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Abstract

The RMT method (R-Matrix with time-dependence) is a rawnitio method for solving the time-dependent
Schibdinger Equation (TDSE) for multi-electron atomic and molecular systems in st laser pulses.
Although several other time-dependent R-Matrix methods have beenuctddn recent years [1, 2, 3, 4, 5,
6], RMT demonstrates orders-of-magnitude improvements in efficienocyapty because it employs finite-
difference (FD) techniques to model the few-electron wavefunctioffiréan the atomic core. RMT merges
the Outer Region FD model with a classic B-Spline R-Matrix basis set for the niedtiren Inner Region [7].
The difficult problem of merging a basis set model with a spatially adjacennB@el, while maintaining the
unitarity of the time-propagator, has been a long-standing barrier toge®gr this field. RMT is based on the
solution first published in 2008 by Nikolopoulos, Parker and Taylor Y& have now shown that this method
is both computationally stable and highly efficient.

An implementation of RMT has now been completed and parallelized on workstatiod-sized parallel ma-
chines and on HECTOR. Success was due to the use of a mature R-madiiglgade for the Inner Region,
and the use of the HELIUM finite-difference code for the Outer Regiod (9. HELIUM [11, 12] has been in
heavy use on massively parallel machines since the arrival of the dri@yiaa T3D over 15 years ago. It allows
accurate full-dimensionality solutions of the time-dependent&thger equation for two-electron atoms or
ions in intense fields. It has demonstrated high parallel efficiency on vespiarallel processors, with pro-
duction runs on over 16,000 cores of HECToR, and successful testgen 60,000 cores of Jaguar, HECToR’s
sister computer at Oak Ridge. It has performed well in similarly rigorous testirthe IBM Blue Gene archi-
tecture. It is regularly used on single processor machines, 8-cotestations, clusters of workstations, and
large Beowulf-type workstation clusters.

HELIUM was designed to generate high-integrity solutions of the full TD&H&ser-driven 2-electron atoms.
Experience with HELIUM demonstrates that a very basic requirementidgbr dccuracy results is the use of
large integration volumes - in other words the use of Outer Regions of 4008ohr radii in extent. Attempts
to truncate the integration to boxes of much smaller radii invariably producacceptable and difficult to de-
tect integration errors. Of equal importance is the fact that the basitepnalf calculating the energy spectra
of ejected electrons is intractable without a high-accuracy treatment ofatefunction for these electrons as
they travel far from the nuclear core. For this reason, the HELIUM fiditierence approach and HELIUM
algorithmic methods for the propagator are considered mandatory if the RNIothis to generate solutions
of the TDSE comparable in accuracy to those obtained by HELIUM forlptine-electron systems.

Over the last 5 years, remarkable advances in laser technology reble@iexperimental study of matter-laser
interactions with unprecedented time-resolution. Experiments can nowfoerped using few-cycle pulses of
high-intensity Ti:Sapphire laser light at 800 nm wavelengths, and at Vaduitraviolet wavelengths (VUV)
with pulses as short as 250 attoseconds. The creation of attosecoes iputgrticular has opened up a new
frontier in the study of ultra-fast electronic processes. Recent larkdmttasecond spectroscopic measurements
in a solid [13] have demonstrated that ultra-fast techniques can prbbiette processes occurring at the the-
oretical ultimate speed limit for electronics. Attosecond pulses have receatbfex the real-time observation
of electron tunnelling in atoms [14] and Auger decay of inner-shell elastfd5]. Attosecond pulses have also
enabled stroboscopic study of single ionization events in argon [16].

Interactions that occur over a few cycles of the laser pulse, either dhe &xtreme intensity of the pulse, or
due to the short duration of the pulse, cannot be reliably modelled with traaitiome-independent methods.
If theory is to play a meaningful role, and especially a predictive one,dh siicumstances, then sophisticated
methods of calculation are required which will be capable of accuratelyridesy both the multi-electron
atomic structure and the time-dependent multi-electron response to the light field.

R-matrix methods successfully model multi-electron atom-laser interactionsnaledule-laser interactions,
but only in the time-independent limit. HELIUM successfully models time-depatatem-laser interactions,
but is limited to 2-electron atoms. RMT removes both of these limitations. Throughsthef the R-matrix



method it allows a truly multi-electron dynamical description of the Inner Regéam the nucleus where all the
electrons of the system can be found. This is important because in thééglency limit, (VUV and XUV
(extreme ultraviolet)), inner-shell excitations can be expected to influsm@deminate the interaction. The use
of finite-difference methods derived from HELIUM provides a highuaecy description of the Outer Region
of space which, although very large in comparison to the Inner Regioo¢esaed by at most two electrons in
double ionization processes (just a single electron for single ionizatidr@q@l importance to the success of
RMT is the high efficiency and scalability on parallel computers of the HELI&froach.

