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Abstract

The RMT method (R-Matrix with time-dependence) is a newab initio method for solving the time-
dependent Schrödinger Equation (TDSE) for multi-electron atomic and molecular systems in intense
short laser pulses. Although several other time-dependentR-Matrix methods have been introduced in
recent years [1, 2, 3, 4, 5, 6], RMT demonstrates orders-of-magnitude improvements in efficiency, pri-
marily because it employs finite-difference (FD) techniques to model the few-electron wavefunction
far from the atomic core. RMT merges the Outer Region FD model with a classic B-Spline R-Matrix
basis set for the multi-electron Inner Region [7]. The difficult problem of merging a basis set model
with a spatially adjacent FD model, while maintaining the unitarity of the time-propagator, has been
a long-standing barrier to progress in this field. RMT is basedon the solution first published in 2008
by Nikolopoulos, Parker and Taylor [8].

In this report we discuss the implementation and testing of anew RMT code for calculating the
spectrum of light scattered by atoms interacting with intense-field laser pulses. At sufficiently high
laser intensities, atoms scatter the incident radiation not just at the frequency of the laser, but also
at odd-integer multiples of the laser frequency. This process we refer to as High Harmonic Genera-
tion (HHG). The spectrum of light scattered in HHG processesis obtained directly from the Fourier
transform of the time-dependent expectation value of the acceleration induced by the external light
source (the laser pulse). The bulk of this project has been devoted writing new code to calculate these
expectation values, and to the much more difficult problem ofassessing its correctness.

High harmonic spectra provide rich information about the electronic structure of atoms and molecules,
in some cases with unprecedented time and spatial resolution. Experimental research groups at Impe-
rial College London, University College London and CLF have used the information contained in the
high-harmonic spectra to probe the electronic structure ofpolyatomic molecules [13]. The group at
Imperial College has also recently pioneered the PACER technique [14] to study dynamical nuclear
interference effects in molecules on an attosecond time scale [15].

Of the various theoretical approaches to the study of high harmonic generation, RMT is particularly
well suited because it naturally models multiple final states of the residual ion created during ion-
isation, each of which needs to be accurately accounted for throughout the calculation. No other
computer code to our knowledge, except HELIUM, can generatethese time-dependent solutions to
high accuracy. Moreover, recent attempts at developing models that go beyond the single-active-
electron approximation are strongly suggestive of a crucial role played by multi-electron dynamics in
determining the HHG emission rates in multi-electron atoms[16], but such models are still unable to
provide a quantitative description of HHG yields. The need for an accurate quantitative description
of HHG from rare gas atoms in order to provide guidance for future experimental investigations is the
motivating factor behind our objective to implement the coding to make possible the calculation of
high harmonic processes in the RMT code.

Although high harmonic generation specifically in molecules is of particular interest to UK experi-
mentalists at Imperial College London and elsewhere and a RMT description of this process in multi-
electron molecules is an eventual goal, it is first necessaryto implement coding to make RMT calcu-
lation of this process possible for multi-electron atoms. This is because the HELIUM code provides
a suitable code comparator role for the atomic case, helpingthe correctness of the new coding to be
established. In a later stage (outside the scope of the current project) the RMT atomic code will play
a similar comparator code role when implementing coding forthe high harmonic generation process
in a RMT molecular code.
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Over the last 5 years, remarkable advances in laser technology have enabled experimental study of
matter-laser interactions with unprecedented time-resolution. Experiments can now be performed us-
ing few-cycle pulses of high-intensity Ti:Sapphire laser light at 800 nm wavelengths, and at Vacuum-
Ultraviolet wavelengths (VUV) with pulses as short as 250 attoseconds. The creation of attosecond
pulses in particular has opened up a new frontier in the studyof ultra-fast electronic processes. Re-
cent landmark attosecond spectroscopic measurements in a solid [9] have demonstrated that ultra-fast
techniques can probe solid state processes occurring at thetheoretical ultimate speed limit for elec-
tronics. Attosecond pulses have recently enabled the real-time observation of electron tunnelling in
atoms [10] and Auger decay of inner-shell electrons [11]. Attosecond pulses have also enabled stro-
boscopic study of single ionisation events in argon [12].

