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Abstract

The RMT method (R-Matrix with time-dependence) is a newab initio method for solving the time-dependent
Schr̈odinger Equation (TDSE) for multi-electron atomic and molecular systems in intense short laser pulses.
Although several other time-dependent R-Matrix methods have been introduced in recent years [1, 2, 3, 4, 5,
6], RMT demonstrates orders-of-magnitude improvements in efficiency, primarily because it employs finite-
difference (FD) techniques to model the few-electron wavefunction farfrom the atomic core. RMT merges
the Outer Region FD model with a classic B-Spline R-Matrix basis set for the multi-electron Inner Region [7].
The difficult problem of merging a basis set model with a spatially adjacent FDmodel, while maintaining the
unitarity of the time-propagator, has been a long-standing barrier to progress in this field. RMT is based on the
solution first published in 2008 by Nikolopoulos, Parker and Taylor [8].We have now shown that this method
is both computationally stable and highly efficient.

An implementation of RMT has now been completed and parallelized on workstations, mid-sized parallel ma-
chines and on HECToR. Success was due to the use of a mature R-matrix parallel code for the Inner Region,
and the use of the HELIUM finite-difference code for the Outer Region [9, 10]. HELIUM [11, 12] has been in
heavy use on massively parallel machines since the arrival of the original Cray T3D over 15 years ago. It allows
accurate full-dimensionality solutions of the time-dependent Schrödinger equation for two-electron atoms or
ions in intense fields. It has demonstrated high parallel efficiency on massively parallel processors, with pro-
duction runs on over 16,000 cores of HECToR, and successful tests on over 60,000 cores of Jaguar, HECToR’s
sister computer at Oak Ridge. It has performed well in similarly rigorous testing on the IBM Blue Gene archi-
tecture. It is regularly used on single processor machines, 8-core workstations, clusters of workstations, and
large Beowulf-type workstation clusters.

HELIUM was designed to generate high-integrity solutions of the full TDSE for laser-driven 2-electron atoms.
Experience with HELIUM demonstrates that a very basic requirement for high accuracy results is the use of
large integration volumes - in other words the use of Outer Regions of 1000’s of Bohr radii in extent. Attempts
to truncate the integration to boxes of much smaller radii invariably produced unacceptable and difficult to de-
tect integration errors. Of equal importance is the fact that the basic problem of calculating the energy spectra
of ejected electrons is intractable without a high-accuracy treatment of the wavefunction for these electrons as
they travel far from the nuclear core. For this reason, the HELIUM finite-difference approach and HELIUM
algorithmic methods for the propagator are considered mandatory if the RMT method is to generate solutions
of the TDSE comparable in accuracy to those obtained by HELIUM for purely two-electron systems.

Over the last 5 years, remarkable advances in laser technology have enabled experimental study of matter-laser
interactions with unprecedented time-resolution. Experiments can now be performed using few-cycle pulses of
high-intensity Ti:Sapphire laser light at 800 nm wavelengths, and at Vacuum-Ultraviolet wavelengths (VUV)
with pulses as short as 250 attoseconds. The creation of attosecond pulses in particular has opened up a new
frontier in the study of ultra-fast electronic processes. Recent landmark attosecond spectroscopic measurements
in a solid [13] have demonstrated that ultra-fast techniques can probe solid state processes occurring at the the-
oretical ultimate speed limit for electronics. Attosecond pulses have recently enabled the real-time observation
of electron tunnelling in atoms [14] and Auger decay of inner-shell electrons [15]. Attosecond pulses have also
enabled stroboscopic study of single ionization events in argon [16].

Interactions that occur over a few cycles of the laser pulse, either due tothe extreme intensity of the pulse, or
due to the short duration of the pulse, cannot be reliably modelled with traditional time-independent methods.
If theory is to play a meaningful role, and especially a predictive one, in such circumstances, then sophisticated
methods of calculation are required which will be capable of accurately describing both the multi-electron
atomic structure and the time-dependent multi-electron response to the light field.

R-matrix methods successfully model multi-electron atom-laser interactions, andmolecule-laser interactions,
but only in the time-independent limit. HELIUM successfully models time-dependent atom-laser interactions,
but is limited to 2-electron atoms. RMT removes both of these limitations. Through theuse of the R-matrix
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method it allows a truly multi-electron dynamical description of the Inner Region near the nucleus where all the
electrons of the system can be found. This is important because in the high-frequency limit, (VUV and XUV
(extreme ultraviolet)), inner-shell excitations can be expected to influenceor dominate the interaction. The use
of finite-difference methods derived from HELIUM provides a high accuracy description of the Outer Region
of space which, although very large in comparison to the Inner Region, is accessed by at most two electrons in
double ionization processes (just a single electron for single ionization). Of equal importance to the success of
RMT is the high efficiency and scalability on parallel computers of the HELIUMapproach.

