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Abstract

The RMT method (R-Matrix with time-dependence) is a rawnitio method for solving the time-
dependent Scbdinger Equation (TDSE) for multi-electron atomic and necolar systems in intense
short laser pulses. Although several other time-deperi@éviatrix methods have been introduced in
recentyears[1, 2, 3, 4, 5, 6], RMT demonstrates orders-gade improvements in efficiency, pri-
marily because it employs finite-difference (FD) techngjteemodel the few-electron wavefunction
far from the atomic core. RMT merges the Outer Region FD modgl avclassic B-Spline R-Matrix
basis set for the multi-electron Inner Region [7]. The difigaroblem of merging a basis set model
with a spatially adjacent FD model, while maintaining thétamty of the time-propagator, has been
a long-standing barrier to progress in this field. RMT is basethe solution first published in 2008
by Nikolopoulos, Parker and Taylor [8].

In this report we discuss the implementation and testing oéa RMT code for calculating the
spectrum of light scattered by atoms interacting with istefield laser pulses. At sufficiently high
laser intensities, atoms scatter the incident radiatidnusi at the frequency of the laser, but also
at odd-integer multiples of the laser frequency. This pssage refer to as High Harmonic Genera-
tion (HHG). The spectrum of light scattered in HHG processeasbtained directly from the Fourier
transform of the time-dependent expectation value of tloelacation induced by the external light
source (the laser pulse). The bulk of this project has beeotelé writing new code to calculate these
expectation values, and to the much more difficult problemssissing its correctness.

High harmonic spectra provide rich information about tlee&bnic structure of atoms and molecules,
in some cases with unprecedented time and spatial resolliigperimental research groups at Impe-
rial College London, University College London and CLF haveduse information contained in the
high-harmonic spectra to probe the electronic structungobfatomic molecules [13]. The group at
Imperial College has also recently pioneered the PACER tqalenil4] to study dynamical nuclear
interference effects in molecules on an attosecond time §t3].

Of the various theoretical approaches to the study of highnbaic generation, RMT is particularly

well suited because it naturally models multiple final statéthe residual ion created during ion-
isation, each of which needs to be accurately accountechfoughout the calculation. No other
computer code to our knowledge, except HELIUM, can gendlase time-dependent solutions to
high accuracy. Moreover, recent attempts at developingetsatthat go beyond the single-active-
electron approximation are strongly suggestive of a ctucla played by multi-electron dynamics in

determining the HHG emission rates in multi-electron at¢hé§, but such models are still unable to
provide a quantitative description of HHG yields. The neaddn accurate quantitative description
of HHG from rare gas atoms in order to provide guidance farreiexperimental investigations is the
motivating factor behind our objective to implement the iogdto make possible the calculation of
high harmonic processes in the RMT code.

Although high harmonic generation specifically in molesuke of particular interest to UK experi-
mentalists at Imperial College London and elsewhere and a R&4€ription of this process in multi-
electron molecules is an eventual goal, it is first necegsaimplement coding to make RMT calcu-
lation of this process possible for multi-electron atomkisTis because the HELIUM code provides
a suitable code comparator role for the atomic case, hethmgorrectness of the new coding to be
established. In a later stage (outside the scope of thentupreject) the RMT atomic code will play
a similar comparator code role when implementing codingtierhigh harmonic generation process
in a RMT molecular code.



Over the last 5 years, remarkable advances in laser teaynbkve enabled experimental study of
matter-laser interactions with unprecedented time-tggwl. Experiments can now be performed us-
ing few-cycle pulses of high-intensity Ti:Sapphire lasght at 800 nm wavelengths, and at Vacuum-
Ultraviolet wavelengths (VUV) with pulses as short as 230ssconds. The creation of attosecond
pulses in particular has opened up a new frontier in the sthidyjtra-fast electronic processes. Re-
cent landmark attosecond spectroscopic measurementslid §3 have demonstrated that ultra-fast
techniques can probe solid state processes occurring #igbeetical ultimate speed limit for elec-
tronics. Attosecond pulses have recently enabled thetirealobservation of electron tunnelling in
atoms [10] and Auger decay of inner-shell electrons [11}o#¢cond pulses have also enabled stro-
boscopic study of single ionisation events in argon [12].