In summary, the goal of RMT has been to enable theoretical analysisaitrexkperimental advances with a
degree of reliability that would be impossible by competing methods. These intilad-resolved studies of

ionization events in attosecond time-scales, studies of time-delays betweégectitneof electrons in double-

ionization, inner shell excitations and decays in complex atoms, intense-ftgtdlaser interactions in the

XUV limit using the new free-electron x-ray lasers, and harmonic generatiatoms and molecules.
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1 Objectivesand Outcomes

In section 2 we discuss the goals and outcomes of Work Package 1. JHutiv@bof Work Package 1 was
to develop and test a series of optimizations for efficient load balancinged®MT Inner Region (I.R.) with
RMT Outer Region (O.R.). Figure 1 and related text discuss the scaling laviseanchmarks used to choose
optimal parameters for the balanced execution on jobs in the 100-10,080ecge. Tests were performed on
configurations with 100-1000 I.R. cores, and 100-10,000 O.R. cores.

Figures 2 and 3 and related text discuss an optimization that modified theadrc@mmunications between
the I.LR. and the O.R.. We call this the Red-Black optimization, and demonstrase ancahich it gives us a

factor 1.7 increase in integration speed, in the limit of greater than 500 IrBs.c@/e remark that the result of
this optimization is fortuitous: with the addition of 340 cores to the I.R., it is for examppssible to increase
the speed of an 8,000 core program by 70%.

We describe 2 additional successful optimizations: 1) moving computatiomtfie O.R. to the I.R (thereby
reducing the information exchanged between the regions each time-sidp}) the assignment of a single
dedicated core to inter-region communication. Together these optimizatioasagsignificant speed-up, as
shown in Figure 1. We investigated upgrading the present MPI design wfiémipally faster MPI collectives,

but the MPI collectives were rejected due to incompatibilities with the complicateldéfhods used in the

Red-Black scheme.

In section 3 we discuss the goals and outcomes of Work Package 2. jButivabof Work Package 2 was to
implement an algorithmic enhancement to the propagator in order to improviereffidn the limit of small
spatial grid-point spacings. The original proposal involved exptatmg an approximation of the Hamilto-
nian, but the computational overhead of this approach exceeded thevedpfficiency. Instead we developed
a method based on least-squares finite-difference operators thassfutly produced the desired improvement
in integration speed. In section 3 we show that the least-squares finieedifie methods retain the accuracy
of the original 5-point finite-difference rules, but improve stability bymgssing the highest frequency modes
on the finite-difference grid, thereby allowing larger integration stepssiral integration speed. We present
the results of an integration in which the least-squares rules increaseatidagpeed by a factor of 1.8 over
that of the standard 5-point finite-difference rule, exceeding the aligial of a 50% improvement in speed.

2 Work Package 1. Optimization of the MPI implementation of RMT for
HECToR and likely successor s

We begin with a brief account of how HELIUM methods addressing thediaestron Outer Region are com-
bined with R-matrix basis set methods handling the multi-electron Inner Regienvrité in the Inner Region
I where all electrons can be found: K

w[(rlrz...rN+1,t) = Z Ck(t)zpk(rlrz...rN+1), 0 S T S b, (1)
k=1



whereyy (rira...rn+1), k = 1, K form a field-free, time-independent R-matrix basis forthe+ 1) electrons
within the Inner Region with outer boundary at= b. The construction of the, is the responsibility of
long-existing atomic R-matrix time-independent codes. The time evolution of tiee Region time-dependent
wavefunction is entirely contained in the coefficietlg(t) whose time evolution is determined by the TDSE.
However in writing the TDSE we must take care that the Hamiltonian and dipolaimpg which act on
Yr(rire..rny1,t) are Hermitian over Inner Regioh(where;(r, t) is only deflned) The Hermitian Inner
Region Hamiltonian is given b¥; = H, + Ly, and the dipole operator b§; = D + L4, whereL;, andL, are
Bloch surface terms, only non-zerorat b. In these circumstances the TDSE over Inner Rediawritten:

d;i[ (1‘11'2 rN+1, ) = [H[ + D[(t)] w[(l‘ll‘z...I‘N_;,_l, t) — |:ffh =+ id(t):| w(l‘, t), (2)

where0 < r < b.

