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ABSTRACT: Electron collisions with atoms were among the earliest problems 
studied using quantum mechanics. However, the accurate computation of much 
of the data required in astrophysics and plasma physics still presents huge 
computational challenges, even on the latest generation of high-performance 
computer architectures, such as the Cray XT series. In recent years a suite of 
parallel programs based on the ‘R-matrix’ ab initio approach to variational 
solution of the many-electron Schrodinger equation has been developed and has 
enabled much accurate scattering data to be produced. However, future 
calculations will require substantial increases in both the numbers of channels 
and scattering energies involved in the R-matrix propagations. This paper 
describes how many of these computational challenges have been addressed in 
two ways: by substantially improving the parallel performance of the PFARM 
‘external region’ code on HECToR, and by developing a new Airy Logarithmic 
Derivative propagator code, FARM2, that is much more memory efficient while 
maintaining accuracy and performance, and which is (deliberately) much more 
speculative and ‘futuristic’ in its experimentation with Fortran 2003 and MPI-2 
features.   

KEYWORDS: atomic physics, electron-atom scattering, R-matrix, propagators, parallel 
computing, sub-task management, load-balancing, optimization, multi-core systems, 
Fortran 2003. 

 

1. Introduction 
Electron-atom and electron-ion scattering data are essential in the analysis of important physical phenomena in many 
scientific and technological areas. These include the development of environmentally safer alternatives to replace mercury 
vapour lighting, laser-produced plasmas as sources for next-generation nanolithography tools, the understanding of 
atmospheric processes, diagnostics of impurities in fusion plasmas and the quantitative interpretation of astrophysical data. In 
addition, the EU (and STFC-CLF) HiPER project (http://www.hiper-laser.org) for laser-ignited fusion, with associated 
experiments in laboratory astrophysics, opacity measurements, laser-excited hollow atoms and atoms in strong magnetic 
fields will stimulate detailed calculations of atomic scattering data. Despite the importance of these applications little accurate 
collision (theoretical or experimental) data is available for many complex atoms and ions. In particular this is the case for 
electron impact excitation and ionization at intermediate energies near the ionization threshold.  
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The R-matrix method [1] is an ab initio variational solution to the Schrödinger equation (and its relativistic extensions) for 
electron-atom (and molecule) scattering problems. Configuration space is partitioned by a sphere containing the target atom 
(molecule) or ion, outside of which the target wavefunctons are negligible and exchange may be neglected. Inside the sphere 
an all-electron configuration interaction (CI) treatment produces a ‘full’ set of eigen-solutions for the system, independent of 
the scattering energy. The energy-dependent R-matrix is formed on the surface of the sphere from the eigenvalues and 
surface amplitudes of the inner region solutions. Outside the sphere many coupled differential equations must be solved for 
the scattering electron with multipole potentials derived from the inner region CI target expansion. The R-matrix matches the 
inner and outer region solutions. Excitation of high-lying ‘intermediate energy’ states and ionization is allowed for by the 
inclusion of square-integrable ‘pseudostates’ representing high-lying excited states and positive energy states inside the 
sphere [1]. An alternative intermediate energy treatment (currently for one-electron atoms) extends the radius of the sphere 
and propagates solutions in partitioned blocks until the two electrons are matched to a large, long-range pseudostate basis [2]: 
at this large radius a ‘standard’ outer region R-matrix code is required to finish the calculation.  

 

2. Description of software 
2.1 The PRMAT package and the PFARM code 

 
Over the last thirty years a suite of programs based upon the R-matrix approach has been developed and has enabled much 
accurate scattering data to be produced [1]. However, many problems of importance are not practical with programs designed 
to run serial computers, and a suite of parallel time-independent Schrödinger equation Fortran 95 codes for electron-atom 
scattering, PRMAT, funded by EPSRC, has been designed and implemented [3]. PRMAT is one of the application packages 
required to be provided on the UK’s National Supercomputing Services HECToR [4] and HPCx [5], and consists of 
RMATRX2/95, based on the serial code RMATRX2 [6], and PFARM, based on the serial code FARM (Flexible Asymptotic 
R-matrix Package) [7]. RMATRX2/95 performs the inner region calculations. PFARM uses the results from RMATRX2/95 
to form the energy-dependent R-matrix, then solves coupled differential equations over all scattering channels by propagating 
this matrix outwards from the sphere and matching the solutions to asymptotic boundary conditions, hence producing the 
required scattering data in both individual-atom and, after integration over energy, temperature dependent form. For complex 
atoms solutions are required for a dense set of scattering energies. The PRMAT package has been used to calculate data for 
electron collisions with various ions of Fe, Ni, Sn and neutral O. It is also being used for studies of intermediate energy 
scattering by light atoms [8].  
 
Recently the PRMAT package has been extended to include relativistic effects (needed for detailed treatment of open d-shell 
atoms and ions, for example) with the practical effect that the number of scattering channels in PFARM for systems of 
interest may now be much larger than for which the code was originally designed. This is also the case for intermediate 
energy scattering in which very large numbers of channels arise from a discretized electronic continuum inside the sphere. In 
addition, the complexity of the resonance structure for low energy electron scattering requires cross sections to be determined 
at typically tens of thousands of scattering energy values in order to yield accurate effective collision strengths. The aim of 
the DCSE project is to improve parallel performance of the PFARM code and develop a more computationally speculative, 
future-proof (ie deliberately investigating Fortran 2003 features) code FARM2 which uses a much more memory-efficient 
propagator.   
 
As noted above, the PRMAT package is for electron atom (ion) scattering. In early 2009 a five-year Software Development 
Grant was awarded to four collaborating institutions: Queen’s University Belfast, UCL, the Open University and STFC CSE, 
to bring together expertise in all the various areas of ab initio theoretical electron atom and molecule scattering and both 
time-independent and time-dependent laser atom (molecule) interactions. Over the course of this project ‘UK-RAMP’, which 
started in October 2009, a unified set of molecular R-matrix codes (UKRmol-in and UKRmol-out) will be built up using the 
best features of current codes and extending them, introducing features from the 2-elecron direct time-dependent solution 
code HELIUM for laser assisted ionization and other interactions [9]. The UK-RAMP project is also extending the HELIUM 
techniques to cope with general atoms in a laser field, using the time-independent R-matrix inner region data as ‘starter’ 
input. UK-RAMP does not include any development of field-free time-independent inner region atomic codes as the aim is to 
build up, optimize and unify the molecular inner region codes to at least the current level of the atomic codes, at the same 
time building up a general set of time-dependent codes for laser interactions. However, one specific aim of the molecular part 
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of UK-RAMP is to adapt the PFARM code to accept input data from the (fixed-nuclear) UKRmol-in molecular package and 
produce appropriate output data following calculation of basic scattering parameters. This is timetabled to take place 
following this DCSE project and will allow the range of PFARM calculations to be expanded to diverse electron-molecule 
scattering interactions, with many scattering channels and fine grids of energies and/or inner region nuclear configurations. 
  

 

2.2 The PFARM Code at the start of the project 
 

PFARM divides ‘external’ configuration space into radial sectors as shown in Fig. 1 and solves for the Green’s function 
within each sector using a basis expansion. This approach is based upon the Baluja-Burke-Morgan (BBM) method [10]. 
 