In summary, the goal of RMT has been to enable theoretical analysis of recent experimental advances with a
degree of reliability that would be impossible by competing methods. These include time-resolved studies of
ionization events in attosecond time-scales, studies of time-delays between the ejection of electrons in double-
ionization, inner shell excitations and decays in complex atoms, intense-field atom-laser interactions in the
XUV limit using the new free-electron x-ray lasers, and harmonic generation in atoms and molecules.
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1 Objectives and Outcomes
In section 2 we discuss the goals and outcomes of Work Package 1. The objective of Work Package 1 was
to develop and test a series of optimizations for efficient load balancing of the RMT Inner Region (I.R.) with
RMT Outer Region (O.R.). Figure 1 and related text discuss the scaling laws and benchmarks used to choose
optimal parameters for the balanced execution on jobs in the 100-10,000 core range. Tests were performed on
configurations with 100-1000 I.R. cores, and 100-10,000 O.R. cores.

Figures 2 and 3 and related text discuss an optimization that modified the orderof communications between
the I.R. and the O.R.. We call this the Red-Black optimization, and demonstrate a case in which it gives us a
factor 1.7 increase in integration speed, in the limit of greater than 500 I.R. cores. We remark that the result of
this optimization is fortuitous: with the addition of 340 cores to the I.R., it is for example possible to increase
the speed of an 8,000 core program by 70%.

We describe 2 additional successful optimizations: 1) moving computation from the O.R. to the I.R (thereby
reducing the information exchanged between the regions each time-step), and 2) the assignment of a single
dedicated core to inter-region communication. Together these optimizations gave a significant speed-up, as
shown in Figure 1. We investigated upgrading the present MPI design with potentially faster MPI collectives,
but the MPI collectives were rejected due to incompatibilities with the complicated MPI methods used in the
Red-Black scheme.

In section 3 we discuss the goals and outcomes of Work Package 2. The objective of Work Package 2 was to
implement an algorithmic enhancement to the propagator in order to improve efficiency in the limit of small
spatial grid-point spacings. The original proposal involved exponentiating an approximation of the Hamilto-
nian, but the computational overhead of this approach exceeded the improved efficiency. Instead we developed
a method based on least-squares finite-difference operators that successfully produced the desired improvement
in integration speed. In section 3 we show that the least-squares finite-difference methods retain the accuracy
of the original 5-point finite-difference rules, but improve stability by suppressing the highest frequency modes
on the finite-difference grid, thereby allowing larger integration step-sizes and integration speed. We present
the results of an integration in which the least-squares rules increase integration speed by a factor of 1.8 over
that of the standard 5-point finite-difference rule, exceeding the original goal of a 50% improvement in speed.

2 Work Package 1. Optimization of the MPI implementation of RMT for
HECToR and likely successors

We begin with a brief account of how HELIUM methods addressing the few-electron Outer Region are com-
bined with R-matrix basis set methods handling the multi-electron Inner Region. We write in the Inner Region
I where all electrons can be found:

ψI(r1r2...rN+1, t) =
K

∑

k=1

Ck(t)ψk(r1r2...rN+1), 0 ≤ r ≤ b, (1)
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whereψk(r1r2...rN+1), k = 1,K form a field-free, time-independent R-matrix basis for the(N +1) electrons
within the Inner Region with outer boundary atr = b. The construction of theψk is the responsibility of
long-existing atomic R-matrix time-independent codes. The time evolution of the Inner Region time-dependent
wavefunction is entirely contained in the coefficientsCk(t) whose time evolution is determined by the TDSE.
However in writing the TDSE we must take care that the Hamiltonian and dipole operators which act on
ψI(r1r2...rN+1, t) are Hermitian over Inner RegionI (whereψI(r, t) is only defined). The Hermitian Inner
Region Hamiltonian is given byHI = H0 + L̂h and the dipole operator byDI = D+ L̂d, whereL̂h andL̂d are
Bloch surface terms, only non-zero atr = b. In these circumstances the TDSE over Inner RegionI is written:

i
dψI

dt
(r1r2...rN+1, t) = [HI +DI(t)]ψI(r1r2...rN+1, t) −

[

L̂h + L̂d(t)
]

ψ(r, t), (2)

where0 ≤ r ≤ b.

This equation is a key one to the method. The second term on the right hand side compensates for the Bloch
terms introduced to makeHI andDI Hermitian. Note that it makes a contribution only atr = b and brings
into play thereψ(r, t) a one-electron wavefunction form which we define from just within the Inner Region
outwards. This term is central to any time propagation scheme in Inner RegionI because it connects the wave-
function formψI(r1r2...rN+1, t) specific to that region with a wavefunction form that atr = b represents a
single electron and which in calculations is obtained from Outer RegionII.