The goal of RMT has been to enable theoretical analysis of recent experimental advances with a
degree of reliability that would be impossible by competingmethods. These include time-resolved
studies of ionisation events in attosecond time-scales, studies of time-delays between the ejection
of electrons in double-ionisation, inner shell excitations and decays in complex atoms, intense-field
atom-laser interactions in the XUV limit using the new free-electron x-ray lasers, and harmonic gen-
eration in atoms and molecules.

In a previous Distributed CSC project we demonstrated that the RMT method is both computationally
stable and could be distributed over 1000’s of cores with good efficiency. Success was due to the use
of a mature R-Matrix parallel code for the Inner Region, and theuse of the HELIUM finite-difference
code for the Outer Region [17, 18]. In this project, a significant fraction of the effort has been devoted
to assessing RMT by comparing the results of large-scale RMT integrations of laser-driven helium
with the results of identical numerical integrations usingthe HELIUM code. HELIUM [19, 20] is
a finite-difference code designed to generate high-integrity solutions of the full-dimensional time-
dependent Schrödinger equation (TDSE) for two-electron atoms or ions in intense fields. HELIUM
has been in heavy use on massively parallel machines since the arrival of the original Cray T3D
over 15 years ago. The two methods of integrating the TDSE, the R-Matrix based RMT and the
finite-difference based HELIUM, could not be more different. As we will demonstrate here, the two
methods give good agreement in a series of rigorous tests that exercise mainly the inner (R-Matrix)
region of the RMT code. The tests focus on harmonic generationby a helium atom irradiated by ex-
tremely short (attosecond) intense-field UV laser pulse andoptical laser pulses. The good agreement
observed between the two algorithmic methods helps to confirm that the methods and implementa-
tions are basically sound.
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2 Work Package 1. New Code for the Calculation of High Harmonic Generation (HHG)
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3 Work Package 2. Implementation of HHG code in HELIUM 9
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1 Objectives and Outcomes
In section 2 we discuss the goals and outcomes of Work Package1, and we present the results of
a significant test of the new code (as outlined in Work Package3). The objective of Work Package
1 was to develop and test new RMT code for the calculation High Harmonic Generation (HHG) -
the light scattered and shifted to higher frequencies by atoms interacting with intense laser radiation.
The relevant Work Package 3 test is a comparison of two RMT calculations of HHG, the first derived
from acceleration expectation values and the second derived from dipole expectation values. The two
approaches are found to give good qualitative agreement over a 9 orders of magnitude range. Ad-
ditionally we present measurements of the new RMT code’s scaling properties on HECToR, using a
small 1-state helium-atom RMT calculation on a range of 34 to 1120 HECToR cores. We note that
RMT calculations in more complicated atoms like neon would likely require an order of magnitude

2



larger core count for both the inner and outer regions.

In section 3 we discuss the goals and outcomes of Work Package2, and we present the results of
one of the tests of the new code (as outlined in Work Package 3). The objective of Work Package
2 was to perform the same set of enhancements to the HELIUM code that were developed for the
RMT code as described in section 2. The relevant Work Package 3test is the same as the one de-
scribed in section 2 for the new RMT code, a comparison of the high harmonic spectrum derived
from acceleration expectation values with that derived from dipole expectation values. In HELIUM
there is only one region, so no additional MPI communicationsoftware was required, but the inte-
gration is over two electrons (6 dimensional) instead of one, requiring a more laborious calculation
of dipole expectation values< ψ(r1, r2, t)|z1 + z2|ψ(r1, r2, t) > , and acceleration expectation val-
ues< ψ(r1, r2, t)|dp1/dt+ dp2/dt|ψ(r1, r2, t) >. We demonstrate that HELIUM HHG calculations
based on acceleration expectation values and on the dipole expectation values give good qualitative
agreement over an 11 orders of magnitude range.

In section 4 we discuss the goals and outcomes of Work Package3. The objective of Work Package 3
was to test and tune the new code developments for numerical correctness and accuracy. Two of the
more rigorous tests were discussed in sections 2 and 3. Thesetwo tests verified that the dipole expec-
tation values and acceleration expectation values yield agreement in HHG calculations. In section 4
we continue with a series of tests that compare the predictions of RMT with those of HELIUM over
a range of laser frequencies. We report good agreement between the two methods, which improves
confidence in the correctness of the RMT code, and demonstrates that the RMT integration param-
eters have been properly tuned to produce numerical integrations comparable in quality to those of
HELIUM.

