
Porting OpenFOAM to HECToR

A dCSE Project

Gavin J. Pringle

EPCC, The University of Edinburgh, James Clerk Maxwell Building,

Mayfield Road, Edinburgh, EH9 3JZ, UK

April 16, 2010

Abstract

We present the installation of OpenFOAM versions 1.6 and 1.5 on HECToR,
along with guidelines for its use and how to compile up user routines. Benchmarks
results are also presented., wherein it is clear that there is no simple relation between
the optimum number of cores to be used for a given solver, a given simulation domain
and a given number of cells. However, we can state that OpenFOAM scales well on
HECToR for both simple tutorial cases and for complex industrial cases.

1

Contents

1 Introduction 2

2 Technical Overview 2
2.1 Licensing . 3
2.2 Access . 3

3 Installing OpenFOAM on HECToR 3

4 How to run OpenFOAM on HECToR 3
4.1 Running . 3
4.2 Batch Scripts for the OpenFOAM tutorials 5
4.3 Running pre- and post-processing routines on HECToR 6

5 Using dual- or quad-core installations of OpenFOAM 1.6 or 1.5 7

6 Benchmarking 7
6.1 Fruitful Connections . 8
6.2 Methodology . 8

6.2.1 Pre-processing . 8
6.2.2 Timing and Performance . 8

6.3 3D Lid-driven Cavity Flow . 9
6.3.1 Environment Variables . 11

6.4 Dam Break Tutorial . 12
6.5 3D Dam Break . 13
6.6 3D Spray . 14

6.6.1 Benchmarking the parallel versions 16

7 Conclusion 17
7.1 Future Work . 17
7.2 Acknowledgements . 18

A Editing and compiling the OpenFOAM source code 19

B Changes to Source code for HECToR 20
B.1 Overview . 20
B.2 Changes to etc/bash . 20
B.3 Changes to settings.sh . 21
B.4 Changes to wmake/rules . 22
B.5 Changes to Pstream . 23
B.6 Changes to parMetis . 23
B.7 More on mylib . 24
B.8 Compilation . 24

1

1 Introduction

This document forms the reports and deliverables for the Distributed CSE Support
project to provide the OpenFOAM toolbox functionality to HECToR users, and to anal-
yse its performance via benchmarking.

OpenFOAM is an open-source toolbox for computational fluid dynamics [1]. It con-
sists of a set of generic tools to simulate complex physics for a variety of fields of interest,
from fluid flows involving chemical reactions, turbulence and heat transfer, to solid dy-
namics, electromagnetism and the pricing of financial options. The core technology of
OpenFOAM is a flexible set of modules written in C++. These are used to build a
wealth of: solvers, to simulate specific problems in engineering mechanics; utilities, to
perform pre- and post-processing tasks ranging from simple data manipulation to visu-
alisation and mesh processing; and libraries, to create toolboxes that are accessible to
the solvers/utilities, such as libraries of physical models. OpenFOAM has support for
parallel operation, via MPI.

The goals of the project were to

• Install and test the core OpenFOAM solvers on HECToR

• Benchmark a range of the OpenFOAM modules, identified as useful via UK CFD
communities

• Make OpenFOAM available to HECToR users, along with an online ‘how-to’ guide
for using OpenFOAM on HECToR

• Disseminate the benchmark results

Ultimately the aim was to make OpenFOAM available for researchers to use on
HECToR along with the relevant performance information. Ideally, this will present the
machine to a new group of potential users who otherwise would not have considered it
as an option, and allow them to undertake larger, more complex simulations, in a more
timely fashion.

All work described in this report was undertaken by the author as part of this dCSE
project, unless otherwise stated.

2 Technical Overview

This dCSE project was carried out on HECToR, the UK National Supercomputing ser-
vice. Full details of the system are available on the website [2]. During the project
HECToR was in its ‘Phase 2a’ configuration - 5664 Cray XT4 nodes, each containing
an AMD 2.8GHz dual-core Opteron processor with 6GB RAM shared between the two
cores, and running the CSE 2.1 operating system.

HECToR also contains an X2 Vector Unit consisting of 28 nodes with 4 vector pro-
cessors per node; however, this part of the system was not used during this project.

As a results of this project, both the latest release of OpenFOAM, namely version
1.6, and version 1.5 are currently available on HECToR. Both versions are available as
both dual- and quad-core versions. Currently, version 1.6.x is not available.

2

As part of this project, both versions have undergone basic testing to ensure cor-
rectness. Further, version 1.6 has undergone basic profiling, with a view to introducing
HECToR-specific optimisations.

2.1 Licensing

OpenFOAM is open source software under the GPL.