The Outer RegionII is spanned by a finite-difference (FD) grid so that the one-electron wavefunction there is
written

ψII(r(i), t) =
L

∑

l=0

fl(i, t)

r(i)
Yl0(r̂), b ≤ r(i), (3)

with i = ib, .., I andr(ib) = b. In this form, for simplicity of presentation, we have allowed for only one
residual ion state of the system. The form the TDSE takes in this Outer Region isthen

ḟl(i, t) = −i[H · F]l(i, t) + δiib [B0l(ib − 1, t) +B0l(ib − 2, t)] + δiib+1B1l(ib − 1, t). (4)

This, the second key equation to the method, is the normal form of the TDSE over a FD grid except for the
terms multiplyingδiib andδiib+1. Note that these terms require quantities (the Bs) to be evaluated at grid points
ib − 1 and ib − 2 i.e. at points on theinner side of the boundary atr = b. This reflects the use of 5-point
difference operators on the FD grid.

We emphasize how Eqs. (2) and (4) are actually used by sketching the computational procedure in propagating
the full wavefunction through one time-step fromt to t + τ . We first consider the Outer Region TDSE, Eq.
(4). This is handled by the explicit Arnoldi time-propagator method [11] as inHELIUM and brings into play
Inner Region information through theB0l(ib − 1, t), B0l(ib − 2, t) andB1l(ib − 1, t) terms all known from
time t. Having thus determined all thefl(i, t + τ) for i = ib, .., I we proceed to the Inner Region. What we
need to determine here are the coefficientsCk(t + τ) and again these are determined by the explicit Arnoldi
time-propagator using knowledge of the Outer Regionfl(i, t + τ) to determine the spatial derivative terms at
r = b brought in by the non-zero Bloch operator terms there.
Attempts to create efficient time-dependent R-matrix integrations for such large volumes have made slow
progress, largely because successful integration of the relevant high-dimensional partial differential equations
is so computationally demanding that it requires the benefit of parallelization over tens of thousands of cores,
which is not straightforward in pure R-Matrix formalisms.

To enable the RMT code to run efficiently on HECToR, this work package focused on improving load balancing
among the cores, and improving the efficiency of communications between cores the Inner Region (I.R.) cores
and Outer Region (O.R.).

Load balancing concerns minimizing the idle time of HECToR cores during the run. As the computational
algorithms implemented by cores in the Inner and Outer Regions are vastly different, the computational effort
it takes to propagate the wavefunction forward one step in time will be different in the two regions. Therefore
for the RMT code to run efficiently on HECToR it is imperative that an understanding of the relative computa-
tional effort between Inner and Outer Regions is built up through experience of running the code for different
conditions. In the Inner Region (I.R.), the propagation forward in time involves a matrix-vector multiplication.

The matrix has a block tri-diagonal form; the blocks consist of matrix elements coupling two values of total
angular momentum. The I.R. is parallelized over these block structures, so that for total angular momentum
ranging from zero up to some maximum value, the minimum number of cores used will be that value plus one.
Each core then handles a sub-section of the matrix-vector multiplication.

In the Outer Region (O.R.) the computation is a domain decomposition over the grid points. Each core handles
a segment of the wavefunction, and stores it in an array of dimensionNgrid × Nchannels whereNgrid is the
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number of grid points andNchannels is the number of channels. The number of channels is dependent on the
value of total angular momentum and the number of residual target states retained in the calculation.

Given the value of total angular momentum and the number of residual targetstates there should be some op-
timal value of grid points per core that will best balance the computation performed by the cores in the two
regions. The desired values of the total angular momentum and the number ofresidual target states are depen-
dent on the scientific problem at hand. To give an indication of the types ofproblems we anticipate studying
with RMT, consider the neon atom. Neon has a multitude of residual ion target states that are very close to-
gether in energy: retaining 8 (21) of these and allowing angular momentum values up to 24 (30) gives around
500 (1500) channels and an I.R. Hamiltonian of dimension 25000 (120,000). To propagate the wavefunction
accurately over the course of an intense 10 cycle infra-red laser field would require a radial grid extending as
far as 20,000-35,000 Bohr radii. Sometimes it is necessary to resolve resonance structures: in these extreme
cases, integration over many (greater than 100) field periods becomes necessary, and consequently the radial
grid must extend further by one to two orders of magnitude. We estimate that these types of calculations would
require 100-1000 cores to handle the I.R. and 200-10,000 cores to handle the O.R.

Load balancing on 200-10,000 cores

We turn now the problem of choosing optimal parameters for balanced computation in the practical limits RMT
was designed for. Of special interest is the case in which the outer region(O.R.) encompasses core counts as
high as 10,000. This is expected to be a typical core count in studies of intense-field harmonic generation
studies, one of the original motivations for the creation of the RMT method.

In this section we test O.R. core counts in the 100-10,000 range, with inner region core counts fixed to 100
cores. In the following section on the Red-Black optimization, we explore varying the I.R. core counts up to
1000 cores.