This equation is a key one to the method. The second term on the right hancbsighensates for the Bloch
terms introduced to mak&; and D; Hermitian. Note that it makes a contribution onlyrat= b and brings
into play therey(r,t) a one-electron wavefunction form which we define from just within thestriRegion
outwards. This term is central to any time propagation scheme in Inner REgecause it connects the wave-
function form;(ryirs...rNy1, t) Specific to that region with a wavefunction form thatrat b represents a
single electron and which in calculations is obtained from Outer Refjion

The Outer Regior I is spanned by a finite- difference (FD) grid so that the one-electroefwagtion there is
written fl i, t
Yri(r Z )s b < r(i), 3)

with ¢ = i,..,1 andr(i,) = b. In this form for S|mpI|C|ty of presentation, we have allowed for only one
residual ion state of the system. The form the TDSE takes in this Outer Redimnis

fl(i,t) = —i[H . F]l(i,t) + 5iz’b [Bo[(ib — 1,t> + Bgl(ib — Q,t)] —+ 5iib+lBll(ib — 1,t). (4)
This, the second key equation to the method, is the normal form of the TD&EadvD grid except for the
terms multiplyingd;;, andé;;, 1. Note that these terms require quantities (the Bs) to be evaluated at grid points

iy — 1 andi, — 2 i.e. at points on thénner side of the boundary at = b. This reflects the use of 5-point
difference operators on the FD grid.

We emphasize how Egs. (2) and (4) are actually used by sketching theitaimopal procedure in propagating
the full wavefunction through one time-step franto ¢ + 7. We first consider the Outer Region TDSE, Eq.
(4). This is handled by the explicit Arnoldi time-propagator method [11] adkhIUM and brings into play
Inner Region information through thBy; (i, — 1,t), Boi(iy — 2,t) and By; (i, — 1,¢) terms all known from
time t. Having thus determined all th&(i, ¢ + 7) for i = 4, .., we proceed to the Inner Region. What we
need to determine here are the coefficigni{$t + 7) and again these are determined by the explicit Arnoldi
time-propagator using knowledge of the Outer Regfdn, ¢t + 7) to determine the spatial derivative terms at
r = b brought in by the non-zero Bloch operator terms there.

Attempts to create efficient time-dependent R-matrix integrations for such laigmes have made slow
progress, largely because successful integration of the relevdntimgensional partial differential equations
is so computationally demanding that it requires the benefit of parallelizatemtens of thousands of cores,
which is not straightforward in pure R-Matrix formalisms.

To enable the RMT code to run efficiently on HECToR, this work packageded on improving load balancing
among the cores, and improving the efficiency of communications betwees ttwr Inner Region (I.R.) cores
and Outer Region (O.R.).

Load balancing concerns minimizing the idle time of HECToR cores during the Asnthe computational
algorithms implemented by cores in the Inner and Outer Regions are vasthediffthe computational effort
it takes to propagate the wavefunction forward one step in time will be diffénehe two regions. Therefore
for the RMT code to run efficiently on HECToR it is imperative that an undeding of the relative computa-
tional effort between Inner and Outer Regions is built up through épes of running the code for different
conditions. In the Inner Region (I.R.), the propagation forward in time ire@bv matrix-vector multiplication.

The matrix has a block tri-diagonal form; the blocks consist of matrix elementgling two values of total
angular momentum. The I.R. is parallelized over these block structures, tdorthatal angular momentum
ranging from zero up to some maximum value, the minimum number of cores uied that value plus one.
Each core then handles a sub-section of the matrix-vector multiplication.

In the Outer Region (O.R.) the computation is a domain decomposition over theogmid.fEach core handles
a segment of the wavefunction, and stores it in an array of dimem$jgn < Nehanners Where Ny,;q4 is the



number of grid points an®V ,.nneis IS the number of channels. The number of channels is dependent on the
value of total angular momentum and the number of residual target stategdatathe calculation.

Given the value of total angular momentum and the number of residual &teges there should be some op-
timal value of grid points per core that will best balance the computation peefibby the cores in the two
regions. The desired values of the total angular momentum and the nunmesidafal target states are depen-
dent on the scientific problem at hand. To give an indication of the typpsofliems we anticipate studying
with RMT, consider the neon atom. Neon has a multitude of residual ion taagesghat are very close to-
gether in energy: retaining 8 (21) of these and allowing angular momentiuesvap to 24 (30) gives around
500 (1500) channels and an I.R. Hamiltonian of dimension 25000 (120,00Q)ropagate the wavefunction
accurately over the course of an intense 10 cycle infra-red laser fmittwequire a radial grid extending as
far as 20,000-35,000 Bohr radii. Sometimes it is necessary to resolvearesostructures: in these extreme
cases, integration over many (greater than 100) field periods becomessagy, and consequently the radial
grid must extend further by one to two orders of magnitude. We estimate tisattypes of calculations would
require 100-1000 cores to handle the I.R. and 200-10,000 coresdtetthe O.R.

L oad balancing on 200-10,000 cores

We turn now the problem of choosing optimal parameters for balanced datigouin the practical limits RMT
was designed for. Of special interest is the case in which the outer ré@iBn) encompasses core counts as
high as 10,000. This is expected to be a typical core count in studies of enfietts harmonic generation
studies, one of the original motivations for the creation of the RMT method.