2 Work Package 1. New Code for the Calculation of High Har-
monic Generation (HHG) Processes

We begin with an outline of the basic RMT equations. The RMT wavefunction is the sum of an Outer
and an Inner Region wavefunction. The Outer Region wavefunction is written on a finite-difference
grid, and represents the single electron ejected from the atom by the laser pulse. The Inner Region
wavefunction is described by a B-spline basis set. The Inner Region uses R-Matrix methods to treat
the quantum mechanical dynamics of the multi-electron atomwithin a spherical shell of some fixed
radius. In the following, that radius will always be 20 atomic units.

We write in the Inner RegionI where all electrons can be found:

ψI(r1r2...rN+1, t) =
K
∑

k=1

Ck(t)ψk(r1r2...rN+1), 0 ≤ r ≤ b, (1)

whereψk(r1r2...rN+1), k = 1, K form a field-free, time-independent R-Matrix basis for the(N + 1)
electrons within the Inner Region with outer boundary atr = b. The construction of theψk is the
responsibility of long-existing atomic R-Matrix time-independent codes. The time evolution of the
Inner Region time-dependent wavefunction is entirely contained in the coefficientsCk(t) whose time
evolution is determined by the TDSE. However in writing the TDSE we must take care that the
Hamiltonian and dipole operators which act onψI(r1r2...rN+1, t) are Hermitian over Inner RegionI
(whereψI(r, t) is only defined). The Hermitian Inner Region Hamiltonian is given byHI = H0+ L̂h

and the dipole operator byDI = D+ L̂d, whereL̂h andL̂d are Bloch surface terms, only non-zero at
r = b. In these circumstances the TDSE over Inner RegionI is written:

i
dψI

dt
(r1r2...rN+1, t) = [HI +DI(t)]ψI(r1r2...rN+1, t)−

[

L̂h + L̂d(t)
]

ψ(r, t), (2)

where0 ≤ r ≤ b.

This equation is a key one to the method. The second term on theright hand side compensates for
the Bloch terms introduced to makeHI andDI Hermitian. Note that it makes a contribution only
at r = b and brings into play thereψ(r, t) a one-electron wavefunction form which we define from
just within the Inner Region outwards. This term is central toany time propagation scheme in Inner
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Figure 1: RMT integration speed on HECToR as a function of core count. The RMT uses an 8th order
propagator, a 32 x 32 inner region Hamiltonian block matrix,and a spherical integration volume 3200
a.u. in radius. The outer region integration models the 3200a.u. span with a finite-difference grid
comprising 64000 grid points.

RegionI because it connects the wavefunction formψI(r1r2...rN+1, t) specific to that region with
a wavefunction form that atr = b represents a single electron and which in calculations is obtained
from Outer RegionII.

The Outer RegionII is spanned by a finite-difference (FD) grid so that the one-electron wavefunction
there is written

ψII(r(i), t) =
L
∑

l=0

fl(i, t)

r(i)
Yl0(r̂), b ≤ r(i), (3)

with i = ib, .., I andr(ib) = b. In this form, for simplicity of presentation, we have allowed for only
one residual ion state of the system. The form the TDSE takes in this Outer Region is then

ḟl(i, t) = −i[H · F]l(i, t) + δiib [B0l(ib − 1, t) + B0l(ib − 2, t)] + δiib+1B1l(ib − 1, t). (4)

This, the second key equation to the method, is the normal form of the TDSE over a FD grid except
for the terms multiplyingδiib andδiib+1. Note that these terms require quantities (the Bs) to be eval-
uated at grid pointsib − 1 andib − 2 i.e. at points on theinner side of the boundary atr = b. This
assume we are using 5-point difference operators on the FD grid.