The goal of RMT has been to enable theoretical analysis ontemegerimental advances with a

degree of reliability that would be impossible by competmgthods. These include time-resolved
studies of ionisation events in attosecond time-scalesliet of time-delays between the ejection
of electrons in double-ionisation, inner shell excitai@nd decays in complex atoms, intense-field
atom-laser interactions in the XUV limit using the new freleetron x-ray lasers, and harmonic gen-
eration in atoms and molecules.

In a previous Distributed CSC project we demonstrated tlealRM T method is both computationally
stable and could be distributed over 1000’s of cores withdgefbiciency. Success was due to the use
of a mature R-Matrix parallel code for the Inner Region, andugeof the HELIUM finite-difference
code for the Outer Region [17, 18]. In this project, a signiftdaaction of the effort has been devoted
to assessing RMT by comparing the results of large-scale RNEQiations of laser-driven helium
with the results of identical numerical integrations usihg HELIUM code. HELIUM [19, 20] is

a finite-difference code designed to generate high-irtiegolutions of the full-dimensional time-
dependent Scbdinger equation (TDSE) for two-electron atoms or ions temse fields. HELIUM
has been in heavy use on massively parallel machines siecartival of the original Cray T3D
over 15 years ago. The two methods of integrating the TDS&E Ri#Matrix based RMT and the
finite-difference based HELIUM, could not be more differeAs we will demonstrate here, the two
methods give good agreement in a series of rigorous tedtexkecise mainly the inner (R-Matrix)
region of the RMT code. The tests focus on harmonic generaganhelium atom irradiated by ex-
tremely short (attosecond) intense-field UV laser pulseapital laser pulses. The good agreement
observed between the two algorithmic methods helps to corfiat the methods and implementa-
tions are basically sound.
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1 Objectivesand Outcomes

In section 2 we discuss the goals and outcomes of Work Packaged we present the results of
a significant test of the new code (as outlined in Work Pacl&ggd he objective of Work Package
1 was to develop and test new RMT code for the calculation Highntdnic Generation (HHG) -

the light scattered and shifted to higher frequencies bsnatmteracting with intense laser radiation.
The relevant Work Package 3 test is a comparison of two RMTutations of HHG, the first derived

from acceleration expectation values and the second difriee dipole expectation values. The two
approaches are found to give good qualitative agreememtao@eorders of magnitude range. Ad-
ditionally we present measurements of the new RMT code’sregaloperties on HECTOR, using a
small 1-state helium-atom RMT calculation on a range of 341t20IHECTOR cores. We note that
RMT calculations in more complicated atoms like neon woltdlif require an order of magnitude



larger core count for both the inner and outer regions.

In section 3 we discuss the goals and outcomes of Work Packaged we present the results of
one of the tests of the new code (as outlined in Work Packagd13 objective of Work Package
2 was to perform the same set of enhancements to the HELIUM tiwat were developed for the
RMT code as described in section 2. The relevant Work Packadgst3s the same as the one de-
scribed in section 2 for the new RMT code, a comparison of tigé hiarmonic spectrum derived
from acceleration expectation values with that derivednfidipole expectation values. In HELIUM
there is only one region, so no additional MPI communicasoftware was required, but the inte-
gration is over two electrons (6 dimensional) instead of, saquiring a more laborious calculation
of dipole expectation values 1 (ry,ra,t)|21 + 22|t(r1, 12, t) >, and acceleration expectation val-
ues< ¢ (ry,ra,t)|dp1/dt + dps/dt|i(ry, e, t) >. We demonstrate that HELIUM HHG calculations
based on acceleration expectation values and on the dippéx&tion values give good qualitative
agreement over an 11 orders of magnitude range.