In this section we test O.R. core counts in the 100-10,000 range, with iagiEmrcore counts fixed to 100
cores. In the following section on the Red-Black optimization, we explorgingithe I.R. core counts up to
1000 cores.

We start with the general problem of balancing the workload between teeri@gion (I.R.) and outer region for
arbitrary configuration of the R-Matrix inner-region. If the O.R. coresiplete their computation too quickly,
then they sit idle, waiting for the I.R. to complete. If the O.R. cores have too mock tw do per time-step,

then the I.R. cores sit idle, waiting for the O.R. to complete. Notice that if the @iRs@mutnumber the I.R.

cores by 100 to 1, (a not uncommon case), then I.R. idleness is notymgsve computationally - preventing
O.R. core idleness in this limit is the top priority for efficiency.

Parameters defining the R-Matrix I.R. are for the most part constrainesttirc values by the physics of the
problem. The only easily adjustable parameter is the outer region paramee&nigg the number of grid
points per coreN,,;4. Itis straightforward to calculate a good estimate\gf.,; based on knowledge of the
run-time scaling of the I.R. and O.R. as a function of several prograanpeters. To first approximation, the
run-time overhead per time step of the inner region scales as

runtime_per_step = Cinn@TNleock /Nepp

whereci,qer IS @ proportionality constantVy,.. is the dimension of the matrix block making up the tridi-
agonal |.R. Hamiltonian block matrix, amdicpp is the number of I.R. cores allocated per block. Constants
accounting for communications overhead can be neglected here. Runvtniead per time step of the outer
region scales as

runtime-per_step = CouterNgrichhann6157

wherec,uter IS a proportionality constanty,,.;; is number of radial grid points per core, aNd, .5 IS the
number of channels. Equating the two quantities so that the I.R. and O.R. ¢erept#h step in comparable
time duration gives us the desired initial estimate/fgy.;4:

2
Ngm’d = (Couter/cinner)NblocchhannelsNCPB .

The ratiocyyuter /cinner 1S Calculated by repeated trials of the RMT program. If the r@ti@., / cinner 1S indepen-
dent of parameters lik&.;,qnne1s €1C., then a knowledge of the ratio determings,;, for all parameter choices.
Not surprisingly, the ratio, e, / cinner d0€S Not turn out to be a true constant, but varies somewhat with changes
in problem parameters, and more substantially with changes in hardward EOmoR, 1/15 is typical value
for couter /Cinner- Figure 1 shows some RMT timings WitNi.panners = 101, Npjoek = 673, Nopp = 5. In

this case the optimaV,.;,q was about 60, ant, ¢, /Cinner = 1/15. In another set of benchmarks (not shown)
Nyoet: = 430, significantly decreasing the size of the arrays on the |.R. cores, (Whjztoved the efficiency

of the I.R. calculation through faster memory access) so that the spesdsupomewhat greater than would
be expected from linear scaling in the quanm’ﬁlock. The optimal value for the rati@ycr / Cinner Was in this
case about 1/12, due to the smallgy,.... Figure 1 demonstrates the degraded performance of RMT from MPI
communications overhead as core counts approach 10,000.

4
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Figure 1. Integration speed as a function of core count. The outenregid-point numbers were chosen to
optimize speed by improving the load-balance. The inner-region runs @rcdr@s in each case. The faster
runs (squares) were achieved by an additional load-balancing teehrdgsigned to minimize delays due to
communications between the inner-region and outer-region.

Optimizing I .R./O.R. computation order: thered-black optimization

The RMT propagator is such that the wavefunction must be known in bgitngat the start of any given time
step, i.e. effectively both regions synchronize at the start and at thefezach time step. The computation
amounts to calculating the Hamiltonian times the wavefunction. The I.R. can dotitsigependently of the
O.R., but the O.R needs some wavefunction information from the I.R. to belguatton. The first step then
is for the |.R. to send wavefunction information to the O.R.. The O.R. coradlarantil they receive this data.
When reception is complete, the O.R. begins calculation @fidand the I.R. cores become idle. The O.R.
completes its first order propagation and sends information to the I.R.. Atéigie the I.R. can commence its
first order propagation and the O.R. can commence its second ordagatam in parallel with the I.R., after
which it sends more information to the I.R.. The higher the order of the pedpaghe higher percentage of this
computation can be done in parallel (i.e., the more the I.R. can work indepiiyndéthe O.R.). This process
repeats up to the maximum order of the Arnoldi propagator. (Arnoldiggators are used in both regions and
the maximum propagation order is a parameter in the code.) Finally the I.R. ogpiate its maximum order
propagation, and the two regions can again synchronize.