In this implementation a variant of the BBM method is used to solve the coupled second-order differential equations defining 
the external region scattering. R-matrices at successively larger radial distances are obtained using Green’s functions defined 
within finite radial sectors. The Green’s functions are obtained using a shifted-Legendre basis. 
 
 

 
 

 
 

Figure 1. Partitioning of Configuration Space in PRMAT 
 
 
PFARM takes advantage of standard highly optimized parallel numerical library routines and uses MPI for message-passing. 
The calculation proceeds in two distinct stages called EXDIG and EXAS.  
 
In EXDIG, the Hamiltonian in each sector is generated and diagonalized in a distributed data parallelization, once only for all 
energies, using the ScaLAPACK library routine PDSYEVD. The sector Hamiltonians are diagonalized consecutively using 
all allocated processes.  
 
The machine is then reconfigured with groups of processes assigned to specific tasks for EXAS, as shown in Fig. 2. The 
production group of processes RMPROD (R-matrix Production) calculates the initial R-matrix at the internal region 
boundary for successive scattering energies. The propagation group of processes RMPROP forms a systolic pipe along which 
the stream of R-matrices is passed as they are propagated from the internal region boundary to the external region boundary. 
The pipeline unit is replicated across the machine: three such pipelines are shown in Fig. 2. Asynchronous non-blocking 
messages are used to pass R-matrices between the nodes in the propagation pipeline. At the end of the pipeline the 
asymptotic group of processes RMASY (Asymptotic Region Calculation) generates asymptotic solutions and matches them 
to the propagated R-matrix to calculate the scattering K-matrix and collision strengths for transitions between all the states 
included in the R-matrix expansion for the current scattering energy. The RMASY tasks also form partial integrals over 
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energies to convert the collision strengths to functions of temperature. Finally a single process is dedicated to gathering the 
results from the asymptotic group and combining the integrals. Results are stored to disk periodically to provide a restart 
procedure, as runs involving many thousands of scattering energies may take considerable time. 
 
Significant savings in computation time and memory requirements in EXAS are also obtained by taking advantage of 
decoupling of channels in the external region, partitioning them into two non-interacting groups according to target spin 
(non-relativistic calculations) or to the intermediate-coupling K quantum number (for relativistic calculations). In the most 
favourable cases this has the effect of splitting the problem into two roughly equal sized parts. For each block, separate 
pipelines exist, though the propagation of the block-split R-matrices across sectors is coupled and some message passing 
between processes is required for each equivalent sector calculation. This decoupling is represented in Fig. 2 by the two rows 
of processes within a pipeline. 
 
 

 
 
 

Figure 2. Original assignment of tasks to sub-groups of processes in the EXAS stage of PFARM 
 
 
 
A further reduction in compute time can usually be obtained by undertaking EXAS runs in two stages. Firstly a fine region 
propagation involving scattering energies residing in the extremely complex scattering resonance region followed by a 
coarse region propagation for scattering energies above this region. This partitioning allows us to optimize sector length for 
each region: generally smaller numbers of sectors with a larger number of basis functions in the fine region and larger 
numbers of sectors with a smaller number of basis functions in the coarse region (see [3] for details). In most cases the vast 
majority of energy points lie within the fine region and therefore this is the stage where most compute time is spent. 
 
The particular advantages of the parallelization are: 

• The costly parallel diagonalization of large sub-region matrices is computed independently of scattering energies. 
This is particularly suitable for calculations involving hundreds or thousands of scattering energies. 

• The sub-region propagation calculations make much use of Level 3 serial BLAS matrix-multiply routines. The 
highly optimized BLAS library routines are typically designed to take advantage of the underlying microprocessor 
architecture, and therefore attain near peak performance. Fig. 3, taken from a single-node efficiency study on HPCx 
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[11], shows that PFARM is one of the fastest application codes, averaging >35% of peak performance, or 2.1 
Gflops/s. 

• On most high-end computing platforms asynchronous non-blocking communication reduces communication costs. 

• The approach scales well provided computational load is adequately balanced across functional groups. The number 
of processes assigned to functional groups RMPROD and RMASY must ensure that i) initial R-matrices are 
generated with sufficient frequency to maintain a fully operational pipeline; ii) collision strength calculations are 
processed at a sufficient rate to prevent bottlenecks.  

 

 
 
 

Figure 3. Single Node Performance of PFARM (labelled here as PRMAT) on HPCx 
 

 

2.3 HECToR distributed-CSE projects 
 

In 2008 the PRMAT package developers were awarded a contract for Distributed Computational Science and Engineering 
(dCSE) on HECToR, funded by NAG (Numerical Algorithms Group) Ltd on behalf of the UK Engineering and Physical 
Sciences Research Council (EPSRC) [12]. The aim of dCSE projects is to enable computational specialists to: 

• port their codes onto HECToR, in particular to work with new codes or to enable previously unsupported features in 
existing codes; 

• improve the performance and scaling (ideally to thousands of cores) of their codes on HECToR;  

• re-factor their codes to improve long-term maintainability; 

• take advantage of algorithmic improvements in the field of high-performance computing. 
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The award is to be used entirely for software development in order to increase code performance and/or utility, and hence to 
deliver further science. In the case of PRMAT the project has two main aims: optimization and enhanced paralellization of 
PFARM, plus development and incorporation of a new code using an Arnoldi log-derivative (ALD) propagator [13]. The 
ALD code implies a significant improvement in memory efficiency and, once fully incorporated, performance improvement. 
The standalone new code deliberately investigates and experiments with the use of new features of Fortran 2003 as an 
exercise in long-term maintainability. The code improvements described in the following sections have been undertaken as 
part of this project. 
 

3.  Description of Target Hardware 

HECToR 
 
HECToR [4] is the UK’s latest National Supercomputing Service, located at the University of Edinburgh and run by the 
HPCx consortium. The HECToR Phase 1 Cray XT4 system (2007 – summer 2009) comprised 1416 compute blades, each of 
which has 4 dual-core processor sockets. This amounts to a total of 11,328 cores, each of which acts as a single CPU. The 
processor is an AMD 2.8 GHz Opteron. Each dual-core socket shares 6 GB of memory, giving a total of 33.2 TB in all. The 
theoretical peak performance of the system is 59 Tflops/s. HECToR Phase 2a (2009 – summer 2010) XT4 comprises 1416 
compute blades, each of which has 4 quad-core processor sockets. This amounts to a total of 22,656 cores, each of which acts 
as a single CPU. The processor is an AMD 2.3 GHz Opteron. Each quad-core socket shares 8 GB of memory, giving a total 
of 45.3 TB over the whole XT4 system. The theoretical peak performance of the system is 208 Tflops. positioning the system 
at No. 20 in the November 2009 Top 500 list [14].  
 

HPCx 
 
For comparison purposes we will also present results from HPCx [5], the previous UK National Capability Computing 
service, located at the Computational Science and Engineering Department at STFC Daresbury Laboratory [15] and 
comprising of 160 IBM eServer 575 nodes.  Each eServer node contained 16 1.5 GHz POWER5 processors, giving a total of 
2536 processors for the system. The total main memory of 32 GBytes per frame was shared between the 16 processors of the 
frame. The frames in the HPCx system were connected via IBM’s High Performance Switch.  The final configuration had a 
theoretical peak performance of 15.4 Tflops. 
 