2.2 Access

All HECToR users have access to the OpenFOAM binaries and source.
NB OpenFOAM no longer supports FoamX for versions 1.5 and older therefore, as

only versions 1.5 and 1.6 are available on HECToR, FoamX has not been installed.

3 Installing OpenFOAM on HECToR

At the time of writing, all parallel queues cannot see the /home file system. This meant
that the normal package accounts, which reside on /home, could not be employed for
HECToR. Thus, OpenFOAM was installed in /work/y07/y07/openfoam.

Further, as OpenFOAM employs many of Cray’s dynamic libraries, all the necessary
libraries had to be copied to OpenFOAM’s /work directory.

After some considerable effort on Cray’s part [3], it was found that that default
versions of many of the Cray components were unsuitable for compiling OpenFOAM.
These include

• The default PGI programming environment was swapped for the GNU program-
ming environment

• The default GNU C++ compiler was swapped for a particular version of the GNU
C++ compiler, namely version 4.3.3

• The default Cray Message Passing Toolkit was swapped for a particular version of
the Cray Message Passing Toolkit, namely version 3.2.0

4 How to run OpenFOAM on HECToR

This Section contains the details on how to access, compile (if necessary) and run the
OpenFOAM software package on HECToR.

4.1 Running

These instructions describe how to run OpenFOAM, version 1.6, compiled for dual-core
nodes, without the user modifying the source code.

NB HECToR’s front-end nodes, where serial jobs are run, are dual-core and her back-
end nodes, where parallel jobs are run, are quad-core. Further, all codes compiled for
quad-core nodes may fail when run on dual-core nodes. Since all OpenFOAM codes can
be run in either serial or parallel mode, the default, centrally installed version has been
compiled for dual-core nodes.

3

First you must create the typical OpenFOAM working directory structure in your
work space on HECToR, i.e., for a user with the username of gavin:

cd /work/z01/z01/gavin

mkdir OpenFOAM

cd OpenFOAM

mkdir OpenFOAM-1.6

mkdir gavin-1.6

cd OpenFOAM-1.6

mkdir etc

Then, copy the default OpenFOAM bashrc file from the OpenFOAM package ac-
count, /work/y07/y07/openfoam, into your own etc directory, i.e.

cp /work/y07/y07/openfoam/dual-core/OpenFOAM/OpenFOAM-1.6/etc/bashrc \\

/work/z01/z01/gavin/OpenFOAM/OpenFOAM-1.6/etc/.

You must now edit your local copy of the OpenFOAM bashrc file, to set your User
Directory. You have recently create this User Directory, called <username>-1.6, in your
local OpenFOAM directory.

Explicitly, the following line in the file ../OpenFOAM/OpenFOAM-1.6/etc/bashrc

export WM_PROJECT_USER_DIR=/work/y07/y07/openfoam/dual-core/$WM_PROJECT/

/$USER-$WM_PROJECT_VERSION

must be replaced with a line which closely resembles:

export WM_PROJECT_USER_DIR=/work/z01/z01/gavin/$WM_PROJECT/

/$USER-$WM_PROJECT_VERSION

You should now test the installation using following batch script.

#!/bin/bash --login

#PBS -q serial

#PBS -N testInstall

#PBS -l walltime=00:20:00

#PBS -A y07

. /opt/modules/3.1.6/init/bash

module swap PrgEnv-pgi PrgEnv-gnu

module swap gcc gcc/4.3.3

module swap xt-mpt xt-mpt/3.2.0

source /work/y07/y07/openfoam/dual-core/OpenFOAM/OpenFOAM-1.6/etc/bashrc

export LD_LIBRARY_PATH=$WM_PROJECT_DIR/mylib:$LD_LIBRARY_PATH

cd $WM_PROJECT_USER_DIR

foamInstallationTest

If this is configured correct, then you should now be able to run OpenFOAM as
normal, i.e. from within the <username>-1.6 directory.

4

4.2 Batch Scripts for the OpenFOAM tutorials

To run the tutorials, copy them from the package account into a new directory named
run within your user directory, <username>-1.6, using the following the 3 commands:

cd $WM_PROJECT_USER_DIR

mkdir -p $FOAM_RUN

cp -r $FOAM_TUTORIALS $FOAM_RUN

where the third line may a few minutes to execute.
This following batch script runs tests the installation of the tutorials using HECToR’s

‘serial’ queue.