We find that we can increase the degree to which the Inner and Outensegiok independently of each other
by dividing the I.R. into two independent sets of cores - which we call reddack cores. This optimization
works by allowing the red I.R. cores and the black I.R. cores to indepéigdeceive information from the O.R.
In certain limits this independence improves |.R. parallelism by allowing ond setes to begin computation
instead of sitting idle awaiting the other set to synchronize with the O.R. As we sblow, the availability if
this option improves the program’s ability to exploit large numbers of coreseisw/the overall efficiency of
the integration.

In Figures 2 and 3 the outer region overhead (per core) has begrecktb its ultimate minimum by using just
32 grid points per core. The Hamiltonian assumes a maximum angular moménium= 23, so the inner
region Hamiltonian is a 24 x 24 block tridiagonal matrix. The number of cores which the inner region is
parallelized must therefore be a multiple of 24. If the red-black optimizationabled, then the number of
inner region cores must be a multiple of 48.

Figures 2 and 3 plot the speed at which the RMT code can integrate thgoeguzf motion. We see in Figure
2 that adding additional cores to the inner-region results in a near lineadsp up to about 240 I.R. cores.
Above 240 |.R. cores, the improvement in speed is negligible for the cadeidhthe red-black decomposition
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Figure 2: Distance in time that the equations of motion can be integrated fo(pardecond of wall-clock
time) as a function of the number of cores over which the inner region iigdesad. The Arnoldi propagator
is 4th order, and the inner region Hamiltonian is a 24 x 24 block tridiagonal m&sgh block is a 552 x 552
real-valued matrix. Total number of cores is 8192.
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Figure 3: Distance in time that the equations of motion can be integrated fo(pardecond of wall-clock
time) as a function of the number of cores over which the inner region idiglesad. The Arnoldi propagator
is 8th order. Total number of cores is 8192. All other parameters aréddeto those in fig. 3.



is disabled, but continues linearly (with a smaller proportionality constant) isdke in which red-black de-
composition is enabled. At about 580 cores, the integration with the re-bfditnization enabled is a factor
1.45 times faster than that of the disabled case. So the addition of 340 IeR.atmove the 240 core threshold
(more than doubling the number of inner region cores) yields an improvemheriout 45 percent in speed.
This may at first glance seem disappointing, but it is both desirable amditiahin the RMT code. In practice
the outer region will run on 1000’s or tens of 1000’s of cores. In themgXde in Figures 2 and 3, the total
number of cores (Inner + Outer) is 8192. If the outer region is using48y cores, then the addition of 340
I.R. cores is a highly inexpensive way to improve the run-time efficiencyeétitire program by 45 percent.

Figures 2 and 3 show only up to about 600 I.R. cores. The tests wdogrped up to 1000 I.R. cores, but little
or no improvement was observed above 600 cores. The matrix computtitaingsere parallelized by these
600 cores were performed on matrices that were 552 x 552 in dimensi@ama RMT problems, matrices
up to 30,000 x 30,000 in size have been used, and it is expected that inglitheaaddition of more than 600
cores will provide additional speedup.

The results plotted in Figure 3 demonstrate that we can obtain even bettiéeljzanby using a higher order
(8th order) propagator. In this case, with the red-black optimization ethafpeed is factor 1.7 times greater
than that of the disabled case. This is another fortunate result, becausenibidi propagator improves in
overall efficiency with order. More precisely, doubling the order ofAlneoldi propagator usually doubles the
run-time, but allows time-steps to more than double for a net gain in integrati@u sfn practice, the highest
order possible within the constraints of available memory is used. Order Biscsfandard.

Optimizing communications between the Inner and Outer Regions

Each time step the Hamiltonian-wavefunction product is calculated numerous &intesach time it is calcu-
lated information must be exchanged between the I.R. and the O.R. covesal@g@proaches to improving the
efficiency of this process were investigated.

The second term on the right hand side of Eqg. (2) must be calculated infheaf then sent to the I.R.. As
outlined above, each I.R. core is responsible for a subsection of the raagtier multiplication, and therefore

this O.R. data is needed on all I.R. cores. As a possible optimization of thisgg@ee considered a new
communications design using MPI’s single-core to many-core collectivesseloptimization attempts failed
because they were incompatible with the complicated parallelization and commumscstlieme arising from

the new Red-Black optimization described above.

Another impediment to efficient inter-region communication was a large penaltatbse from the O.R. com-
putation of surface amplitudes for use by the I.R. Each time step a (potentighy laactor is repeatedly calcu-
lated in the O.R. via a projection of each channel wavefunction’s radisfdige onto known time-independent
surface amplitudes, and sent to the I.R.. This computation was moved fromRhéoQhe I.R. based on the
observation that in the limit of optimal load balancing, it is the I.R. that will beileged with greater idleness,
hence will have the spare CPU cycles to devote to the calculation.