We start with the general problem of balancing the workload between the inner region (I.R.) and outer region for
arbitrary configuration of the R-Matrix inner-region. If the O.R. cores complete their computation too quickly,
then they sit idle, waiting for the I.R. to complete. If the O.R. cores have too much work to do per time-step,
then the I.R. cores sit idle, waiting for the O.R. to complete. Notice that if the O.R. cores outnumber the I.R.
cores by 100 to 1, (a not uncommon case), then I.R. idleness is not very expensive computationally - preventing
O.R. core idleness in this limit is the top priority for efficiency.

Parameters defining the R-Matrix I.R. are for the most part constrained to certain values by the physics of the
problem. The only easily adjustable parameter is the outer region parameter governing the number of grid
points per core:Ngrid. It is straightforward to calculate a good estimate ofNgrid based on knowledge of the
run-time scaling of the I.R. and O.R. as a function of several program parameters. To first approximation, the
run-time overhead per time step of the inner region scales as

runtime per step = cinnerN
2
block/NCPB

wherecinner is a proportionality constant,Nblock is the dimension of the matrix block making up the tridi-
agonal I.R. Hamiltonian block matrix, andNCPB is the number of I.R. cores allocated per block. Constants
accounting for communications overhead can be neglected here. Run-time overhead per time step of the outer
region scales as

runtime per step = couterNgridNchannels,

wherecouter is a proportionality constant,Ngrid is number of radial grid points per core, andNchannels is the
number of channels. Equating the two quantities so that the I.R. and O.R. complete each step in comparable
time duration gives us the desired initial estimate forNgrid:

Ngrid = (couter/cinner)N
2
blockNchannelsNCPB.

The ratiocouter/cinner is calculated by repeated trials of the RMT program. If the ratiocouter/cinner is indepen-
dent of parameters likeNchannels etc., then a knowledge of the ratio determinesNgrid for all parameter choices.
Not surprisingly, the ratiocouter/cinner does not turn out to be a true constant, but varies somewhat with changes
in problem parameters, and more substantially with changes in hardware. OnHECToR, 1/15 is typical value
for couter/cinner. Figure 1 shows some RMT timings withNchannels = 101, Nblock = 673, NCPB = 5. In
this case the optimalNgrid was about 60, andcouter/cinner = 1/15. In another set of benchmarks (not shown)
Nblock = 430, significantly decreasing the size of the arrays on the I.R. cores, (whichimproved the efficiency
of the I.R. calculation through faster memory access) so that the speed-upwas somewhat greater than would
be expected from linear scaling in the quantityN2

block. The optimal value for the ratiocouter/cinner was in this
case about 1/12, due to the smallercinner. Figure 1 demonstrates the degraded performance of RMT from MPI
communications overhead as core counts approach 10,000.
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Figure 1: Integration speed as a function of core count. The outer region grid-point numbers were chosen to
optimize speed by improving the load-balance. The inner-region runs on 100 cores in each case. The faster
runs (squares) were achieved by an additional load-balancing technique, designed to minimize delays due to
communications between the inner-region and outer-region.

Optimizing I.R./O.R. computation order: the red-black optimization

The RMT propagator is such that the wavefunction must be known in both regions at the start of any given time
step, i.e. effectively both regions synchronize at the start and at the end of each time step. The computation
amounts to calculating the Hamiltonian times the wavefunction. The I.R. can do its part independently of the
O.R., but the O.R needs some wavefunction information from the I.R. to begin calculation. The first step then
is for the I.R. to send wavefunction information to the O.R.. The O.R. cores areidle until they receive this data.
When reception is complete, the O.R. begins calculation of HΨII and the I.R. cores become idle. The O.R.
completes its first order propagation and sends information to the I.R.. At this stage the I.R. can commence its
first order propagation and the O.R. can commence its second order propagation in parallel with the I.R., after
which it sends more information to the I.R.. The higher the order of the propagator, the higher percentage of this
computation can be done in parallel (i.e., the more the I.R. can work independently of the O.R.). This process
repeats up to the maximum order of the Arnoldi propagator. (Arnoldi propagators are used in both regions and
the maximum propagation order is a parameter in the code.) Finally the I.R. can complete its maximum order
propagation, and the two regions can again synchronize.

We find that we can increase the degree to which the Inner and Outer regions work independently of each other
by dividing the I.R. into two independent sets of cores - which we call red and black cores. This optimization
works by allowing the red I.R. cores and the black I.R. cores to independently receive information from the O.R.
In certain limits this independence improves I.R. parallelism by allowing one set of cores to begin computation
instead of sitting idle awaiting the other set to synchronize with the O.R. As we show below, the availability if
this option improves the program’s ability to exploit large numbers of cores as well as the overall efficiency of
the integration.