We emphasize how Eqs. (2) and (4) are actually used by sketching the computational procedure in
propagating the full wavefunction through one time-step from t to t + τ . We first consider the Outer
Region TDSE, Eq. (4). This is handled by the explicit Arnoldi time-propagator method [19] as in
HELIUM and brings into play Inner Region information throughtheB0l(ib − 1, t),B0l(ib − 2, t) and
B1l(ib − 1, t) terms all known from timet. Having thus determined all thefl(i, t+ τ) for i = ib, .., I
we proceed to the Inner Region. What we need to determine here are the coefficientsCk(t + τ) and
again these are determined by the explicit Arnoldi time-propagator using knowledge of the Outer Re-
gion fl(i, t + τ) to determine the spatial derivative terms atr = b brought in by the non-zero Bloch
operator terms there.

Attempts to create efficient time-dependent R-Matrix integrations for such large volumes have made
slow progress, largely because successful integration of the relevant high-dimensional partial differ-
ential equations is so computationally demanding that it requires the benefit of parallelization over
tens of thousands of cores, which is not straightforward in pure R-Matrix formalisms.
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We turn now to a discussion of the scaling properties of the new RMT high harmonic generation
code on HECToR. The performance and scaling of RMT is somewhat degraded by the additional
computational overhead of the calculation of accelerationand the global MPI communications oper-
ations needed to complete, assemble and print the calculation of expectation values. To demonstrate
the behaviour of the new RMT code, we choose parameters expected to be appropriate to harmonic
generation problems in study of laser-molecule interactions. In these problems, the laser wavelengths
are typically infra-red, and long in duration in order to resolve resonances with high accuracy. The
numerical integrations in these cases require large integration volumes in order to accommodate the
ionising electron during the duration of the laser pulse. By contrast, in a typical HELIUM integration
at high (UV) frequency a small integration volume of 1000 a.u. might be used. In the present prob-
lem, figure 1, a volume of radius 3200 is used. The example shown in figure 1 uses a helium atom
with a single target state for each possible final state angular momentum. The inner region Hamilto-
nian is a tri-diagonal block matrix, of size 32 x 32 blocks. Each block is a 55 x 55 matrix. A more
complicated atom, like neon, or a configuration with more target states would likely require an inner
region Hamiltonian one of more orders of magnitude larger.

The minimum number of cores needed to accommodate the inner region is 32. Using more than 64
cores provides no additional improvement in speed because of the small size of the blocks (55 x 55).
Figure 1 demonstrates this. The measurements, up to 1056 cores, are made maintaining the inner
region core-count at a constant 32 cores, the minimum workable number. All of the other cores are
applied to the outer region. After the 1056 core limit is reached, very little benefit is obtained by
applying more cores to the outer region calculation.

As a final step, we increase the inner region core count from 32to 64. A sharp jump in speed is
produced by the addition of these 32 inner region cores, and the result is plotted at the end of the data
curve in figure 1. A 50% improvement in integration speed is observed, (from 200 steps/sec to 300
steps/sec).

In the following paragraphs we introduce some of the basic equations describing harmonic generation
by atoms in intense laser radiation. Most of the tests described in this report will involve calculation
of high harmonic energy spectra, or of expectation values useful in the calculation of energy spectra.
The tests will generally exercise both HELIUM and RMT, and in the last section the results of the
HELIUM and RMT calculations will be compared. The problem of testing, estimating uncertainties,
and detecting error is often the most difficult part of a numerical integration, especially on large paral-
lel machines which are unusually prone to system failures. The opportunity to provide independently
generated solutions for comparison with the RMT results is therefore fortunate. HELIUM, for ex-
ample, was originally developed in conjunction with the time-independent R-Matrix Floquet method.
Discrepencies between the predictions helped revealed thelimits in which the numerical methods be-
came unreliable (as for the example the high intensity limit). When agreement is observed, the small
remaining differences can be used to infer a lower bound on the uncertainties in the numerical result.