Originally we also proposed to reduce the size of the data packets traaskatween the inner and outer re-
gions, but instead the modifications described in work package 2 resubiddrige increase in the size of these
data packets. Fortunately, this additional burden was removed by theifti@ptimization: a single O.R. core
was dedicated to the data transfer, and any excess time remaining (corgp#redun-time per step of other
O.R. cores) was applied to propagating the O.R. Hamiltonian over a redum&tbad, so that it was exactly
synchronized with the remaining O.R.cores. Figure 1 shows the improvestrarés) in the speed of RMT
with this optimization on 100 to 10,000 O.R. cores.

3 Work Package 2. Algorithmic enhancement of the time propagator

In certain limits, (for example in the limit of high nuclear charge Z) the finite-dififee Outer Region integra-
tion becomes excessively inefficient in comparison to the Inner Region tiopagation. A straightforward
enhancement to the present propagation algorithm, yields significant ietpemts in efficiency, and can re-
store balance between the Inner and Outer Regions in these limits. Thelti#iewe particularly acute when
highly-stripped ions are modelled, because of the need to make the gricspaiihg small in these cases. In
a typical problem, using HELIUM to model a 2-electron atom with Z = 2, a chofcé& = 0.25 au proves
satisfactory. By contrast, for He-like neon (a highly stripped ion with Z =&l a charge of 8 e) we find that
aodér =0.025 au is a more satisfactory choice.

Unfortunately, the Outer Region (O.R.) requires integration time-stefisat scale a$/ér2. In other words,
if we decreasér by a factor of 10 fromir = 0.25 au toyr = 0.025 au, then we must decreadseoy a factor



of 10000, and the program runs (at least) 10000 slower. The diffiattgs because the highest energy eigen-
values of the finite-difference Hamiltonian are of the orfler= 7%k2/2m wherek?,,, = 10/6r2. These high
energy eigenstates can be thought of to first approximation as the mogtenpelane-waves that the grid can
support. They are unphysical excitations, and in general shouldicardgopulation. They tend to be one,
two or more orders of magnitude greater in energy that the physical planes excited by the laser pulse, (the
plane-waves that represent ionizing electrons). For exampie,=0.25 au, the physical excitations are rarely
greater than 10 au in energy. Butsat= 0.25 au, the highest energy eigenvalues E on the grid are observed to
be of the order 100 au, (using typical integration parameters)r At0.025 au, the corresponding energies are
of the order E = 10000 au. Unfortunately, the propagator must sdatlgsstegrate the equations of motion as
though these high-energy unphysical modes contain population. Otkeespigrious population accumulates
in these modes through integration error - the integration becomes unstdliéélagatastrophically. In the ex-
plicit propagators used by HELIUM and RMT, stability is regainedishe integration step size, is decreased
to something of the order of the period of the highest energy plane-wgp®ged by the finite-difference grid,
which, as explained above scaleslaér2.

The finite-difference portion of the RMT code is the outer region (O.R{igoof the integration. The O.R. is
very typically a distance 20 au or more from the atomic core. At this distancatdingic Coulomb potentials
arising from the attractive forces between the ejected (ionizing) electih& nuclear core, and the repulsive
forces between the ejected electron and the remaining electrons areetglataak. The eigenvalues of the
finite-difference Hamiltonian are dominated by the Kinetic Energy operatdmi€.eigenspectrum of the Ki-
netic Energy operator K is in turn dominated by that of the 2nd derivatieeadpr. (The centripetal repulsion
term falls off as the inverse square gfand makes a negligible contribution to the spectrum.) The electric
field also influences the eigenspectrum. At typical field intensities it may skiffiéhd-free peak eigenval-
ues by something of the order 5-20 percent, but rarely more. Excepé imtist extreme circumstances, the
eigenspectrum of the outer region Hamiltonian is to good first approximativofttize 2nd derivative operator
appearing in K (multiplied by-0.5/672).

We would expect then, that in the limit of smalt the integration step sizé is governed by the /6> de-
pendence of the 2nd derivative finite-difference operator of theti€ifnergy operator K. This is in fact what
we observe in the normal operation of the RMT code. Since both the ingiemrand outer region use the
same step sizét, the behavior of the eigenspectrum of K has a profound effect orutiéime efficiency of
the RMT code. Developing methods of mitigating the effect of the high eigeesaltiK has been the goal of
workpackage 2. The originally proposed method involved exponentiatiog & an approximate K, indepen-
dently of the remaining parts of the Hamiltonian. The computational overhetiisahethod of this method
proved to be greater than the cost savings from the larger steptsize this method was abandoned. Instead
we developed a method of reducing the peak eigenvectors of K by usstesigaares operators. The new tech-
nique successfully reduces the peak eigenvalues of K by up to a fdetpaond does so at very little additional
computational cost. In fact in most cases the additional computation is utat#esio the run-time of the RMT.