In Figures 2 and 3 the outer region overhead (per core) has been reduced to its ultimate minimum by using just
32 grid points per core. The Hamiltonian assumes a maximum angular momentumLmax = 23, so the inner
region Hamiltonian is a 24 x 24 block tridiagonal matrix. The number of cores over which the inner region is
parallelized must therefore be a multiple of 24. If the red-black optimization is enabled, then the number of
inner region cores must be a multiple of 48.

Figures 2 and 3 plot the speed at which the RMT code can integrate the equations of motion. We see in Figure
2 that adding additional cores to the inner-region results in a near linear speed-up up to about 240 I.R. cores.
Above 240 I.R. cores, the improvement in speed is negligible for the case in which the red-black decomposition
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4th order propagator

Figure 2: Distance in time that the equations of motion can be integrated forward(per second of wall-clock
time) as a function of the number of cores over which the inner region is parallelised. The Arnoldi propagator
is 4th order, and the inner region Hamiltonian is a 24 x 24 block tridiagonal matrix. Each block is a 552 x 552
real-valued matrix. Total number of cores is 8192.
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8th order propagator

Figure 3: Distance in time that the equations of motion can be integrated forward(per second of wall-clock
time) as a function of the number of cores over which the inner region is parallelised. The Arnoldi propagator
is 8th order. Total number of cores is 8192. All other parameters are identical to those in fig. 3.
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is disabled, but continues linearly (with a smaller proportionality constant) in thecase in which red-black de-
composition is enabled. At about 580 cores, the integration with the red-black optimization enabled is a factor
1.45 times faster than that of the disabled case. So the addition of 340 I.R. cores above the 240 core threshold
(more than doubling the number of inner region cores) yields an improvementof about 45 percent in speed.
This may at first glance seem disappointing, but it is both desirable and beneficial in the RMT code. In practice
the outer region will run on 1000’s or tens of 1000’s of cores. In the example in Figures 2 and 3, the total
number of cores (Inner + Outer) is 8192. If the outer region is using say8192 cores, then the addition of 340
I.R. cores is a highly inexpensive way to improve the run-time efficiency of the entire program by 45 percent.

Figures 2 and 3 show only up to about 600 I.R. cores. The tests were performed up to 1000 I.R. cores, but little
or no improvement was observed above 600 cores. The matrix computationsthat were parallelized by these
600 cores were performed on matrices that were 552 x 552 in dimension. Insome RMT problems, matrices
up to 30,000 x 30,000 in size have been used, and it is expected that in this case the addition of more than 600
cores will provide additional speedup.

The results plotted in Figure 3 demonstrate that we can obtain even better parallelism by using a higher order
(8th order) propagator. In this case, with the red-black optimization enabled, speed is factor 1.7 times greater
than that of the disabled case. This is another fortunate result, because the Arnoldi propagator improves in
overall efficiency with order. More precisely, doubling the order of theArnoldi propagator usually doubles the
run-time, but allows time-steps to more than double for a net gain in integration speed. In practice, the highest
order possible within the constraints of available memory is used. Order 12 to 16 is standard.

Optimizing communications between the Inner and Outer Regions

Each time step the Hamiltonian-wavefunction product is calculated numerous times, and each time it is calcu-
lated information must be exchanged between the I.R. and the O.R. cores. Several approaches to improving the
efficiency of this process were investigated.

The second term on the right hand side of Eq. (2) must be calculated in the O.R. and then sent to the I.R.. As
outlined above, each I.R. core is responsible for a subsection of the matrix-vector multiplication, and therefore
this O.R. data is needed on all I.R. cores. As a possible optimization of this process we considered a new
communications design using MPI’s single-core to many-core collectives. These optimization attempts failed
because they were incompatible with the complicated parallelization and communications scheme arising from
the new Red-Black optimization described above.

Another impediment to efficient inter-region communication was a large penalty that arose from the O.R. com-
putation of surface amplitudes for use by the I.R. Each time step a (potentially large) vector is repeatedly calcu-
lated in the O.R. via a projection of each channel wavefunction’s radial derivative onto known time-independent
surface amplitudes, and sent to the I.R.. This computation was moved from the O.R. to the I.R. based on the
observation that in the limit of optimal load balancing, it is the I.R. that will be privileged with greater idleness,
hence will have the spare CPU cycles to devote to the calculation.

Originally we also proposed to reduce the size of the data packets transferred between the inner and outer re-
gions, but instead the modifications described in work package 2 resulted ina large increase in the size of these
data packets. Fortunately, this additional burden was removed by the following optimization: a single O.R. core
was dedicated to the data transfer, and any excess time remaining (comparedto the run-time per step of other
O.R. cores) was applied to propagating the O.R. Hamiltonian over a reduced workload, so that it was exactly
synchronized with the remaining O.R.cores. Figure 1 shows the improvement (squares) in the speed of RMT
with this optimization on 100 to 10,000 O.R. cores.