The electric field,E, of light scattered by an atom in linearly polarized radiation is proportional to
the acceleration induced by the laser, which we choose to be polarized in thez-direction. Using
the Lienard-Wiechert potential (in the non-relativistic far-field limit), the electric field radiated by an
accelerated charge is

E = k
d

dt

〈

ψ(t)
∣

∣

∣

∣

pz −
e

c
Alaser(t)

∣

∣

∣

∣

ψ(t)
〉

= k

〈

ψ(t)

∣

∣

∣

∣

∣

[pz, H]

ih̄

∣

∣

∣

∣

∣

ψ(t)

〉

+ keElaser(t) (5)

whereH is the Hamiltonian describing the laser-atom interaction,Pz = pz−
e
c
Alaser(t) is the mechan-

ical momentum of the charge,pz is the canonical momentum, andk is a proportionality constant. The
energy spectrum of the scattered radiation is given by the square modulus of the Fourier transform
of Etotal(t), whereEtotal(t) is the coherent sum of the E-fields radiated by theN + 1 electrons. In
practice, we need to calculate expectation values of[pz, H] = −ih̄

∑

j
(d/dzj)V (r1, ..., rN+1), where

V is the sum of the(N + 1) electron-nucleus Coulomb potentials. The electron-electron potentials,
1/rij, do not contribute to the above quantity.

The calculation of the expectation value〈ψ(t)| [pz ,H]
ih̄

|ψ(t)〉 involves an integration over the spatial
variables of all(N + 1) electrons described byψ(t). The integration is performed over all angular
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variables and over all radial variables, and therefore contributions will arise from both the Inner Re-
gion (r1, ..., rN+1 ≤ b) and from the Outer Region (r1, ..., rN ≤ b andrN+1 > b). The wavefunction
forms in the Inner and Outer Regions are given by Eqs. (1) and (3) respectively.

A common practice in calculations of the spectrum of scattered light is to usez(ω) (the Fourier trans-
form of 〈ψ(t)|z|ψ(t)〉) because a simple relation exists betweenz(ω) and accelerationaz(ω), the latter
defined as the Fourier transform of(d2/dt2)〈ψ(t)|z|ψ(t)〉, which we calculate usingih̄d/dt〈ψ(t)|pz|ψ(t)〉 =
〈ψ(t)|[pz, H]|ψ(t)〉. In the case in which these time-dependent functions and their derivatives start at
zero and decay to zero at the end of the integration (a condition that is usually enforced artificially
by applying a windowing function like the Hanning window) wehaveaz(ω) = −ω2z(ω). Of course
this is a mathematical result that is maintained by the integration only in the absence of numerical
approximation, an ideal and unattainable limit.

Integration error can be catastrophic in high harmonic calculations because the part of(d2/dt2)〈ψ(t)|z|ψ(t)〉
that is of interest, (the signal that gives rise to the high harmonics of the laser frequency), is often many
orders of magnitude smaller than the signal giving rise to scattered light at the frequency of the driving
laser. For example, errors of 1 part in105 in the wavefunctionψ can easily obliterate the information
containing the high harmonics. In that case we would see numerical noise instead of high harmonics.

The calculation ofz(ω) in conjunction withaz(ω) therefore has an additional benefit, the value of
which cannot be overstated. Comparison of these two quantities provides us with a natural test of
the quality of the numerical integration. As remarked above, perfect numerics would yieldaz(ω) =
−ω2z(ω). In practice, the degree to which this equality is satisfied is sensitive to convergence ofψ
on the B-spline basis set, the matching of the Inner Region and Outer Region wavefunctions at the
boundary, the reflection of wavefunction at boundaries of the integration volume, and accumulation
of roundoff error during propagation.

In Fig. 2 we show the results of an RMT calculation of the energyspectrum of scattered light. The en-
ergy spectrum is proportional to|Ez(ω)|

2, whereω is the frequency of the scattered light, andEz(ω) is
the Fourier transform of the time-evolving electric field ofthe scattered light in the z direction,Ez(t).
The energy spectrum gives the total energy scattered in a frequency range. By Parceval’s Theorem,
the integration over all frequenciesω of |Ez(ω)|

2 equals the integration over all time of|Ez(t)|
2. The

latter quantity is proportional to the intensity of scattered light as measured by a detector in the far
field, (a great distance from the atom). Intensity of light has the units: joules per second per square
meter. Integration of intensity over all time (really over the length of the pulse) would yield the total
energy (joules) contained in the z component of the electricfield, as measured by a perfect detector
(per square meter of the detector). Similarly, integrationover a frequency range of|Ez(ω)|

2 would
yield, up to proportionality constant, the energy measuredby a frequency sensitive detector in that
frequency range. The absolute values of the intensity and ofthe energy spectrum depend on the sys-
tems of units, and the geometry and position of the detector,which are not of interest in the software
testing. Units are therefore arbitrary.