We turn now to a demonstration of the new technique, and discuss a cas&mdwlsan be increased by a
factor of 1.8 over that of the original code. The integration proceedssaithe accuracy and stability as the
original code, but 80 percent faster than the best speed possible bsigmal code. The new technique appears
to be a nearly ideal solution to the problem.

We begin by outlining the methods used to generate the least-squares fif@terdié operators.

If function f(X) is written as an Nth order polynomial, or equivalently as a linear combination-afdxthog-
onal polynomialsy);(X) of ordersj = 0 to N, then finite-difference differentiation and integration rules can be
derived by taking derivatives and integrals of the polynomial reptasien of f(X). The use of orthogonal
polynomials, as described in the following, makes it easy to create a leasesqepresentation ¢f X') and

of finite-difference differentiation and integration matrix operators.

Let f(X) be a linear combination of orthogonal polynomiéls(X):
N
n=0

Here theC,, are determined by projecting both sides of the above equation onto polyn@p(ial). By the
orthogonality of@, (i.e. (Qm, Q) = 0if n # m), we get

The inner product f, Q.,) with respect weight$l’; is defined:
N
(f;Qm) =Y Wif(X;)Qm(X;)- (7)
j=0
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Notice we do not assume that the Q’s have been normalized. Insertingltieeof&’,, derived above into the
polynomial expansion of (X), and inverting the order of the sums over j and n gives the desired rule:

Zf )W Z Qn(X X)/(@n; Qn))l- (8)

The sum over j is over data poinds;. The sum over n is over polynomialy,. To interpolate, integrate or dif-
ferentiatef (X'), we use its polynomial representation, given by equation 8 above. Bor@g, differentiation
of both sides of the above formula yields a rule for taking the derivatif/g$.5 ).

A sum of N+1 orthogonal polynomials, up to order N, will exactly approxineate tabular function of N+1
points f(Xo), f(X1),...f(Xn). If the sum is truncated to less than N+1 polynomials, then the result is a least-
squares fit to these points. Generally we throw out the high order pQlys@~_1, ... because they contain

the highest frequency componentsf@fX ), (the components that rapidly oscillate Esvaries).

As an example, we now write down the steps used to create a least-sqnieedifierence 1st derivative of
f(X). Differentiating Equation 8 on both sides of the equality gives:

Zf )W Z Qn(X;)Q0(X)/(Qn, Qn))]- (9)

The finite-difference differentiation rule at poiJth is the set of numbers in brackets [], which we call Rule(j):
RUIe W Z Qn Qn Xk)/(an Qn) (10)
With this definition, equation 9 becomes a frnrte drfference rule for difféméon at.Xy:

Z f(X;)Rule(j (11)

To generate the orthogonal polynomig)sand the derivatives af), the Gram-Schmidt recurrence relation is
used.

Qo =1, (12)
Qm(X) = XQm-1— Z (ijQj) (13)
j<m
The sum on the RHS was added to méakg orthogonal to all previous Q’s. The coefficierts,; that guarantee
orthogonality are: Bumj = (XQm-1,Q,)/(Q;,Q;). (14)

where (Py, P,) denotes the weighted inner-product defined above. To see this takengrepioduct of the
equation for@,, with Q;, assuming/ < m, set it equal to zero, and use recursion. The form given above is
the one that generalizes to many dimensions. In one dimension the formula singaliftest only two of the

B coefficients are nonzero. We call these coefficiehtsand B,,,:

Qo(X) =1, (15)

Qu(X) = (X — Ay), (16)

Qm(X) = (X — Apn)Qm-1 — BnQm-—2. 17)

where Am = (XQm-1,Qm-1)/(Qm-1, @m-1), (18)
B = (XQm-1, Qm—2)/(Qm—2, @m—2). (19)

Differentiating both sides of the above recurrence relation§foX ) gives the desired recurrence relations for
the higher order derivatives 6§(X).
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Figure 4. Eigen-spectra of 4 finite-difference 2nd derivative dpesa The eigenvalues are sorted from large
to small, so that the maximum eigenvalue of each operator is at index 0. Ttteaspee obtained by eigen-
decomposition of 256 x 256 banded matrices representing 2nd ordeediftdion operators as applied to a
finite-difference grid with 256 point. Absolute values of the spectra arntgpldor easier comparison with Fig.
5. The actual eigenvalues are all negative.
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Figure 5. Maximum eigen-energy (in atomic units) of the outer region finiferdihce Hamiltonian as given
by the Arnoldi eigen-decomposition during the course of an 8 field petimdenical integration of neon. The
field is high frequency XUV (4 atomic units), and the intensity2isc 10'1/cm?. The integration is re-
peated 4 times, using 4 different sets of finite-difference rules for tlded2mivative operators in the outer
region Hamiltonian. The two least squares operators (the 9 point 7th aratdghrules) have the smallest
maximum eigenenergies. The ratios of the eigen-energies is consistent avigign-decomposition of the
finite-difference matrices (fig. 4) even in the presence of a strong field.
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Figure 6: Probability of finding a single ionizing electron within 20 au (Boldliijaf the neon nucleus as a
function of time. The atom interacts with an intense 8 field period XUV pulse tlaméhtegration continues
5 or more field periods after the field has ramped to zero. The pulse hasnpeasity2 x 1061//cm?, and
frequency 4 atomic units (108.8 eV). Results using the most accurate ofiteedifference rules (9 point, 8th
order) are compared with those of the least accurate rule, the leases@upoint, 5th order rule. The grid
point spacing is 0.1 au and the integration step &ize in both cases 0.02 au.