4. Initial performance of PFARM on the XT4 
 

An Initial Performance analysis of PFARM was undertaken on HECToR using an FeIII test case dataset with jj-coupling (ie 
taking into account relativistic effects). This dataset is representative of recent work by users of PFARM. The propagation 
involves 1181 channels (equivalent to the dimension of the R-matrix), 10677 scattering energies in the fine region and 205 
scattering energies in the coarse region.  The version of PFARM used is compiled with the –fast option of the PGI compiler 
on the XT4 but otherwise is not optimized specifically for the XT4. 
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Figure 4. Initial parallel performance of PFARM on HECToR (2008) & HPCx 
 
The timings for the various core counts on XT4 are broken down into the three stages - EXDIG, EXAS Fine Region and 
EXAS Coarse Region. Summing these times gives the total time taken for the complete external region calculation for this 
test case. For comparison, total time taken on the HPCx machine (IBM PWR5 p5-575) is included. The spin-split sector 
Hamiltonian matrix dimensions in EXDIG are 7230 and 4580. The number of pipelines built for the fine region calculation is 
also shown in Fig. 4. This number rises almost linearly as the number of cores is increased as more pipelines are fitted into 
the arrangement shown in Fig. 2. It is shown that the fine region propagation scales well up to 2048 cores. This stage usually 
dominates overall compute time and thus total time also scales well up to 2048 cores.  The code continues to speed-up when 
run on 4096 cores, but no further gains are made by running on 8192 cores. The speed of the coarse region propagation does 
not improve when running on more than 2048 cores. This is due to the maximum number of pipelines (68) having been 
reached for the limited number of scattering energies (205) in the coarse region.  
 

5. Optimization of PFARM external region codes on the XT4 
Fig. 4 demonstrates that the original EXDIG stage of the program was not scaling well on the XT4.  Although this behaviour 
has little impact on overall time on lower core counts, EXDIG is accounting for around 24% of total run time on 8192 cores. 
Previous investigations [2, 16] have shown that parallel diagonalization is often a computational bottleneck in large-scale 
calculations and that parallel scaling is often limited even when using optimized numerical library routines. 

   

5.1 Initial Analysis of Parallel Diagonalization Routines on the XT4 

Several parallel eigensolver routines for solving standard and generalized dense symmetric or dense Hermitian problems are 
available in the current release of ScaLAPACK [17]. Previous investigations [16] on HPCx had found that the divide-and-
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conquer-based routine PDSYEVD [18] was most suited to parallel diagonalizations in PFARM, where all eigenpairs of the 
system are required. 

Recently a new routine PDSYEVR [199], based on a Multiple Relatively Robust Representation approach, has been 
implemented by ScaLAPACK developers. This routine has been made available to users for early testing. 

The relative performance of PDSYEVD and PDSYEVR on the XT4 and IBM p5-575 machines is shown in Fig. 5. The 
performance on lower core counts is roughly equivalent. However the established PDSYEVD routine performs much better 
on higher core counts and it was decided to continue with this routine. It should be noted that the PDSYEVR routine tested 
here is under development and any official release is likely to have improved performance. If these scaling issues are 
resolved then PDSYEVR is likely to be an attractive future option as this method promises much-reduced memory overheads 
compared to PDSYEVD, allowing larger cases to be solved on smaller core counts.  

The performance of PDSYEVD on Hamiltonian sector matrix sizes ranging from N=20064 to N=62304 is shown in Fig. 6. 
As expected larger problem sizes scale much better as these cases are characterised by a more favourable 
communication/computation ratio.  

The initial performance comparison of the two diagonalizers was undertaken during Phase 1 of Hector. The working version 
of PDSYEVR suffers from load-imbalance at high core counts. Therefore, until this issue is addressed by the developers, the 
conclusion that PDSYEVD is the more suitable diagonalization routine for EXDIG remains valid for subsequent upgrades to 
the service. 
 

 
 

Figure 5. ScaLAPACK Parallel Diagonalizer Performance 
on HPCx (IBM p5-575) and HECToR Phase 1 (XT4) for FeIII case with Hamiltonian dimension N = 220064. 
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Figure 6. PDSYEVD Performance on HECToR Phase 1 (XT4) and HPCx (IBM p5-575) and for FeIII cases with a range of 
Hamiltonian dimensions. 
 
 
 

5.2 Optimization of EXDIG on the XT4 
 
The original EXDIG code steps through each sector sequentially, undertaking a parallel diagonalization on each sector 
Hamiltonian matrix. In order to improve the parallel performance of EXDIG the code has been modified to calculate each 
Hamiltonian sector parallel diagonalization concurrently on sub-groups of processes. These sub-groups are created by 
partitioning the global Blacs-based grid. The sub-groups need to be of sufficient size to accommodate the Hamiltonian sector 
matrix plus associated overheads but small enough to maintain an advantageous communications/computation ratio. Overall 
this strategy avoids distributing computational loads too thinly when problem sizes are relatively small and parallel jobs 
involve thousands of cores, i.e. it shifts the parallel scaling behaviour towards the steeper gradients associated with the lower-
to-medium core counts in Fig. 5 and Fig. 6. As each sub-group now writes results concurrently to disk, parallelism is also 
introduced into I/O operations, further improving parallel performance. It should be noted that this new approach involves 
extra distribution and set-up costs. 
 
The performance improvements on HECToR for an FeIII case with a larger Hamiltonian dimension is shown in Fig. 7. This 
particular comparison was made on HECToR Phase 1, however the final performance comparisons for our main test case in 
section 6, which are noticeably better (as may be expected for a smaller Hamiltonian size), show that the results carry through 
to HECToR Phase 2a. In the new version of the code the four Hamiltonian sector matrices are distributed to four sub-groups 
of cores of size NP / 4, where NP is the total number of cores. In this case, using the optimized EXDIG code results in a more 
than two-fold increase in speed on 8192 cores of the XT4. The EXDIG modifications described here will ensure that 
ambitious calculations planned by PFARM users, with more complex and longer-range potentials and thus involving large 
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sector matrices and more sectors (hence more subgroups as required), will scale well to much larger numbers of cores than 
this example. 
 
 

 
 
 

Figure 7. Optimized parallel diagonalization performance on HECToR Cray XT4, Sector Hamiltonian Dimension = 44878. 
 
 

5.3 Optimization of EXAS on the XT4 
 
Our major performance optimizations for EXAS are the introduction of new communicators, within the RMPROD group and 
for multiple manager tasks, together with scripts to ensure optimum load-balancing. In the original code, one group leader 
gathers together the partial R-matrices, puts them together and distributes them to the pipelines in round-robin order. Our 
load-balancing analyses showed that as core count increases, the supply of R-matrices to pipelines is too slow and at very 
high core counts the supply of asymptotic data overloads the manager. We describe our load-balancing investigations and 
communicator development in chronological order here, followed by a summary of certain other improvements at the end 
this section. We note that PFARM has built in timing routines which in EXAS allow very detailed timing information for the 
various concurrent and sequential tasks to be displayed, including the MPI routines. Accurate information from the internal 
timers is often easier to read and modify (expand upon) than use of the MPI counters in CRAYPAT, and has the advantage of 
minimizing overheads. However, we were able to discover a bug in the timer routines which caused some of the timing data 
to overlap and overwrite other parts. We corrected this bug to get accurate internal timings.  