3 Work Package 2. Algorithmic enhancement of the time propagator
In certain limits, (for example in the limit of high nuclear charge Z) the finite-difference Outer Region integra-
tion becomes excessively inefficient in comparison to the Inner Region time propagation. A straightforward
enhancement to the present propagation algorithm, yields significant improvements in efficiency, and can re-
store balance between the Inner and Outer Regions in these limits. The difficulties are particularly acute when
highly-stripped ions are modelled, because of the need to make the grid pointspacing small in these cases. In
a typical problem, using HELIUM to model a 2-electron atom with Z = 2, a choiceof δr = 0.25 au proves
satisfactory. By contrast, for He-like neon (a highly stripped ion with Z = 10, and a charge of 8 e) we find that
a δr = 0.025 au is a more satisfactory choice.

Unfortunately, the Outer Region (O.R.) requires integration time-stepsδt that scale as1/δr2. In other words,
if we decreaseδr by a factor of 10 fromδr = 0.25 au toδr = 0.025 au, then we must decreaseδt by a factor
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of 10000, and the program runs (at least) 10000 slower. The difficultyarises because the highest energy eigen-
values of the finite-difference Hamiltonian are of the orderE = h̄2k2/2m wherek2

max = 10/δr2. These high
energy eigenstates can be thought of to first approximation as the most energetic plane-waves that the grid can
support. They are unphysical excitations, and in general should contain no population. They tend to be one,
two or more orders of magnitude greater in energy that the physical plane-waves excited by the laser pulse, (the
plane-waves that represent ionizing electrons). For example, atδr = 0.25 au, the physical excitations are rarely
greater than 10 au in energy. But atδr = 0.25 au, the highest energy eigenvalues E on the grid are observed to
be of the order 100 au, (using typical integration parameters). Atδr = 0.025 au, the corresponding energies are
of the order E = 10000 au. Unfortunately, the propagator must successfully integrate the equations of motion as
though these high-energy unphysical modes contain population. Otherwise, spurious population accumulates
in these modes through integration error - the integration becomes unstable and fails catastrophically. In the ex-
plicit propagators used by HELIUM and RMT, stability is regained asδt, the integration step size, is decreased
to something of the order of the period of the highest energy plane-wave supported by the finite-difference grid,
which, as explained above scales as1/δr2.

The finite-difference portion of the RMT code is the outer region (O.R.) portion of the integration. The O.R. is
very typically a distance 20 au or more from the atomic core. At this distance theatomic Coulomb potentials
arising from the attractive forces between the ejected (ionizing) electron and the nuclear core, and the repulsive
forces between the ejected electron and the remaining electrons are relatively weak. The eigenvalues of the
finite-difference Hamiltonian are dominated by the Kinetic Energy operator K.The eigenspectrum of the Ki-
netic Energy operator K is in turn dominated by that of the 2nd derivative operator. (The centripetal repulsion
term falls off as the inverse square ofr, and makes a negligible contribution to the spectrum.) The electric
field also influences the eigenspectrum. At typical field intensities it may shift the field-free peak eigenval-
ues by something of the order 5-20 percent, but rarely more. Except in the most extreme circumstances, the
eigenspectrum of the outer region Hamiltonian is to good first approximation that of the 2nd derivative operator
appearing in K (multiplied by−0.5/δr2).

We would expect then, that in the limit of smallδr the integration step sizeδt is governed by the1/δr2 de-
pendence of the 2nd derivative finite-difference operator of the Kinetic Energy operator K. This is in fact what
we observe in the normal operation of the RMT code. Since both the inner region and outer region use the
same step sizeδt, the behavior of the eigenspectrum of K has a profound effect on the run-time efficiency of
the RMT code. Developing methods of mitigating the effect of the high eigenvalues of K has been the goal of
workpackage 2. The originally proposed method involved exponentiating K, or of an approximate K, indepen-
dently of the remaining parts of the Hamiltonian. The computational overhead ofthis method of this method
proved to be greater than the cost savings from the larger step sizeδt, so this method was abandoned. Instead
we developed a method of reducing the peak eigenvectors of K by using least-squares operators. The new tech-
nique successfully reduces the peak eigenvalues of K by up to a factor of 4, and does so at very little additional
computational cost. In fact in most cases the additional computation is undetectable in the run-time of the RMT.

We turn now to a demonstration of the new technique, and discuss a case in which δt can be increased by a
factor of 1.8 over that of the original code. The integration proceeds withsame accuracy and stability as the
original code, but 80 percent faster than the best speed possible by the original code. The new technique appears
to be a nearly ideal solution to the problem.

We begin by outlining the methods used to generate the least-squares finite-difference operators.