Figure 4 shows the eigen-spectra of two least-squares finite-difieigrerators along with the eigen-spectra
of two non least-squares operators.

The eigenvectors in this example are to good approximation sinusoids. In theflinfinhitely small grid-point
spacings, the operator becon#f%,; and its eigenvectors approaehp(ikr), with eigenvaluesk?:

d2

ﬁemp(ikr) = —k?exp(ikr) (20)

In Figure 4, "order” refers to the order of the polynomial used to cateulae 2nd derivative. For example, in
the case of the 9 point rule, the non least-squares operator is 8thlorddrer words, an 8th order polynomial
is chosen such that it passes through each of the 9 points. The 9 deinttwrns the exact 2nd derivative of
this polynomial at the central point. An 8th order polynomial is the lowestrgudi/nomial that can in gen-
eral pass through any arbitrarily chosen 9 points. The least-squédesause polynomials of order less than 8.
These polynomials do not in general pass through each of the 9 pointhig-ceason they are less sensitive to
numerical noise that accumulates during the numerical integration of fuadtiah can be described as linear
combinations okxp(ikr). It is apparent that the least-squares process can dramatically triineategher
frequency components of the eigen-spectrum without significantly ahgutige low frequency components.

Figure 5 shows the resulting reduction in peak eigenenergies when thadgases finite-difference operators
described above are substituted into the RMT outer region Hamiltonian. Bhkesfenvalues shown in Figure
5 are not physical excitation of the atomic system. The highest eigenvdioes sn Fig. 5 are 10 to 100
times larger in energy than the energies of the electrons excited by thellasgrare numerical artifacts of the
finite-difference grid. By suppressing them, we can can use largeratieg step-sizesdt while maintaining
both stability and accuracy. Figure 6 demonstrates that the least-squiasegive the same answers as the non
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Figure 7: Probability of finding a single ionizing electron within 20 au (Boldliiyaof the neon nucleus as a
function of time. The atom interacts with an intense 8 field period XUV pulse tlaménhtegration continues
8 or more field periods after the field has ramped to zero. The pulse hiasnpeasity of 10'°1//cm?, and a
frequency of 4 atomic units (108.8 eV). The green line shows the failuirgegration when 5 point 4th order
finite-difference rules are used for the 2nd derivative operatong. réd line shows the high accuracy results
obtained using the 9 point, 8th order 2nd derivative rule. The black lineisatbult using the least-squares 9
point 5th order rule.
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least-squares rules.

Figure 7 demonstrates that the 9 point least-squares operator enaljestiotestep-sizes significantly larger
than step-sizes possible with the non least-squares 5 point rule. ThetSueiresults in a catastrophic inte-
gration failure at a rather smalt. The failure is due to instability in the integration that becomes apparent at
ot = 0.0061 au. For all largeft, the instability worsens. The integration using least-squares finite-differe
rules (9 point, 5th order, black line) is stable and accurat& at0.011 au. (In these two examples the grid
point spacing i9r = 0.05 au.) Results using a smaller grid point spading 0.001 au, along with the most
accurate of the finite-difference rules (red line: 9 point, 8th orderpegsented in order to verify the accuracy
of the 9 point least-squares rule (black line).

One of the nice features of this approach is the good run-time efficiertbg 8fpoint rules. On tests of RMT on
HECTOR, the 9 point rules were nearly as fast as the 5 point rules sltwfact difficult to detect a difference.
This is evidently due to the fact that much of the overhead of the finite-diffar computation is in the access
of the large wavefunction arrays from memory (rather than in the floatiing ¢ and "+”). This memory
fetch overhead is the same for the 9 and 5 point rules. And although theée2ivdtive operator is the cause of
the unphysically large eigenvalues of the Hamiltonian, it has a small computlatastan comparison to all the
other operators in the Hamiltonian. For this reason, the 9 point RMT rurestaad the 5 point RMT, and we
find that the ability to increas# by a factor 1.8 directly translates into a factor 1.8 increase in integratiod spee
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