5.3.1 Load-Balancing for the XT4 
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Initial Load-balancing experiments on Hector 

Appropriate allocation of processes to tasks in EXAS is critical for efficient parallel performance.  Most importantly,  the 
RMPROD and RMASY groups at the start and ends of pipelines must be of sufficient size to i) generate initial R-matrices 
with sufficient frequency to maintain a fully operational pipeline; ii) process collision strength calculations at a sufficient rate 
to prevent bottlenecks at the end of pipelines. 

A load-balancing analysis was previously undertaken on the Manchester Cray T3E (2001) when the PFARM code was 
initially developed. Computational experiments that varied the number of processes in the task groups were reported in 
publications such as [3]. These now needed to be updated for the XT4 in order to reflect modern multi-core MPP 
architectures. Figure 8 summarises a series of test runs undertaken on the XT4 with 1024 cores for an energy-reduced fine 
region propagation. The number of cores in the RMPROD pool is varied from 224 to 320 and the number of cores in the 
asymptotic task group per pipeline is varied from 2 to 9.  It is shown that the ideally balanced configuration for this case is 
288 cores in RMPROD and 7 cores in RMASY per pipeline. This optimized configuration results in a 28% reduction in run-
time when compared to the worst load-balanced configuration (320 cores in RMPROD and 2 cores per pipeline in RMASY). 

Applying this load-balancing configuration to the initial full fine region propagation runs from Fig. 4 resulted in the 
performance improvements shown in Fig. 9. The improved load-balancing continues to have a substantial impact on speed on 
2048 cores, but the gains are negligible on 4096 cores and 8192 cores. For these cases further analysis was necessary, but the 
profiling information indicated that the single manager process is the bottleneck for 4096 cores and above. The profiling 
information also indicated a large MPI_WAIT time for RMPROD tasks while the group leader communicated with the 
pipelines.  
 
 

 
 
 

Figure 8. Load-balancing analysis on Hector Cray XT4 
 
 

Automation of load-balancing on Hector using control scripts 
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Job control scripts written in Perl have been written that will help determine process allocations automatically, based upon 
the problem characteristics and the underlying hardware, and these have been updated for HECToR usage.  The scripts check 
a pre-existing database to establish the computational characteristics of the job(s) to be run, e.g. number of channels, the 
evenness of the channel splitting and then configure the sizes of the functional groups appropriately. These calculations are 
based upon equations determined from the flop counts of the underlying algorithms which estimate computational loads for 
each functional group relative to dataset size and number of tasks. Thus for a given dataset and overall core count an 
estimated rate of initial R-matrix production, R-matrix sector propagation rate and asymptotic calculation rate can all be 
determined.  Taking into account the scalability of each sub-group task, the rates can then be balanced by assigning the 
appropriate number of cores to each sub-group (table 1).  A full description of the evolution of the underlying load-balancing 
algorithms is given in [3].  During the dCSE project the scripts have been updated to reflect the computational characteristics 
of the underlying Hector hardware and also have been adapted to include the new features and parallelisation methods 
introduced into the EXAS code. These new developments to the code are described in detail in the next section.   
 
 

Total Tasks RM Production 
Tasks 

Pipeline Tasks Asymptotic 
Tasks 

Manager Tasks 

1024 40 x 4 288 568 8 
2048 44 x 8 568 1120 8 
4096 44 x 16 1140 2244 8 
8192 44 x 32 2288 4488 8 
16384 44 x 64 4576 8976 16 

 
Table 1. Automated core to task configurations for the FeIII dataset 

 
 
The scripts require two parameters to be set by the developer/user for a particular machine, based on load-balancing 
experiments. This is enough to give good performance, although users may modify (or request developers to modify) the 
parameters for fine-tuning EXAS when a large set of runs for a particular scattering problem are to be undertaken. We have 
set the parameters for HECToR Phase 2A and we will need to reset the parameters for HECToR Phase 2B. Fine tuning of 
scripts and associated parameters with a range of problem sizes will continue in order to obtain optimal auto-load balancing 
for users. 
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Figure 9. The initial effect on performance of load-balancing EXAS for the fine region propagation 
 
 
5.3.2 Parallelization of functional groups 
 
Decomposition of R-matrix Production Groups into sub-groups 
 
Performance analyses of EXAS parallel performance on Hector showed that initial R-matrix production rate did not increase 
linearly with the number of tasks dedicated to this group. Furthermore, for runs involving large numbers of propagation 
pipelines the supply of initial R-matrices could not match demand from the pipelines even when a large proportion of tasks 
were dedicated to this functional group, causing pipeline computation to stall. The reasons for the lack of scalability observed 
in this functional group were twofold. Firstly the parallel computation of initial R-matrices involves an MPI_GATHER 
operation to combine contributions from the distributed matrix. The performance scalability of these MPI_GATHER 
operations declines on large core counts. Secondly a serial bottleneck existed where the one ‘leader’ task gathered initial R-
matrices, before communicating them to initial pipeline tasks.  In practice, the overhead of sending initial R-matrices in 
sequence to each pipeline from an individual ‘leader’ task became prohibitive when many hundreds of pipelines were 
waiting. In order to address these bottlenecks, the initial RMPROD communicator was divided into sub-communicators. 
Ideally the sub-groups should be of such a size that a) sufficient memory and processing power is contained within them to 
handle the large reduced-width amplitude matrices that are used to generate initial R-matrices, b) MPI_GATHER operations 
remained efficient and c) sufficient sub-group leader tasks exist in order to communicate initial R-matrices efficiently to the 
header pipeline tasks.  
 
In addition to the multiple R-matrix generation groups, in the spin/k-split case we rearranged the distribution of tasks 
between split blocks to match the relative sizes of the blocks, rather than equally as in the original code. This improved the R-
matrix generation time noticeably (for example, 1783s v1894s for the main FeIII test case with 1024 cores, fine propagation 
with the original RMPROD setup).   
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Parallelization of Manager Tasks 
 
For runs involving thousands of cores internal EXAS timers on HECToR began to show a communication bottleneck at the 
point where the manager task gathers results from the asymptotic (K-matrix calculation) sub-group. The manager task then 
applies the thermal averaging across the scattering energy spectrum and then periodically outputs results to disk. Originally 
the code had been designed with the assumption that the maximum number tasks in the asymptotic sub-group would be of the 
order 200. However on runs involving many thousands of cores of HECToR, the number of pipelines can now regularly 
exceed 1000, with several tasks in the asymptotic group dedicated to each pipeline. This resulted in pipelines stalling, as the 
manager task was overwhelmed with outstanding messages emanating from the asymptotic region calculation. Evidently, the 
manager task role needed expanding to become a manager task sub-group, where a number of manager tasks could share the 
burden of gathering data, periodically averaging results with the other manager tasks. A ‘head’ manager is then responsible 
for outputting backup and final results to disk. This parallelisation has been introduced to the new code (see Fig 10.). The 
number of manager tasks is determined by user-defined entry in the control file. In our analysis to-date, a ratio of 1 manager 
task per 500 total tasks usually suffices. Without this new scheme, performance scaling for EXAS would not be possible for 
more than 2048 cores. It has a significant impact on parallel performance at higher processor counts.   
 