#!/bin/bash --login

#PBS -q serial

#PBS -N testInstall

#PBS -l walltime=01:00:00

#PBS -A z01

. /opt/modules/3.1.6/init/bash

module swap PrgEnv-pgi PrgEnv-gnu

module swap gcc gcc/4.3.3

module swap xt-mpt xt-mpt/3.2.0

source /work/z01/z01/gavin/OpenFOAM/OpenFOAM-1.6/etc/bashrc

export LD_LIBRARY_PATH=$WM_PROJECT_DIR/mylib:$LD_LIBRARY_PATH

cd $FOAM_RUN/tutorials

Allclean

Alltest

NB All serial queues employ dual-core nodes thus, if users employ the quad-core version,
then the results may not be correct.

This following batch runs the final part of the Dam Break tutorial, a parallel run
of interFOAM on 8 cores, for user gavin. (The preparatory stages, namely running
blockMesh, setFields and decomposePar, must be run before interFoam.).

#!/bin/bash --login

#PBS -l mppwidth=8

#PBS -l mppnppn=4

#PBS -N dam_tutorial

#PBS -l walltime=01:00:00

#PBS -A z01

export NSLOTS=‘qstat -f $PBS_JOBID | awk ’/mppwidth/ {print $3}’‘

export NTASK=‘qstat -f $PBS_JOBID | awk ’/mppnppn/ {print $3}’‘

. /opt/modules/3.1.6/init/bash

module swap PrgEnv-pgi PrgEnv-gnu

module swap gcc gcc/4.3.3

module swap xt-mpt xt-mpt/3.2.0

source /work/z01/z01/gavin/OpenFOAM/OpenFOAM-1.6/etc/bashrc

export LD_LIBRARY_PATH=$WM_PROJECT_DIR/mylib:$LD_LIBRARY_PATH

cd $FOAM_RUN/tutorials/multiphase/interFoam/laminar/damBreak

5

export MPICH_PTL_EAGER_LONG=1

aprun -n $NSLOTS -N $NTASK interFoam -parallel

NB All parallel jobs are run on quad-core nodes, hence we set #PBS -l mppnppn=4.
Users can run either the dual- or quad-core versions of OpenFOAM in parallel, but the
dual-core version may not perform as well.

Setting the environment variable MPICH PTL EAGER LONG=1 was found to speed up
execution by around 7% for large numbers of cores, and had no adverse affect on perfor-
mance for small number of cores.

4.3 Running pre- and post-processing routines on HECToR

Some pre- and post-processing codes are not parallelised and must be run in serial. Let
us consider now consider blockMesh. To run blockMesh in serial on HECToR, users can
employ the serial queues.

This following batch script runs blockMesh within an example case using HECToR’s
‘serial’ queue.

#!/bin/bash --login

#PBS -q serial

#PBS -N blockMesh

#PBS -l walltime=01:00:00

#PBS -A z01

. /opt/modules/3.1.6/init/bash

module swap PrgEnv-pgi PrgEnv-gnu

module swap gcc gcc/4.3.3

module swap xt-mpt xt-mpt/3.2.0

source /work/z01/z01/gavin/OpenFOAM/OpenFOAM-1.6/etc/bashrc

export LD_LIBRARY_PATH=$WM_PROJECT_DIR/mylib:$LD_LIBRARY_PATH

cd $FOAM_RUN/example_case

blockMesh

NB All serial queues employ dual-core nodes thus, if users employ the quad-core version,
then the results may not be correct.

However, it is quite possible that the amount of memory available within the serial
queues is insufficient. If this is the case, then users can employ a single core on a node in
the ‘parallel’ queues. This will furnish the user with the node’s entire memory. NB this
method will actually cost the price for running on 4 cores, despite only one core being
used. An example batch script follows. Note the use of aprun, despite running the serial
code, as aprun forces the code to be run in a parallel queue.

#!/bin/bash --login

#PBS -l mppwidth=1

#PBS -l mppnppn=1

#PBS -N blockMesh

#PBS -l walltime=01:00:00

#PBS -A z01

. /opt/modules/3.1.6/init/bash

6

module swap PrgEnv-pgi PrgEnv-gnu

module swap gcc gcc/4.3.3

module swap xt-mpt xt-mpt/3.2.0

source /work/z01/z01/gavin/OpenFOAM/OpenFOAM-1.6/etc/bashrc

export LD_LIBRARY_PATH=$WM_PROJECT_DIR/mylib:$LD_LIBRARY_PATH

cd $FOAM_RUN/example_case

aprun -n 1 -N 1 blockMesh

5 Using dual- or quad-core installations of OpenFOAM 1.6

or 1.5

At the time of writing, HECToR employed both dual- and quad-core nodes. Codes
compiled for the dual-core nodes can also run on the quad-core nodes, but will not exploit
the benefits of the quad-core architecture, namely the new cache hierarchy and to carry
out core computational work as packed SEE instructions. However, these benefits have
a down side, in that codes compiled for the quad-core nodes may not work correctly on
dual-core nodes.