If function f(X) is written as an Nth order polynomial, or equivalently as a linear combination of N+1 orthog-
onal polynomialsQj(X) of ordersj = 0 to N, then finite-difference differentiation and integration rules can be
derived by taking derivatives and integrals of the polynomial representation off(X). The use of orthogonal
polynomials, as described in the following, makes it easy to create a least-squares representation off(X) and
of finite-difference differentiation and integration matrix operators.

Let f(X) be a linear combination of orthogonal polynomialsQn(X):

f(X) =
N

∑

n=0

CnQn(X). (5)

Here theCn are determined by projecting both sides of the above equation onto polynomialQn(X). By the
orthogonality ofQ, (i.e. (Qm, Qn) = 0 if n 6= m), we get

Cn = (f,Qn)/(Qn, Qn). (6)

The inner product(f,Qm) with respect weightsWj is defined:

(f,Qm) =
N

∑

j=0

Wjf(Xj)Qm(Xj). (7)
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Notice we do not assume that the Q’s have been normalized. Inserting the value ofCn derived above into the
polynomial expansion off(X), and inverting the order of the sums over j and n gives the desired rule:

f(X) =
N

∑

j=0

f(Xj)[Wj

N
∑

n=0

(Qn(Xj)Qn(X)/(Qn, Qn))]. (8)

The sum over j is over data pointsXj . The sum over n is over polynomialsQn. To interpolate, integrate or dif-
ferentiatef(X), we use its polynomial representation, given by equation 8 above. For example, differentiation
of both sides of the above formula yields a rule for taking the derivatives of f(X).

A sum of N+1 orthogonal polynomials, up to order N, will exactly approximateany tabular function of N+1
pointsf(X0), f(X1), ...f(XN ). If the sum is truncated to less than N+1 polynomials, then the result is a least-
squares fit to these points. Generally we throw out the high order polys,QN , QN−1, ... because they contain
the highest frequency components off(X), (the components that rapidly oscillate asX varies).

As an example, we now write down the steps used to create a least-squares finite-difference 1st derivative of
f(X). Differentiating Equation 8 on both sides of the equality gives:

f ′(X) =
N

∑

j=0

f(Xj)[Wj

N
∑

n=0

(Qn(Xj)Q
′

n(X)/(Qn, Qn))]. (9)

The finite-difference differentiation rule at pointXk is the set of numbers in brackets [], which we call Rule(j):

Rule(j) = Wj

N
∑

n=0

Qn(Xj )Q
′

n(Xk )/(Qn ,Qn). (10)

With this definition, equation 9 becomes a finite-difference rule for differentiation atXk:

f ′(Xk) =
N

∑

j=0

f(Xj)Rule(j). (11)

To generate the orthogonal polynomialsQ and the derivatives ofQ, the Gram-Schmidt recurrence relation is
used.

Q0 = 1, (12)

Qm(X) = XQm−1 −
∑

j<m

(BmjQj) (13)

The sum on the RHS was added to makeQm orthogonal to all previous Q’s. The coefficientsBmj that guarantee
orthogonality are: Bmj = (XQm−1, Qj)/(Qj , Qj). (14)

where(P1, P2) denotes the weighted inner-product defined above. To see this take the inner product of the
equation forQm with Qj , assumingj < m, set it equal to zero, and use recursion. The form given above is
the one that generalizes to many dimensions. In one dimension the formula simplifiesso that only two of the
B coefficients are nonzero. We call these coefficientsAm andBm:

Q0(X) = 1, (15)

Q1(X) = (X −A1), (16)

Qm(X) = (X −Am)Qm−1 −BmQm−2. (17)

where Am = (XQm−1, Qm−1)/(Qm−1, Qm−1), (18)

Bm = (XQm−1, Qm−2)/(Qm−2, Qm−2). (19)

Differentiating both sides of the above recurrence relations forQ(X) gives the desired recurrence relations for
the higher order derivatives ofQ(X).

9
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Figure 4: Eigen-spectra of 4 finite-difference 2nd derivative operators. The eigenvalues are sorted from large
to small, so that the maximum eigenvalue of each operator is at index 0. The spectra are obtained by eigen-
decomposition of 256 x 256 banded matrices representing 2nd order differentiation operators as applied to a
finite-difference grid with 256 point. Absolute values of the spectra are plotted for easier comparison with Fig.
5. The actual eigenvalues are all negative.
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Figure 5: Maximum eigen-energy (in atomic units) of the outer region finite-difference Hamiltonian as given
by the Arnoldi eigen-decomposition during the course of an 8 field period numerical integration of neon. The
field is high frequency XUV (4 atomic units), and the intensity is2 × 1016W/cm2. The integration is re-
peated 4 times, using 4 different sets of finite-difference rules for the 2nd derivative operators in the outer
region Hamiltonian. The two least squares operators (the 9 point 7th and 5thorder rules) have the smallest
maximum eigenenergies. The ratios of the eigen-energies is consistent with the eigen-decomposition of the
finite-difference matrices (fig. 4) even in the presence of a strong field.