Parallel read of pipeline sector data 
 
The separation of surface amplitude sector files in EXDIG naturally parallelizes output during the first stage of the 
calculation.  Likewise, the separation presents an opportunity to parallelize input to the sector pipelines in EXAS for both the 
fine region and coarse region calculations with EXAS.  The old code used the first task of the first pipeline for all input of 
sector amplitude files. The new code uses each task in the first pipeline to read its associated sector amplitude file. 
Associated performance gains are modest at lower processor counts, but have more effect on higher core counts: pipeline set-
up times are now 55% faster on 16384 cores of Hector. 
 
Summary of new communicators 
 
Figure 10 shows a simplified version of the current sub-task distribution and may be compared to figure 2. We note that the 
MPI-1 is used for all communication. This made the RMPROD sub-group communicators more complicated to implement 
than was originally thought, in order to maintain the order of energies expected by the RMASY group from the pipelines. 
Since the number of pipelines per RMPROD sub-group is not necessarily a factor of the number of RMASY tasks per 
pipeline or vice versa, information associated with the RMPROD sub-group communicators needed to be passed to the 
pipeline communicators and the RMASY communicator. The multiple-manager communicator also needs to share 
information, but only with the RMASY communicator (assuming the RMPROD information has been passed correctly). 
When passive remote memory access and MPI-2 become generally available in an efficient form, this hard-wired linking of 
‘internal’ data between communicators should no longer be necessary. The FARM2 code is designed to be adaptable for such 
communication patterns. 
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Figure 10. New assignment of tasks to sub-groups of processes in the optimized EXAS stage of PFARM 
 

 
Shared Memory Processing 
 
Large-scale calculations involving many thousands of channels may produce Hamiltonian matrices or sector R-matrix 
calculations with memory requirements exceeding that available on a single core of Hector. In these cases it will be necessary 
to access the full memory resources available on a Hector quad-core cpu from a single MPI task. This can be achieved by 
under-populating Hector nodes via the #PBS –l mppnppn    keyword in the Hector submission script. In order to make 
use of the other cores an OpenMP enabled version of libsci is linked to the code: 
 
module load xtpe-barcelona 
-lsci_quadcore_mp  (on the compiler command line). 
 
The keyword #PBS –l mppdepth is then specified in the job submission script. This instructs the program to spawn 
OpenMP tasks when the code enters libsci library routines such as Scalapack, Lapack and Blas. For example, the following 
set-up specifies 1024 MPI tasks in total, with 1 MPI task per Hector node, each of which spawns 4 OpenMP tasks upon 
entering libsci routines. 
 
#PBS –l mppwidth = 1024 
#PBS –l mppnppn = 1 
#PBS –l mppdepth = 4 
… 
 
aprun –n 1024 –N 1 –d 4 ./exas 
 
Analysis from calculations using executables linked to libsci_quadcore_mp (libsci v10.4.1) show that only modest 
performance gains are obtained on HECToR. Runs with 4 OpenMP threads are only around 10-15% quicker than those with 
one OpenMP thread set per quad-core node. Discussions with libsci developers suggest that better performance will be 
gained from an upcoming release of the library on HECToR. 
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At the time of writing, the imminent upgrade to HECToR is Phase2b. The new hardware will include nodes with 12 cores 
sharing the same memory space.  On this new hardware, the strategy will be to use as few cores per MPI task that ensures 
sufficient memory availability for each MPI task. 
 
 
5.3.3 Other Optimizations 
  

Blas-based K-matrix calculation 
 
One of the important features of EXAS is that the majority of cpu-intensive serial operations are cast as BLAS and LAPACK 
routines to maximize performance. We confirmed this by profiling the code with CRAYPAT, however we noticed that the 
routine 'kmm' in module 'k_matrix' showed up as having significant cpu activity. The k-matrices, produced by the RMASY 
group, are the basic desired scattering parameters from which physical quantities of interest are calculated. Inspection of 
routine kmm showed that, while the bulk of the calculation involved a LAPACK singular value decomposition (SVD), there 
were some handwritten loops preceding this with inner 'if' statements and multiply-adds which could be rearranged to be 
performed as two DGEMM operations. Implementing this resulted in up to a 20% improvement in serial performance for k-
matrix generation.  
 
Time limit failsafe from PBS script 

A common problem for many application code users is the estimation of run-time required for calculations involving a given 
number of cores. Although a user is free to set a maximum wall-clock time (12 hours) for every job submitted, in practice this 
would usually have a detrimental impact on throughput, especially when using a large, shared compute facilities such as 
Hector. Given the wide range of problem sizes associated with different partial waves in a complete scattering calculation, it 
can be particularly difficult for PRMAT users to estimate upper limits on likely run times. In order to minimise wasted runs a 
check-pointing facility was incorporated into the original code, where users could specify the frequency of check-points to 
disk through input parameters. This scheme indeed safeguarded results. However, too frequent checkpoints could impact 
upon performance, whilst too infrequent checkpoints ran the risk of losing significant amounts of results data when wallclock 
limits were reached unexpectedly. Simple perl scripts have now been developed to establish time limits from the PBS 
environment and use this value automatically in the code to schedule a checkpoint shortly before wall-clock limits are 
reached. This frees the user from estimating likely run times and removes the need for frequent check-points. Users still have 
the option to specify regular checkpoints from the input control file. This is advisable during periods of machine instability. 
 

Verification of results 
 
 Verification of results was based upon a FeIII JJ-coupling case (Partial Wave L,S,P=3,0,0). Results from 1024, 2048, 4096 
core runs on the original and final versions of the code were compared and thermally averaged collision strength results 
matched to at least 7 decimal places for values of the order 10-1. These slight variances are expected due to the new 
developments sometimes changing the order of calculations. The results were also verified against those obtained from 
HPCx. 
 
 
 
 
 
 
 
6. Final PFARM Benchmarking Results from Hector Phase 2A 
 
Description of Benchmark Dataset 

FeIII case with JJ coupling, Partial Wave L=3, S=0, P=0 
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Computational Characteristics 
 
 
 

Number of Channels (spin-split) 723, 458 

Maximum Scattering Energy 2.5 

Fine Region Energy Grid Resolution 0.00004 

Number of Fine Region Scattering Energies 10678 

Coarse Energy Grid Resolution 0.01 

Number of Coarse Region Scattering Energies 205 

Initial Radius 25.0 

Final Radius 80.0 

Number of Fine Region Sectors 4 

Number of Coarse Region Sectors 9 

Fine Region Hamiltonian Dimension (spin-split) 7230*, 4580* 

Coarse Region Hamiltonian Dimension (spin-split) 7230, 4580 

 
 

Table 2. Computational Characteristics of the benchmark dataset 
 

* A suitable combination of basis functions and sector boundaries to ensure accuracy is determined automatically by a pre-existing 
algorithm in EXDIG. Number of basis points function in the fine region sector Hamiltonian lies between a minimum of 10 and a maximum 
determined by the user. Number of basis function points in the coarse region sector is always set to 10. 

