also going to be extended through the ongoing Wellcome Trust
grant.

The HECToR system is soon going to be upgraded. The new architecture is quite
different from the current system and it will be interesting to benchmark SPRINT and
observe how it performs.
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