Figure 2 compares the energy spectrum as calculated by acceleration expectation values (Eq. 5) with
the spectrum obtained by dipole expectation values. The expectation values are obtained by using
only the RMT inner region (B-Spline) wavefunction. For comparison, Fig. 3 shows the calculation
repeated with the outer region (finite-difference) RMT wavefunction added in. The use of the full
wavefunction in Fig. 3 results in a small but detectable improvement in the agreement between the
two methods of calculating the spectrum. The dipole method now agrees well with the acceleration
calculation at the 3rd peak (5th harmonic), and gives a background (the high frequency limit of the
spectrum) which is smaller than the corresponding background in Fig. 2.

6



0 1 2 3 4 5 6
frequency (atomic units)

1e-12

1e-08

0.0001

1

en
er

gy
 s

pe
ct

ru
m

 (
ar

bi
tr

ar
y 

un
its

)

RMT using (d/dt)
2
 (< Ψ

in
(t) | z |  Ψ

in
(t) >)

RMT using (< Ψ(t) | dp
z
/dt |  Ψ(t) >)

two photon ionization of helium

laser freq. = 0.47 au, I = 4 x 10
14

 W/cm
2

Figure 2: RMT calculation of the energy spectrum of radiationscattered by a helium atom irradiated
by a 4 × 1014W/cm2 laser pulse linearly polarized in thez direction. Only the inner region wave-
functionΨin is used in the RMT calculation. The spectrum is proportional to the square modulus of
the Fourier transform of the time-varying expectation value of the acceleration of the active ionising
electron (black curve):< ψ(t)|d

2z
dt2

|ψ(t) >. The same quantity is also calculated from the 2nd time
derivative of< ψ(t)|z|ψ(t) > (red curve). Ionisation is driven by an 8 field period laser pulse ramped
on over 4 field periods by a sinusoidal ramp, and ramped off identically over 4 field periods.
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Figure 3: RMT calculation of the energy spectrum of radiationscattered by a helium atom irradiated
by a 4 × 1014W/cm2 laser pulse linearly polarized in thez direction. Here, the full wavefunction
(outer plus inner)Ψ is used in the RMT calculation. The spectrum is proportional to value of the
acceleration of the active ionising electron (black curve): < ψ(t)|d

2z
dt2

|ψ(t) >. The same quantity is
also calculated from the 2nd time derivative of< ψ(t)|z|ψ(t) > (red curve). Ionisation is driven by
an 8 field period laser pulse ramped on over 4 field periods by a sinusoidal ramp, and ramped off
identically over 4 field periods.
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Figure 4: Energy spectrum of radiation scattered by a heliumatom irradiated by a2 × 1014W/cm2

laser pulse linearly polarized in thez direction. The spectrum is proportional to the square modulus
of the Fourier transform of the time-varying expectation value of the sum of the accelerations of the 2
helium electrons (black curve):< ψ(t)|d

2z
dt2

|ψ(t) >, wherez = z1+z2, andzi is thez coordinate of the
i-th electron. The same quantity is also calculated from the2nd time derivative of< ψ(t)|z|ψ(t) >
(red curve). Ionisation is driven by an 8 field period laser pulse ramped on over 4 field periods by a
sinusoidal ramp, and ramped off identically over 4 field periods.

3 Work Package 2. Implementation of HHG code in HELIUM
In this section we test the upgraded HELIUM code on a similar case as that used to test the new
RMT code in the previous section, namely a comparison of the high harmonic spectrum derived
from acceleration expectation values with that derived from dipole expectation values. Again, the
TDSE for helium in a short high frequency (0.457 au) laser pulse is numerically integrated and the
dipole and acceleration expectation values are tabulated over the duration of the pulse. In HELIUM
there is only one region, so no additional MPI communicationsoftware was required, but the in-
tegration is over two electrons (6 dimensional) instead of one. The dipole expectation values are
< ψ(r1, r2, t)|z1+ z2|ψ(r1, r2, t) > , and the acceleration expectation values< ψ(r1, r2, t)|dp1/dt+
dp2/dt|ψ(r1, r2, t) >.