Parallel Performance Final Benchmarks 
 
The final benchmarking analysis was undertaken on Phase 2A of the HECToR Cray XT4 system. Both the original and 

new codes are compiled using the PGI compiler (v9.04) with optimization flags ‘-O2 –fast’(for PFARM, -O2 did not 
improve performance). Timings from the codes are measured via calls to the Fortran intrinsic routine system_clock. A 
typical benchmarking submission script is listed below. It should be noted that HECToR nodes were fully occupied 
throughout these tests, i.e. 1 MPI task per available core. 

 
#!/bin/bash 
#PBS -N prm_bench_1024 
#PBS -l mppwidth=1024 
#PBS -l mppnppn=4 
#PBS -l walltime=01:00:00 
#PBS -j oe 
#PBS -A c01-am 
 
cd $PBS_O_WORKDIR 
export NPROC=`qstat -f $PBS_JOBID | awk '/mppwidth/ {print $3}'` 
export NTASK=`qstat -f $PBS_JOBID | awk '/mppnppn/ {print $3}'` 
 
# Sector Diagonalization 
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aprun -n $NPROC -N $NTASK ./exdig 
 
# Fine Region Propagation 
aprun -n $NPROC -N $NTASK ./exas 
 
# Coarse Region Propagation 
aprun -n $NPROC -N $NTASK ./exas 
 

The final benchmark timings are shown in Fig 11 below. Both the original ‘ORI’ and optimized ‘NEW’ versions of the code 
were compiled and benchmarked on the HECToR Phase2A system as of April 2010. For a range of core counts between 
1024 and 16384, the ‘NEW’ HECToR optimized codes runs between 2.14 and 2.89 times faster than the original ‘ORI’ 
codes, with performance gains steadily improving as the core count increases. The ‘MIXED’ timing dataset shown in Fig 10 
refers to a benchmark run where a different number of cores are chosen for each of the three stages of the calculation. This is 
often the case in users’ production runs, where the largest core counts are selected for EXDIG and EXAS Fine Region 
calculations (where a calculation typically includes tens of thousands of scattering energies), but it is often more appropriate 
to use much smaller core counts for EXAS Coarse Region calculations. The ‘MIXED’. Here 4096 cores are used for EXDIG, 
8192 cores are used for the EXAS Fine stage and 512 cores are used for EXAS Coarse. This gives a speed-up of 3.13 
between the new and original codes. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 11. Benchmarks comparing Hector performance of final PRMAT code with that of the initial code 

 
In order to assess the new codes’ performance on future, larger datasets, which are representative of users’ planned 
calculations, a further benchmarking exercise was undertaken on an enlarged version of the FeIII benchmark dataset 
described in Table 2. Here the number of scattering energies in the EXAS Fine Region is almost doubled to 21080 and 28 
basis function points are used when constructing the spin-split Fine Region Sector Hamiltonians. This led to matrices of 
dimension 20244 and 12824 requiring diagonalization during the EXDIG stage of the calculation. With this expanded dataset 
on 8192 cores the (NEW) optimized codes are 2.35 times faster than the (ORI) original codes’. This speed-up increased to 
2.58 with the MIXED case, where 8192 cores are used for EXDIG & EXAS Fine and 512 cores are used for EXAS Coarse. It 
should be noted that although the code optimizations achieved during this project are directed at larger-scale calculations, the 
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load-balancing for this case has not yet been as completely fine-tuned as for our main test case. We believe that this is the 
reason that performance gains so far are less than the 3.13 demonstrated for the original FeIII dataset. 
 
 
7. FARM2: the ALD code 
 
The second part of the dCSE project has been dedicated to introducing the ALD propagator into the PRMAT. ALD is a stable 
propagation method for solving coupled sets of Schrödinger equations introduced by Alexander and Manolopoulos [13]. 
Within each sector the potential coupling the equations is approximated by a linear reference potential. An optimum 
reference potential is obtained by diagonalizing the full potential coupling matrix at two points defined by a Gauss integration 
mesh scaled to the radial sector. Exact solutions of the sector equations with a linear reference potential are given by Airy 
functions. These may be computed accurately and efficiently. The size of matrices associated with Airy LD propagations is 
much reduced in comparison with the BBM approach, at the expense of needing more sectors, and ALD is expected to 
maintain better performance at capability usage for larger problems. Since the log-derivative solutions matrix is propagated 
rather than the R-matrix (the two are proportional to each other’s inverses), the channel splitting (spin or K) is maintained 
across the sector boundaries is this method, modifying the pipeline communication in the parallel case. In fact, since the 
matrices involved are much smaller (a factor of 10 for the case of 10 BBM basis functions s described above), it is possible to 
keep both partitions on the same core, or for larger calculations, use shared memory multicore parallelism for the splitting. 
The R-matrix at the inner region boundary is inverted, solutions are propagated to the asymptotic region where K-matrices 
and other scattering results are generated (to maintain consistency with FARM/PFARM, the R-matrix may be reconstructed 
and passed to standard asymptotic modules). 
 
The method has been introduced into a new object-oriented (within Fortran 2003 limits) version of FARM, named FARM2, 
which also incorporates the mixture of symmetry-based block-partitioned and block-diagonal matrices directly into the 
propagation procedure via appropriate use of derived datatypes. The parallelization of this code includes an efficient 
customized parallel I/O library. Much of the effort in this part of the project has gone into developing efficient lower-level 
functional modules, deliberately experimenting with Fortran 2003 features, as FARM2 is designed to be future-proof. Not all 
these features are yet available as standard on most compilers: the NAG compiler version 5.2 copes with all the Fortran 2003 
syntax, but for example does not actually implement asynchronous I/O. This compiler has been used to test the code on 
HECToR, with the Intel compiler used on a local machine. For practical purposes while we wait for compilers to catch up, 
the ALD propagator is being introduced as an alternative to BBM in a hybrid version of PFARM. At the conclusion of the 
project this hybrid is being verified: the advantages are that EXDIG data for all the sectors is not needed and the much larger 
number of sectors allows for more flexible pipeline parallelization (without boundary communications). The ALD version of 
PFARM will be completed as a full user code as part of the UK-RAMP project. 
 
We now give a summary description of the lower-level functional modules: full descriptions and details will appear in the 
full write-ups for Computer Physics Communications (CPC). 
 