In section 4 we discuss the goals and outcomes of Work Packaljee objective of Work Package 3

was to test and tune the new code developments for numedo@otness and accuracy. Two of the
more rigorous tests were discussed in sections 2 and 3. Twegests verified that the dipole expec-
tation values and acceleration expectation values yieldesgent in HHG calculations. In section 4
we continue with a series of tests that compare the predetd RMT with those of HELIUM over

a range of laser frequencies. We report good agreement &etilne two methods, which improves
confidence in the correctness of the RMT code, and demorstiaéethe RMT integration param-

eters have been properly tuned to produce numerical irttegsacomparable in quality to those of
HELIUM.

2 Work Package 1. New Code for the Calculation of High Har-

monic Generation (HHG) Processes

We begin with an outline of the basic RMT equations. The RMT vi@vetion is the sum of an Outer
and an Inner Region wavefunction. The Outer Region wavefonds written on a finite-difference
grid, and represents the single electron ejected from thm &ty the laser pulse. The Inner Region
wavefunction is described by a B-spline basis set. The InngioRaises R-Matrix methods to treat
the quantum mechanical dynamics of the multi-electron atatimin a spherical shell of some fixed
radius. In the following, that radius will always be 20 atornits.

We write in the Inner Regioih where aIlIKeIectrons can be found:
Yr(rire..rnp1,t) = Y Cr()e(rire..rnp1), 0<r<o, (1)
k=1

whereyy(rira...rnp1), k£ = 1, K form a field-free, time-independent R-Matrix basis for e+ 1)
electrons within the Inner Region with outer boundary- at b. The construction of the, is the
responsibility of long-existing atomic R-Matrix time-ingendent codes. The time evolution of the
Inner Region time-dependent wavefunction is entirely doetdin the coefficient§', () whose time
evolution is determined by the TDSE. However in writing thBSE we must take care that the
Hamiltonian and dipole operators which act©r(rirs...rn. 1, t) are Hermitian over Inner Regiah
(wherey(r, t) is only defined). The Hermitian Inner Region Hamiltonian isegiby H; = H, + Ly
and the dipole operator b9, = D + L,, whereL, andL, are Bloch surface terms, only non-zero at
r = b. In these circumstances the TDSE over Inner Redi@written:

dip

id—tl(rlrz...rN+17t) = [H; + D;(t)]Yr(rira...rNy1, t) — [f/h + Ed(t)} P(r,t), 2)

where0 < r < b.
This equation is a key one to the method. The second term ongthehand side compensates for
the Bloch terms introduced to maké, and D; Hermitian. Note that it makes a contribution only

atr = b and brings into play there(r, ¢) a one-electron wavefunction form which we define from
just within the Inner Region outwards. This term is centrahmy time propagation scheme in Inner
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Figure 1: RMT integration speed on HECToR as a function of cotst The RMT uses an 8th order
propagator, a 32 x 32 inner region Hamiltonian block mating a spherical integration volume 3200
a.u. in radius. The outer region integration models the 3200 span with a finite-difference grid

comprising 64000 grid points.

Region/ because it connects the wavefunction fofair;rs...rn. 1, t) Specific to that region with
a wavefunction form that at = b represents a single electron and which in calculations tigioéd
from Outer Region’ /.

The Outer Regiori ] is spanned by a finite-difference (FD) grid so that the ometebn wavefunction
there is written L fi(i,1)

¢11(r(i)7t> = lz:; T‘(l)

with ¢ = 4, .., I andr(i,) = b. In this form, for simplicity of presentation, we have alled/for only
one residual ion state of the system. The form the TDSE takeésg Outer Region is then

fili,t) = —i[H - F),(i,t) + iy [Boi(ip — 1,t) + Boi(iy — 2,t)] + diiy+1Bu(ip — 1,1). 4)
This, the second key equation to the method, is the normai tdrthe TDSE over a FD grid except
for the terms multiplyingy;;, andJ;;, 1. Note that these terms require quantities (the Bs) to be eval-
uated at grid points, — 1 andi, — 2 i.e. at points on thénner side of the boundary at = b. This
assume we are using 5-point difference operators on the D gr