11



0 5 10 15 20
time (units of field period)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
po

pu
la

tio
n 

w
ith

in
 2

0 
a.

u.
 o

f n
uc

le
us

9 pt. 5th order least squares f.d. rules

9 pt. 8th order f.d. rules

Figure 6: Probability of finding a single ionizing electron within 20 au (Bohr radii) of the neon nucleus as a
function of time. The atom interacts with an intense 8 field period XUV pulse, andthe integration continues
5 or more field periods after the field has ramped to zero. The pulse has peak intensity2 × 1016W/cm2, and
frequency 4 atomic units (108.8 eV). Results using the most accurate of the finite-difference rules (9 point, 8th
order) are compared with those of the least accurate rule, the least squares 9 point, 5th order rule. The grid
point spacing is 0.1 au and the integration step sizeδt is in both cases 0.02 au.

Figure 4 shows the eigen-spectra of two least-squares finite-difference operators along with the eigen-spectra
of two non least-squares operators.

The eigenvectors in this example are to good approximation sinusoids. In the limitof infinitely small grid-point
spacings, the operator becomesd2

dr2 and its eigenvectors approachexp(ikr), with eigenvalues -k2:

d2

dr2
exp(ikr) = −k2exp(ikr) (20)

In Figure 4, ”order” refers to the order of the polynomial used to calculate the 2nd derivative. For example, in
the case of the 9 point rule, the non least-squares operator is 8th order.In other words, an 8th order polynomial
is chosen such that it passes through each of the 9 points. The 9 point rule returns the exact 2nd derivative of
this polynomial at the central point. An 8th order polynomial is the lowest order polynomial that can in gen-
eral pass through any arbitrarily chosen 9 points. The least-squares rules use polynomials of order less than 8.
These polynomials do not in general pass through each of the 9 points. For this reason they are less sensitive to
numerical noise that accumulates during the numerical integration of functions that can be described as linear
combinations ofexp(ikr). It is apparent that the least-squares process can dramatically truncatethe higher
frequency components of the eigen-spectrum without significantly changing the low frequency components.

Figure 5 shows the resulting reduction in peak eigenenergies when the least-squares finite-difference operators
described above are substituted into the RMT outer region Hamiltonian. The peak eigenvalues shown in Figure
5 are not physical excitation of the atomic system. The highest eigenvalues shown in Fig. 5 are 10 to 100
times larger in energy than the energies of the electrons excited by the laser.They are numerical artifacts of the
finite-difference grid. By suppressing them, we can can use larger integration step-sizesδt while maintaining
both stability and accuracy. Figure 6 demonstrates that the least-squares rules give the same answers as the non
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Figure 7: Probability of finding a single ionizing electron within 20 au (Bohr radii) of the neon nucleus as a
function of time. The atom interacts with an intense 8 field period XUV pulse, andthe integration continues
8 or more field periods after the field has ramped to zero. The pulse has peak intensity of1015W/cm2, and a
frequency of 4 atomic units (108.8 eV). The green line shows the failure ofintegration when 5 point 4th order
finite-difference rules are used for the 2nd derivative operators. The red line shows the high accuracy results
obtained using the 9 point, 8th order 2nd derivative rule. The black line is the result using the least-squares 9
point 5th order rule.
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least-squares rules.

Figure 7 demonstrates that the 9 point least-squares operator enables integration step-sizes significantly larger
than step-sizes possible with the non least-squares 5 point rule. The 5 point rule results in a catastrophic inte-
gration failure at a rather smallδt. The failure is due to instability in the integration that becomes apparent at
δt = 0.0061 au. For all largerδt, the instability worsens. The integration using least-squares finite-difference
rules (9 point, 5th order, black line) is stable and accurate atδt = 0.011 au. (In these two examples the grid
point spacing isδr = 0.05 au.) Results using a smaller grid point spacingδr = 0.001 au, along with the most
accurate of the finite-difference rules (red line: 9 point, 8th order) arepresented in order to verify the accuracy
of the 9 point least-squares rule (black line).

One of the nice features of this approach is the good run-time efficiency ofthe 9 point rules. On tests of RMT on
HECToR, the 9 point rules were nearly as fast as the 5 point rules. It was in fact difficult to detect a difference.
This is evidently due to the fact that much of the overhead of the finite-difference computation is in the access
of the large wavefunction arrays from memory (rather than in the floating point ”*” and ”+”). This memory
fetch overhead is the same for the 9 and 5 point rules. And although the 2ndderivative operator is the cause of
the unphysically large eigenvalues of the Hamiltonian, it has a small computational cost in comparison to all the
other operators in the Hamiltonian. For this reason, the 9 point RMT runs as fast as the 5 point RMT, and we
find that the ability to increaseδt by a factor 1.8 directly translates into a factor 1.8 increase in integration speed.
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