7.1 xstream: a library for data transfer within and between programs   
 
The fundamental idea motivating the development of this module was to provide a simple and uniform API for performing 
the file I/O operations used throughout the R-matrix programs. This is used (a) to transfer data between computational 
modules and (b) to hold large data structures that are employed within a single program stage. In case (a) the primary 
requirement is to be able to transfer binary encoded files between different computers and computer architectures. This 
implies that the encoding within the disk files themselves should be in XDR format. This in turn requires the use use of C-
language code to call standard unix system encoding/decoding routines. The API is designed to allow the use of either XDR 
or native files with implementation details hidden from the user. We have also invested effort to ensure that the C-code 
operates correctly for both iLP32 and LP64 architectures. The C-interoperability provided by Fortran 2003 provides a 
portable and standard way of interfacing this code to the R-matrix routines written in Fortran. It should be noted that very 
high performance is not essential for this type-(a) I/O.  For the second type of disk I/O, type (b), performance is essential. 
One priority is parallel performance. We have therefore developed both serial and parallel modules using the same API. The 
parallel I/O is implemented using MPI-IO.  Files may be read/written simultaneously by all processing nodes or all nodes 
may write to a single file. We use non-blocking MPI calls to allow asynchronous I/O and stream-IO to locate data items 
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within the file. In the serial version of this option Fortran 2003 asynchronous I/O is used to hide data transfer times. Although 
most Fortran compilers now do provide stream I/O, this was not the case when this development began. We have therefore 
offered stream I/O implemented in C. 
 
These libraries provide a range of serial and parallel options without the need to implement alternative coding options each 
time file I/O is required. They have a fairly simple calling syntax compared to more generalized products such as netCDF 
(http://www.unidata.ucar.edu/software/netcdf/docs/faq.htm). On HECToR and other HPC machines they will mainly be used 
for data transfer between the various R-Matrix modules (purpose (a)): the internal I/O is available as an option and for local 
machines). We note that PFARM uses XDR as its standard format for initial and inter-stage datafiles. 
 
7.2 Block matrix algebra 
 
In all R-matrix external region calculations the angular momentum coupling rules require the scattering channels to decouple 
into one or two groups, or partitions, that are coupled by the external region interaction only within their own partition. For 
instance, in the case of LS coupling, the two partitions are labelled by a target spin. A similar decoupling occurs for 
relativistic Jpi coupling. Of course, if there are two partitions, they are coupled by the boundary condition at the R-matrix 
internal region boundary. Nonetheless, this decoupling has important consequences both on storage requirements and on 
CPU requirements.  In the present implementation we fully exploit these possibilities and show that they may be significant 
for large calculations. 
 
The immediate consequence is that the coupling potential is block diagonal and should be stored as a block diagonal matrix. 
Using the algebra of 2x2 block matrix inversion it is possible to make large savings in CPU.  The present implementation 
must provide alternative code segments if a particular calculation involves one are two channel partitions. Some initial work 
using the Fortran 2003 object oriented features suggests that defining a matrix class that is extended to a two-partition block-
diagonal matrix can reduce the detailed logic by the use of dynamic dispatch. Without this refinement, the savings obtained 
in transforming to a sector representation (see below) and in propagating the logarithmic derivative matrix using channel 
decoupling open the way to the very large coupled equation solutions (20000 channels) that are currently required. The log-
derivative solutions matrix is stored in a derived type for block-symmetric matrices in which the diagonal blocks and the 
upper off-diagonal block are stored as separate matrices: Schur decomposition is used to perform, for example, matrix 
inverses.  
 
At a more prosaic level we have tested the performance of Lapack routines that may be used for linear equations solution and 
matrix inverses: The standard dgetrf/dgetrs routines, the routines dsytrf/dsytrs for symmetric matrices and singular value 
decomposition (SVD) for possibly singular matrices. The SVD routines take ~8 times as long as the LU factorization routines 
as may be expected, and should only be used when needed. However, for a given set of linear equations or matrix inverse 
there is no advantage in using the symmetric dsytrf/dsytrs routines, which may in fact take longer than the general matrix 
dgetrf/dgetrs routines. This is due to the greater use of dgemm operations in the general matrix routines which is more 
efficient than the multiple use of dgemv in dsytrf/dsytrs and compensates for the overall greater number of operations in the 
general routines, except in the limit of very large matrices (sizes up to 5000 have been tested). All three options are available 
in the FARM2 codes, with SVD used very selectively with tests for its requirement in the code, and dgetrf/dgetrs as standard.  
 
7.3 AiryGrid and AiryProp: the ALD propagator. 
 
The solution of the coupled second-order differential equations describing the electron-atom scattering in the region beyond 
an inner interaction region where coupled integro-differential equations apply may be performed using various propagation 
techniques. These numerical methods propagate the solution of the dfferential equations between two radial distances, an 
inner and outer point, where boundary conditions may be determined. In the BBM method the radial range is divided into 
radial segments or sectors. Within each of these sectors a basis set is introduced to represent the local Hamiltonian. By 
diagonalizing this local sector Hamiltonian it is possible to derive a set of linear equations for producing the solution and its 
derivative at one end of the sector given the corresponding values at the other end. The BBM approach is formulated in terms 
of R-matrices that are simply the inverse of logarithmic derivative of the wavefunction at each radial point. The introduction 
of a large sector basis permits large sector sizes so fewer sectors are required in the overall calculation. The method may be 
made very accurate and is particularly well-suited when the number of collision energies that must be treated is very large, 
hence its use up to now in PFARM. Unfortunately as the sector matrices that must be diagonalized have dimensions that are 
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the product of the number of coupled channels and the number of basis functions introduced. As the number of coupled 
channels is increased, the best available parallel matrix diagonalizers begin to scale less well and the amount of data that is 
involved in the calculation increases rapidly. This effectively limits the number of channels that may be treated. 
 
The ALD method developed by Alexander [13] is a complementary approach that bypasses the bottleneck imposed by the 
efficiency of parallel diagonalizers. The basic idea is to assume that the potential within each sector may be diagonalized and 
approximated by a linear potential (the linear reference potential). The method is a generalization of a scheme. albeit 
formulated in terms of R-matrices, proposed by Light and Walker (LW) [20] which uses a constant reference potential. In the 
ALD scheme the reference potential may be chosen to match the actual potential at two radial points within each sector. If 
these two radial points are chosen to correspond to the roots of the second-order shifted Lagendre polynomial the method 
will be exact for potentials that may be approximated by a 2nd -3rd order polynomial [13]. The LW and ALD methods share 
two advantages: the matrices that must be diagonalized are the same order as the number of channels and the propagation 
equations within each sector involve vectors rather than matrices (and may be cast in the form of matrix operations on 
diagonal matrices). The amount of data that must be retained between each calculation is minimal and the matrices 
corresponding to even 20-30 thousand scattering channels may be diagonalized using only a small number of processors. The 
solutions of the sector equations are trigonometric functions in the LW method and Airy functions in the ALD scheme. 
Manolopolous and Alexander [13] have shown that the Airy functions and derivatives may be calculated without 
significantly more effort than trigonometic functions. The ALD is therefore more efficient than LW and although smaller 
sectors will be required than in the BBM approach massively parallel HPC machines may be used to treat much larger 
numbers of channels. In addition, as the ALD is ‘potential following’ there is no requirement to treat resonance regions 
differently from regions where there are no resonances. 
 
In the current FARM2 implementation of ALD, the routine AiryGrid controls the determination of the outer radial distance to 
which propagation needs to be performed and sets up the grid of sectors. It forms the block-diagonal potential matrix which 
is diagonalized within each sector: essentially it fulfils the equivalent function to EXDIG and constructs all energy-
independent quantities which are then stored either in memory or using xstream. The routine AiryProp performs the actual 
ALD propagation using the block-partitioned matrix syntax and passes data to the FARM2 asymptotic routines.   
 