}/IO(’f’)’ b S T(i)v (3)

We emphasize how Egs. (2) and (4) are actually used by sket¢the computational procedure in
propagating the full wavefunction through one time-steprit to ¢t + 7. We first consider the Outer
Region TDSE, Eqg. (4). This is handled by the explicit Arnoidi¢-propagator method [19] as in
HELIUM and brings into play Inner Region information throute By, (i, — 1, ), Bo (i, — 2,t) and
By (ip — 1,t) terms all known from time. Having thus determined all th&(i, ¢t + 7) fori = i, .., [
we proceed to the Inner Region. What we need to determine hetbecoefficient€’, (¢ + 7) and
again these are determined by the explicit Arnoldi timeppigator using knowledge of the Outer Re-
gion f,(i,t + 7) to determine the spatial derivative terms-at b brought in by the non-zero Bloch
operator terms there.

Attempts to create efficient time-dependent R-Matrix ind¢igins for such large volumes have made
slow progress, largely because successful integrationeofelevant high-dimensional partial differ-
ential equations is so computationally demanding thatqtires the benefit of parallelization over
tens of thousands of cores, which is not straightforwarduire jR-Matrix formalisms.



We turn now to a discussion of the scaling properties of the RMT high harmonic generation
code on HECToR. The performance and scaling of RMT is somewtptded by the additional
computational overhead of the calculation of acceleradia the global MPI communications oper-
ations needed to complete, assemble and print the catmulatiexpectation values. To demonstrate
the behaviour of the new RMT code, we choose parameters expacbe appropriate to harmonic
generation problems in study of laser-molecule interastidn these problems, the laser wavelengths
are typically infra-red, and long in duration in order took® resonances with high accuracy. The
numerical integrations in these cases require large iatiegr volumes in order to accommodate the
lonising electron during the duration of the laser pulse. 8ytrast, in a typical HELIUM integration
at high (UV) frequency a small integration volume of 1000. anight be used. In the present prob-
lem, figure 1, a volume of radius 3200 is used. The example shovigure 1 uses a helium atom
with a single target state for each possible final state @angnbmentum. The inner region Hamilto-
nian is a tri-diagonal block matrix, of size 32 x 32 blocks.cEdlock is a 55 x 55 matrix. A more
complicated atom, like neon, or a configuration with morgéastates would likely require an inner
region Hamiltonian one of more orders of magnitude larger.

The minimum number of cores needed to accommodate the iagenris 32. Using more than 64
cores provides no additional improvement in speed becdube small size of the blocks (55 x 55).
Figure 1 demonstrates this. The measurements, up to 1086,ame made maintaining the inner
region core-count at a constant 32 cores, the minimum wéekalomber. All of the other cores are
applied to the outer region. After the 1056 core limit is feedt, very little benefit is obtained by
applying more cores to the outer region calculation.

As a final step, we increase the inner region core count frono34. A sharp jump in speed is
produced by the addition of these 32 inner region cores, landesult is plotted at the end of the data
curve in figure 1. A 50% improvement in integration speed isesbed, (from 200 steps/sec to 300
steps/sec).

In the following paragraphs we introduce some of the basi@ggns describing harmonic generation
by atoms in intense laser radiation. Most of the tests desdrin this report will involve calculation
of high harmonic energy spectra, or of expectation valuefuligh the calculation of energy spectra.
The tests will generally exercise both HELIUM and RMT, andhe tast section the results of the
HELIUM and RMT calculations will be compared. The problemedting, estimating uncertainties,
and detecting error is often the most difficult part of a nup@iintegration, especially on large paral-
lel machines which are unusually prone to system failurée dpportunity to provide independently
generated solutions for comparison with the RMT results ésetfore fortunate. HELIUM, for ex-
ample, was originally developed in conjunction with thedimdependent R-Matrix Floquet method.
Discrepencies between the predictions helped revealdhilie in which the numerical methods be-
came unreliable (as for the example the high intensity Jinithen agreement is observed, the small
remaining differences can be used to infer a lower bound emiticertainties in the numerical result.