Figure 4 shows the results of a HELIUM calculation the energyspectrum of scattered light. The
energy spectrum is proportional to|Ez(ω)|

2, the Fourier transform (modulus squared) of the electric
field of the scattered light,Ez(t). The meanings of these quantities are discussed in more detail in
the previous section. Again we find that if dipole expectation values are used to calculate the energy
spectrum then the high frequency part of the spectrum is lessaccurate than the acceleration calcula-
tion.
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Figure 5: Energy spectrum of radiation scattered by a heliumatom irradiated by a4 × 1014W/cm2

laser pulse linearly polarized in thez direction. The spectrum is proportional to the square modulus
of the Fourier transform of the time-varying expectation value of the sum of the accelerations of the 2
helium electrons (black curve):< ψ(t)|d

2z
dt2

|ψ(t) >, where the accelerationd
2z
dt2

= dPz/dt, z = z1+z2,
andzi is thez coordinate of the i-th electron. The RMT curve is obtained from the 2nd time derivative
of < ψ(t)|z|ψ(t) > (red curve). Ionisation is driven by an 8 field period laser pulse ramped on over 4
field periods by a sinusoidal ramp, and ramped off identically over 4 field periods.

4 Work Package 3. Tuning the RMT HHG calculation for nu-
merical accuracy

In this section we present a series of comparisons between the predictions of RMT and those of HE-
LIUM over a range of UV laser frequencies (0.1168 au to 0.94 au). Good agreement is observed
between the two methods, confirming that the RMT integration parameters have been properly tuned
to produce numerical integrations comparable in quality tothose of HELIUM. The success of these
tests does much to increase confidence in the correctness of the two highly dissimilar numerical inte-
grations.

Figure 5 shows the results of the two numerical integrationsat the highest laser frequency investi-
gated, 0.94 au. In this case both RMT and HELIUM are used to calculate the energy spectrum. The
RMT calculation is based on dipole expectation values, the HELIUM on acceleration expectation
values. The results are typical of those presented in the previous sections. The acceleration based
calculations have the lower backgrounds (and evidently lower errors) at the higher frequencies. Qual-
itative agreement is observed over a range of 9 orders of magnitude.
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Figure 6: Square modulus of the Fourier transform of the timeevolution of the expectation value of
z. In the case of HELIUM,z = z1 + z2, wherezi is thez coordinate of the i-th electron, and the laser
is linearly polarized in thez direction. The HELIUM integration used spatial grid point spacings of
0.29 atomic units, and a basis set with maximum angular momentum (single-electron) of 6̄h. In the
case of RMT,z is the spatial coordinate of the single active electron. Ionisation is driven by an 8
field period laser pulse that is ramped on over 4 field periods with a sinusoidal ramp, and ramped off
identically over 4 field periods.

Figure 6 displays the results of a more direct comparison of the RMT and HELIUM integrations than
the results shown in Fig. 5. In Fig. 6 the laser pulse characteristic are the same as those of Fig. 4, but
in the case of Fig. 6 only the Fourier transforms of the dipoleexpectation values are shown. To obtain
the good agreement between RMT and HELIUM observed in Fig. 6 the RMT inner region required
a much larger basis set of splines than originally anticipated. The RMT integration used 48 splines in
a 20 atomic unit inner region, which effectively supports inner region excitations as high as 300 au in
energy. The RMT outer region used a spatial grid point spacingof 0.166 atomic units, and a maximum
angular momentum (single-electron) of 6h̄. The RMT outer region Hamiltonian was modelled with
9-point finite-difference, correct to 8th order in the grid point spacing. Grid point spacings larger than
0.166 au caused stability problems in the RMT integration. The stability problem became apparent
when the basis set of 48 rather than 30 splines was used. The special feature of the larger basis set
is the existence of a high energy, high curvature spline thatlies adjacent the outer region boundary.
The outer region finite-difference operators sample the inner near this boundary, and therefore sample
wavefunctions modelled by this high curvature spline. It islikely that the stability problems occur
when the finite-differencing is too coarse to accurately sample the rapid spatial variation supported
by the high energy boundary spline.