7.4 Channel dropping 
 
Although the R-matrix and Log-Derivative matrix propagation techniques are extremely stable it is possible for the 
differential equations sets to become linearly dependent. This behaviour is a consequence of the physics of the collision 
process itself. In the region beyond but near the R-matrix internal region boundary it is essential to introduce additional 
channels in the external region calculation to account for polarization and other effects resulting from the electron-target 
interaction. These additional bound channels do not carry scattering information and indeed cause the linear dependence that 
results in the failure of the linear equation solvers used to perform the sector propagation.  We have introduced linear 
equation solvers using the Lapack SVD routines that will maximize the accuracy of calculation within a given sector. 
However, in cases where the propagation proceeds over a number of sectors these redundant channels introduce 
exponentially growing errors. It is therefore essential to actually eliminate the channels as the propagation proceeds. Such a 
channel-dropping procedure was implemented in the serial FARM external region code. However, it has been found that in 
practice some of the restrictions used in the FARM implementation are too limiting. First, within a given sector only a single 
channel could be dropped and second, it is possible that channel-dropping could be blocked by the detailed way in which 
coupling strength criteria were applied. We have therefore implemented a more general approach in which any number of 
channels may be dropped. Blocking is eliminated and the energy criterion for determining channels to be dropped is based on 
the channel eigenvalues. 
 
The channel dropping procedure itself is performed easily and efficiently in FARM2 using BLAS routines and Fortran 
pointers. The process, when needed, is implemented separately within each channel partition. As a consequence the 
bookkeeping needed to track and reassemble the retained channels in order to complete the K-matrix calculation is more 
complicated than in previous work. 
 
7.5 Asymptotic functions and some general points 
 
The FARM2 code also features a new implementation of the Gailitis asymptotic expansion [21] of the wavefunction at the 
external matching point: these changes are the result of a detailed analysis of the numerical stability of the method using the 
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CPC package [21]. The new approach avoids cancellation in the division of two ‘Burke-Schey’ series [21] by the use of 
standard Lapack routines. The new approach is of higher accuracy than that used previously. Having matched the propagated 
matrix with the asymptotic solutions, various scattering parameters (K-matrices, collision strengths etc) are calculated. 
Following this DCSE project, with the propagator and general solution validated by extensive comparisions with known 
calculations, the FARM2 code is undergoing rigorous verification of the asymptotic scientific data generation procedures. 
The overall design of the FARM2 code is to facilitate a rapid parallelization using combined MPI and shared memory 
(System 5) parallelization [22], with pipelining (MPI, ideally using passive remote memory access) and multicore parallelism 
within the block-partitioned matrices, in addition to the parallel xstream I/O.  We note that the modules in FARM2 have been 
tested and verified for numerical stability using the CADNA instrumentation package [23]. 
 
7.6 Hybrid parallel code and results  
 
Towards the end of the DCSE project and as immediate follow-up work, the AiryGrid and AiryProp modules have been 
introduced into a hybrid ALD PFARM EXAS code, using PFARM parallelization methods. The AiryProp procedure fits into 
the pipeline group of cores, with several ALD sectors propagated on each core. The AiryGrid set-up work is carried out on 
these processors while the RMPROD processors receive the initial R-matrix data (the best way of incorporating the AiryGrid 
set-up is being investigated). Both partitions are propagated on a single core at present: the multicore shared-memory 
parallelism will be introduced in both the hybrid code and the ‘pure’ parallel FARM2 ‘simultaneously’. 
 
At the time of writing, the validation of the hybrid interface to AiryGrid and AiryProp is underway. We will add initial 
performance comparisons for an FeIII case to this report as soon as they are available. 
 
 
8. Future work on PFARM and the ALD code 
 
In addition to ongoing tasks indicated in the previous section, further potential optimizations to PFARM have been identified, 
although development of the new communicators was given priority for this particular DCSE project. 
 
Further improvements include: 
 
1. Greater flexibility in the assignment of sectors to processes. The code was originally designed for architectures with 

memory resource per process a small fraction of that available on HECToR.  This resulted in a programming model 
where each pipeline process is always designated one spin-split sector calculation regardless of problem size and 
memory availability. With target calculations now increasing by up to an order of magnitude, this rigid mapping needs to 
be relaxed in order to permit:  

 
a) More than one process per sector calculation (for larger jobs), achieved via a data distribution parallelization of the 

R-matrix sector propagation, i.e. pipeline nodes compromising of groups of processes. 
b) More than one sector per process (for smaller jobs) in order to fully utilize local memory resources and reduce 

communication overheads. 
Both these aims are effectively near completion from the development of the hybrid code. 

 
2. An assignment of tasks to processes that reduces communications between the underlying hardware. For example on 

HECToR, neighbouring sectors should reside within a multi-core processing element whenever possible. This will be 
particularly important for HECToR Phase 2B and beyond (Again, this is built into the FARM2 and hybrid code 
structure).  
 

3. Fine-tuning of auto-loadbalancing scripts on HECToR Phase 2B.  
 
4. The introduction of task-harnessing to calculate different groups of partial waves and energies concurrently. The process 

arrangement shown in Fig. 2 would be replicated across HECToR resources for each, or groups of, partial waves 
(scattering symmetries) and energies associated with the calculation.  
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5. Further parallel I/O features (full incorporation of the xstream library) will be introduced into the PFARM code where 
appropriate. 

 
Further work on FARM2 involves completing the verification of the ALD scattering parameter code against a range 
calculations and adding various additional scientifically relevant final data derived from the scattering parameters. Also, the 
hybrid code needs load-balance analysis and the ‘pure’ parallel FARM2 code needs completing/validating, though this latter 
objective requires the implementation of Fortran 2003 on general hardware to ‘catch up’ with the coding. 
 
9. Conclusions 
 
In this paper we have described some of the optimizations being undertaken on the parallel R-matrix program PFARM for 
runs using the Cray XT4. The code combines a unique, highly flexible functional and data decomposition approach for 
external region R-matrix propagation. The code is built on highly optimized parallel numerical library routines and is 
therefore highly efficient. However modifications to the code need to be made in order to maximise performance on the new 
generation of high-end computing resources, typically with many thousands of multi-core processors. Improvements to 
parallel scaling performance, single-node efficiency and memory usage will enable very large electron-atom and electron-ion 
scattering calculations to be addressed on these machines. The PFARM code may also be reasonably straightforwardly 
adapted for outer region electron-molecule scattering. We have demonstrated that code optimizations undertaken to-date have 
already yielded significant increases in performance of the code on the XT4.  
 
We have developed a ‘future-proof’ code FARM2, deliberately reliant on Fortran 2003 features. The ALD propagator has 
been incorporated into the PFARM parallel structure. 
 
The earlier part of this project has been reported on for the 2009 Cray User Group Meeting [24]. We aim to make all the fully 
verified codes available through the CCPForge website [25] and through the Computer Physics Communications (CPC) 
program library, with associated peer-reviewed fully descriptive CPC articles. The dCSE project was for 12 months FTE 
(inclusive of weekends, leave etc), split between two people (AS and CJN) between June 2008 and March 2010. 
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