The electric field,F, of light scattered by an atom in linearly polarized radiatis proportional to
the acceleration induced by the laser, which we choose toolsiped in thez-direction. Using
the Lienard-Wiechert potential (in the non-relativiste-field limit), the electric field radiated by an
accelerated charge is

d
E =k (0t)

1

Pz — iAlaser(t)‘ ¢(t)> =k <¢(t) ‘ [thH] | ¢(t)> + k’€Elaser(t) (5)

whereH is the Hamiltonian describing the laser-atom interactidn= p. — € Aj.se: (1) is the mechan-
ical momentum of the chargg, is the canonical momentum, akds a proportionality constant. The
energy spectrum of the scattered radiation is given by th@rggmodulus of the Fourier transform
of Fioal(t), WhereE,.1(t) is the coherent sum of the E-fields radiated by de- 1 electrons. In
practice, we need to calculate expectation valuep.ofH| = —ih > (d/dz;)V (r1,...,rn11), Where

J
V is the sum of thé N + 1) electron-nucleus Coulomb potentials. The electron-edegbotentials,
1/r;;, do not contribute to the above quantity.

The calculation of the expectation vaI@@(tﬂ%W(t» involves an integration over the spatial
variables of all(N + 1) electrons described by(¢). The integration is performed over all angular
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variables and over all radial variables, and thereforerdmrttons will arise from both the Inner Re-
gion (rq, ...,ry11 < b) and from the Outer Regiom; ...,y < bandry,; > b). The wavefunction
forms in the Inner and Outer Regions are given by Egs. (1) anckspectively.

A common practice in calculations of the spectrum of scattdight is to use:(w) (the Fourier trans-
form of (¢)(¢)|z|1(t))) because a simple relation exists between) and acceleration, (w), the latter
defined as the Fourier transform(@f /dt*) (1 (t)| |1 (t)), which we calculate usindid/dt()(t)|p. | (t)) =
(¥(t)|[ps, H]|¥(t)). In the case in which these time-dependent functions anddbgavatives start at
zero and decay to zero at the end of the integration (a conditiat is usually enforced artificially
by applying a windowing function like the Hanning window) Wavea, (w) = —w?z(w). Of course

this is a mathematical result that is maintained by the natggn only in the absence of numerical
approximation, an ideal and unattainable limit.

Integration error can be catastrophic in high harmonicdatons because the part@? /dt?) (1 (t)| 2] (¢))
that is of interest, (the signal that gives rise to the higimuaics of the laser frequency), is often many
orders of magnitude smaller than the signal giving rise &tteced light at the frequency of the driving
laser. For example, errors of 1 partlier in the wavefunction) can easily obliterate the information
containing the high harmonics. In that case we would see rioal@oise instead of high harmonics.

The calculation ofz(w) in conjunction witha,(w) therefore has an additional benefit, the value of
which cannot be overstated. Comparison of these two quesfitiovides us with a natural test of
the quality of the numerical integration. As remarked ab@ezfect numerics would yield, (w) =
—w?z(w). In practice, the degree to which this equality is satisfeeddnsitive to convergence of

on the B-spline basis set, the matching of the Inner Region ardr®Region wavefunctions at the
boundary, the reflection of wavefunction at boundaries efititegration volume, and accumulation
of roundoff error during propagation.

In Fig. 2 we show the results of an RMT calculation of the eneqggctrum of scattered light. The en-
ergy spectrum is proportional &, (w)|?, wherew is the frequency of the scattered light, aidw) is

the Fourier transform of the time-evolving electric fieldtloé scattered light in the z directiof, (¢).
The energy spectrum gives the total energy scattered irgadrey range. By Parceval’'s Theorem,
the integration over all frequenciesof | £, (w)|? equals the integration over all time [df.(¢)|?. The
latter quantity is proportional to the intensity of scagtight as measured by a detector in the far
field, (a great distance from the atom). Intensity of lighs tl@e units: joules per second per square
meter. Integration of intensity over all time (really ovhetlength of the pulse) would yield the total
energy (joules) contained in the z component of the eletiid, as measured by a perfect detector
(per square meter of the detector). Similarly, integratiwar a frequency range ¢f. (w)|? would
yield, up to proportionality constant, the energy measumnga frequency sensitive detector in that
frequency range. The absolute values of the intensity atideoénergy spectrum depend on the sys-
tems of units, and the geometry and position of the detestuch are not of interest in the software
testing. Units are therefore arbitrary.