The HELIUM integration used a spatial grid point spacing of 0.29 au, (which is the standard setting
in HELIUM). The integration was repeated with a grid point spacing of 0.20 au with no significant
change in results. The HELIUM integration used the same maximum angular momentum as the RMT
outer region.
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Figure 7: Square modulus of the Fourier transform of the timeevolution of the expectation value of
z. Ionisation is driven by a 10 field period laser pulse that is ramped on over 5 field periods by a
sinusoidal ramp, and ramped off over 5 field periods similarly.

Figure 7 compares the HELIUM and RMT predictions ofg(ω). In this case (5 photon ionisation) both
the HELIUM and RMT integrations use basis sets with peak angular momentum (single-electron) of
8 h̄. The RMT integration again used 48 splines in the 20 atomic unit inner region, spatial grid point
spacings of 0.166 atomic units in the outer region. Figure 8 compares the single-electron ionisation
rates predicted by the HELIUM with those of the RMT integration. As in the case of two-photon
ionisation (Fig. 6), the integration did not converge untilat least 48 basis splines were used in the
inner region. A 64 spline inner region basis gave the same results as 48 splines. The 64 spline basis
allowed excitations as high as 600 au in energy, twice that ofthe 48 spline basis. The HELIUM and
RMT prediction of ionisation yield at the end of the pulse differ by under 5%, which is roughly the
expected uncertainty in both of the numerical integrations.
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Figure 8: Probability of finding both helium electrons within 20 atomic units of the nucleus during
excitation with a 242 nm (0.188 au) laser pulse. The pulse characteristics and integration parameters
are the same as those in Fig. 7.
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Figure 9: Square modulus of the Fourier transform of the timeevolution of the expectation value of
z. In the case of HELIUM,z = z1 + z2, wherezi is thez coordinate of the i-th electron, and the laser
is linearly polarized in thez direction. In the case of RMT,z is the spatial coordinate of the single
active electron. The HELIUM integration uses spatial grid point spacings of 0.29 atomic units, and a
basis set with maximum angular momentum (single-electron)of 12 h̄. The RMT integration uses 48
splines in the 20 atomic unit inner region, spatial grid point spacings of 0.166 atomic units in the outer
region, and maximum angular momentum (single-electron) of12 h̄. Ionisation is driven by a 12 field
period laser pulse ramped on over 6 field periods by a sinusoidal ramp, and ramped off identically
over 6 field periods.

We conclude with the 390 nm results, the longest wavelength used in this series of tests. 390 nm is of
considerable experimental interest because it is readily obtained from frequency doubled Ti-Sapphire
780 nm lasers. In Fig. 9 we see the first indication of a broad plateau of harmonic peaks, a phe-
nomenon that makes HHG of such interest and potential value in experimental study. Again there is
striking agreement between the two methods over a range of 12orders of magnitude. A small but in-
teresting discrepancy between the results is evident in the5th and 7th harmonics. Recent calculations
of these spectra, [21], shed some light on this discrepancy.All of the results presented here use the
simplest RMT model of helium, called a 1-state model, in whichthe final-state residual ion (He+)
is restricted to its 1s ground state. The more recent calculations, [21], exploit a more sophisticated
model called the 3-state model, in which the final-state residual He+ ion can be not just in its 1s
ground state, but also in the two most likely excited states.The 3-state model calculation is more
computationally laborious, perhaps by an order of magnitude, but the 3-state results exactly match
those of HELIUM in the 5th and 7th harmonics, identifying thelikely source of the discrepancy. It
is interesting that as RMT approaches HELIUM in the quality ofits results, it also approaches HE-
LIUM in computational overhead. The Fig. 9 HELIUM result required about 6 hours on 4000 cores
of HECToR. The 1-state RMT integration was at least an order of magnitude faster than HELIUM,
but not the 3-state calculation. The great advantage of RMT isthat it can be applied to more complex
many-electron atoms like neon and argon, which are in commonuse by experimentalists.
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Figure 10: Probability of finding both helium electrons within 20 atomic units of the nucleus during
excitation with a 12 field period laser pulse. The laser pulsecharacteristics and integration parameters
are as described in Fig. 9.
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