Figure 2 compares the energy spectrum as calculated byeaatteh expectation values (Eq. 5) with
the spectrum obtained by dipole expectation values. Theaapon values are obtained by using
only the RMT inner region (B-Spline) wavefunction. For compan, Fig. 3 shows the calculation
repeated with the outer region (finite-difference) RMT wawetion added in. The use of the full
wavefunction in Fig. 3 results in a small but detectable mepment in the agreement between the
two methods of calculating the spectrum. The dipole methond agrees well with the acceleration
calculation at the 3rd peak (5th harmonic), and gives a lrackgl (the high frequency limit of the
spectrum) which is smaller than the corresponding backgtau Fig. 2.
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Figure 2: RMT calculation of the energy spectrum of radiasoattered by a helium atom irradiated
by a4 x 104W/cm? laser pulse linearly polarized in thedirection. Only the inner region wave-
function¥;,, is used in the RMT calculation. The spectrum is proportioadhe square modulus of
the Fourier transform of the time-varying expectation eabd the acceleration of the active ionising
electron (black curve)x w(t)]%hp(t) >. The same quantity is also calculated from the 2nd time
derivative of< ¢ (t)|z|1(t) > (red curve). lonisation is driven by an 8 field period lasdspuamped

on over 4 field periods by a sinusoidal ramp, and ramped ofitidally over 4 field periods.
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Figure 3: RMT calculation of the energy spectrum of radiasoattered by a helium atom irradiated
by a4 x 10*W/cm? laser pulse linearly polarized in thedirection. Here, the full wavefunction
(outer plus inner)¥ is used in the RMT calculation. The spectrum is proportionaldlue of the
acceleration of the active ionising electron (black curve):(t) %W(t) >. The same quantity is
also calculated from the 2nd time derivative-ofi)(t)|z|1)(t) > (red curve). lonisation is driven by
an 8 field period laser pulse ramped on over 4 field periods byuwsaidal ramp, and ramped off
identically over 4 field periods.
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Figure 4: Energy spectrum of radiation scattered by a hetitom irradiated by & x 10%W/cm?
laser pulse linearly polarized in thedirection. The spectrum is proportional to the square masiul
of the Fourier transform of the time-varying expectatiofuesof the sum of the accelerations of the 2

helium electrons (black curvex z/z(t)|%|¢(t) >, wherez = 2,425, andz; is thez coordinate of the
i-th electron. The same quantity is also calculated from2ie time derivative ok ) (t)|z|y(t) >
(red curve). lonisation is driven by an 8 field period lasdspuamped on over 4 field periods by a

sinusoidal ramp, and ramped off identically over 4 field pesi

3 Work Package 2. Implementation of HHG codein HELIUM

In this section we test the upgraded HELIUM code on a simitgecas that used to test the new
RMT code in the previous section, namely a comparison of tjh hiarmonic spectrum derived
from acceleration expectation values with that derivednfrdipole expectation values. Again, the
TDSE for helium in a short high frequency (0.457 au) lases@u$ numerically integrated and the
dipole and acceleration expectation values are tabulatedtbe duration of the pulse. In HELIUM
there is only one region, so no additional MPI communicasoftware was required, but the in-
tegration is over two electrons (6 dimensional) instead red.oThe dipole expectation values are
< (rq,r2,t)|21 + 22|t(r1, r2, t) >, @and the acceleration expectation valees(ry, ra, t)|dp; /dt +
dpg/dtw(rl, ro, t) >,

Figure 4 shows the results of a HELIUM calculation the enesggctrum of scattered light. The
energy spectrum is proportional & (w)|?, the Fourier transform (modulus squared) of the electric
field of the scattered light,(¢). The meanings of these quantities are discussed in mori ideta
the previous section. Again we find that if dipole expectatralues are used to calculate the energy
spectrum then the high frequency part of the spectrum isdessrate than the acceleration calcula-
tion.
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Figure 5: Energy spectrum of radiation scattered by a hetitom irradiated by d x 10%W/cm?
laser pulse linearly polarized in thedirection. The spectrum is proportional to the square masiul
of the Fourier transform of the time-varying expectatiofuesof the sum of the accelerations of the 2
helium electrons (black curvey v (t) %W(t) >, where the accelerati(%jg =dP,/dt, z = 2+ 2,
andz; is thez coordinate of the i-th electron. The RMT curve is obtainedftbe 2nd time derivative
of < ¥ (t)|z|¥(t) > (red curve). lonisation is driven by an 8 field period lasdspuamped on over 4
field periods by a sinusoidal ramp, and ramped off identaaler 4 field periods.

4 Work Package 3. Tuning the RMT HHG calculation for nu-

merical accuracy

In this section we present a series of comparisons betwegprédlictions of RMT and those of HE-
LIUM over a range of UV laser frequencies (0.1168 au to 0.94 &ood agreement is observed
between the two methods, confirming that the RMT integratenmameters have been properly tuned
to produce numerical integrations comparable in qualitthtsse of HELIUM. The success of these
tests does much to increase confidence in the correctndss tfd highly dissimilar numerical inte-
grations.

Figure 5 shows the results of the two numerical integratanite highest laser frequency investi-
gated, 0.94 au. In this case both RMT and HELIUM are used taitzk the energy spectrum. The
RMT calculation is based on dipole expectation values, th&IHE on acceleration expectation
values. The results are typical of those presented in theque sections. The acceleration based
calculations have the lower backgrounds (and evidentlgtavrors) at the higher frequencies. Qual-
itative agreement is observed over a range of 9 orders of itaign
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Figure 6: Square modulus of the Fourier transform of the #@wvaution of the expectation value of
z. Inthe case of HELIUM; = z; + 23, wherez; is thez coordinate of the i-th electron, and the laser
is linearly polarized in the direction. The HELIUM integration used spatial grid poipasings of
0.29 atomic units, and a basis set with maximum angular mame(single-electron) of @. In the
case of RMT,z is the spatial coordinate of the single active electron.isition is driven by an 8
field period laser pulse that is ramped on over 4 field periatis avsinusoidal ramp, and ramped off
identically over 4 field periods.

Figure 6 displays the results of a more direct comparisoh@RMT and HELIUM integrations than
the results shown in Fig. 5. In Fig. 6 the laser pulse chargtiteare the same as those of Fig. 4, but
in the case of Fig. 6 only the Fourier transforms of the digadeectation values are shown. To obtain
the good agreement between RMT and HELIUM observed in Fige@®iMT inner region required
a much larger basis set of splines than originally antiei@aiThe RMT integration used 48 splines in
a 20 atomic unit inner region, which effectively supportsenregion excitations as high as 300 au in
energy. The RMT outer region used a spatial grid point spamfifgL66 atomic units, and a maximum
angular momentum (single-electron) ofi6 The RMT outer region Hamiltonian was modelled with
9-point finite-difference, correct to 8th order in the grmit spacing. Grid point spacings larger than
0.166 au caused stability problems in the RMT integratione $tability problem became apparent
when the basis set of 48 rather than 30 splines was used. Eo@abkfeature of the larger basis set
is the existence of a high energy, high curvature splineltbstadjacent the outer region boundary.
The outer region finite-difference operators sample therinear this boundary, and therefore sample
wavefunctions modelled by this high curvature spline. liksly that the stability problems occur
when the finite-differencing is too coarse to accurately@anthe rapid spatial variation supported
by the high energy boundary spline.

The HELIUM integration used a spatial grid point spacing @®au, (which is the standard setting
in HELIUM). The integration was repeated with a grid poinasimg of 0.20 au with no significant
change in results. The HELIUM integration used the same maxi angular momentum as the RMT
outer region.
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Figure 7: Square modulus of the Fourier transform of the #@wvaution of the expectation value of
z. lonisation is driven by a 10 field period laser pulse thatsped on over 5 field periods by a
sinusoidal ramp, and ramped off over 5 field periods sinyilarl

Figure 7 compares the HELIUM and RMT predictiong;@b). In this case (5 photon ionisation) both
the HELIUM and RMT integrations use basis sets with peak aarxgubmentum (single-electron) of
8 h. The RMT integration again used 48 splines in the 20 atomitioner region, spatial grid point
spacings of 0.166 atomic units in the outer region. Figurer@mares the single-electron ionisation
rates predicted by the HELIUM with those of the RMT integratioAs in the case of two-photon
lonisation (Fig. 6), the integration did not converge uatileast 48 basis splines were used in the
inner region. A 64 spline inner region basis gave the samdtsess 48 splines. The 64 spline basis
allowed excitations as high as 600 au in energy, twice th#t®#8 spline basis. The HELIUM and
RMT prediction of ionisation yield at the end of the pulse @ifby under 5%, which is roughly the
expected uncertainty in both of the numerical integrations
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Figure 8: Probability of finding both helium electrons witt20 atomic units of the nucleus during
excitation with a 242 nm (0.188 au) laser pulse. The pulseacheristics and integration parameters
are the same as those in Fig. 7.
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Figure 9: Square modulus of the Fourier transform of the #@wvaution of the expectation value of
z. Inthe case of HELIUM; = z; + 23, wherez; is thez coordinate of the i-th electron, and the laser
is linearly polarized in the direction. In the case of RMT; is the spatial coordinate of the single
active electron. The HELIUM integration uses spatial grdhp spacings of 0.29 atomic units, and a
basis set with maximum angular momentum (single-electoddp 7. The RMT integration uses 48
splines in the 20 atomic unit inner region, spatial grid psjpacings of 0.166 atomic units in the outer
region, and maximum angular momentum (single-electroiPdf. lonisation is driven by a 12 field
period laser pulse ramped on over 6 field periods by a sinaboédnp, and ramped off identically
over 6 field periods.

We conclude with the 390 nm results, the longest wavelenggh in this series of tests. 390 nm is of
considerable experimental interest because it is reattlyimed from frequency doubled Ti-Sapphire
780 nm lasers. In Fig. 9 we see the first indication of a broatepu of harmonic peaks, a phe-
nomenon that makes HHG of such interest and potential valegperimental study. Again there is
striking agreement between the two methods over a range ofde2zs of magnitude. A small but in-
teresting discrepancy between the results is evident ibtthand 7th harmonics. Recent calculations
of these spectra, [21], shed some light on this discrepafiltyf the results presented here use the
simplest RMT model of helium, called a 1-state model, in whioh final-state residual ion (Hé

is restricted to its 1s ground state. The more recent cdlook [21], exploit a more sophisticated
model called the 3-state model, in which the final-statedresi He™ ion can be not just in its 1s
ground state, but also in the two most likely excited stafBse 3-state model calculation is more
computationally laborious, perhaps by an order of mageitdmlit the 3-state results exactly match
those of HELIUM in the 5th and 7th harmonics, identifying thely source of the discrepancy. It
is interesting that as RMT approaches HELIUM in the qualityt®iresults, it also approaches HE-
LIUM in computational overhead. The Fig. 9 HELIUM result véiggd about 6 hours on 4000 cores
of HECToR. The 1-state RMT integration was at least an order afrmitade faster than HELIUM,
but not the 3-state calculation. The great advantage of RMHaisit can be applied to more complex
many-electron atoms like neon and argon, which are in conuserby experimentalists.
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Figure 10: Probability of finding both helium electrons witl20 atomic units of the nucleus during

excitation with a 12 field period laser pulse. The laser palsgacteristics and integration parameters
are as described in Fig. 9.
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