Now, at the time of writing, all codes run serially will employ dual-core nodes, whereas
all codes run in parallel will employ quad-core nodes. Further, since many of Open-
FOAM’s solvers can be run both in parallel and in serial, both version of OpenFOAM
have been installed twice, once for dual-core nodes and once for quad-core nodes.

If you require OpenFOAM 1.6 compiled for quad-core, then please employ the
OpenFOAM/quad-core/OpenFOAM-1.6 installation. If you require OpenFOAM 1.5, com-
piled for dual-core or quad-core, then please employ the
OpenFOAM/dual-core/OpenFOAM-1.5 and OpenFOAM/quad-core/OpenFOAM-1.5versions,
respectively.

NB all OpenFOAM codes can be run in either serial or parallel and that codes
compiled for quad-core nodes may fail when run serially, as the serial queue employs
dual-core nodes only.

6 Benchmarking

This section describes the different benchmark cases employed, the methodology behind
the benchmarking, and finally the results of each case.

We have investigated the following cases:

• 3D Lid-Driven Cavity Flow. Here we employ the OpenFOAM’s icoFoam solver
and considered two cases with 1 million and 8 million cells each.

• 2D DamBreakFine. This is the tutorial example and employs the OpenFOAM’s
interFoam solver.

• 3D DamBreak. This is an extension of the 2D DamBreakFine case. We employ
interFoam for a 3D mesh of 6.23 million cells.

• 3D Spray. This is an extension of the 2D spray tutorial. We employ OpenFOAM’s
pisoFoam for 3 cases with .3 million, 2.5 million and 19 million cells.

7

6.1 Fruitful Connections

During the course of this project, the author met with an author of OpenFOAM [4]
and established a working relationship to develop the 3D Dam Break benchmark, as
described below.

Further, the author attended the Open Source CFD International Conference 2009,
on the 12th and 13th of November, at the World Trade Center, Barcelona, Spain. This
conference permitted the author to have indepth discussions with both academic and
industrial users of OpenFOAM, which helped guide the choice of benchmarks below.
These contacts included Paul Garlick, [5], who helped develop the 3D Spray benchmark,
as described below.

Lastly, Patrice Calegari of Bull [6] and Esko Jarvinen of CSC [7] helped develop the
3D Lid-Driven Cavity Flow benchmark.

6.2 Methodology

6.2.1 Pre-processing

There are many pre-processing routines which must be run in serial, such as blockMesh.
However, HECToR’s ‘serial’ queue employs shared nodes and, as such, users only get a
share of the node’s total memory. During this work, it was found that, whenever the
simulation was simply too large, that the ‘serial’ queue was too small. Thus, when this
occurred, we would run the serial job in a small parallel queue. This is described in more
detail, and an example batch file is presented, in Section 4.3.

However, it was found that some of the benchmark cases were simply too large to
pre-process on HECToR. When this occurred, this issue was circumvented by running
OpenFOAM on another platform, namely Ness at EPCC [8]. This platform has 2 nodes
of 32GB each, where each node has 16 AMD Opterons. Effectively, this is a fat HECToR
node, and codes such as blockMesh, mapFields and stitchMesh, were successful run
serially in a parallel queue of 8 cores, thereby utilising 16GB of memory.

6.2.2 Timing and Performance

For each case, we present the timing and performance results in both a table and graph-
ically in a log-log graph.

The tables all contain the wall clock time, in seconds, for that run. Also, for each time,
the ‘Performance’ is also presented, where Performance figures are calculated simply as
the time on n/2 cores divided by the time on n cores. Thus, a code which scales perfectly,
i.e. if we were to double the cores, then we would half the execution time, the associated
performance value will be 2.0. Any run with an assoicated performance figure of less
than 1.4 has an efficiency less than 71% and, thus, is not considered to scale. Therefore,
we may determine the optimum number of cores for a given simulation such that it is
the largest number of cores where the Performance is greater than 1.4.

The figures are all plotted on a log-log graph, where each run is plotted in conjuncture
with its associated perfect scaling curve.

Lastly, for all cases, the value of writeInterval in controlDict is set to be larger
than total number of iterations. This ensures that no simulation snapshots are written,
thereby reducing the output to be just the standard output.

8

6.3 3D Lid-driven Cavity Flow

This benchmark is a simple extension of the 2D lid-driven cavity flow, which is the first
OpenFOAM tutorial [9].

As with the 2D case, the top wall moves in the x-direction at a speed of 1ms−1 whilst
the remaining walls remain stationary, the flow is assumed laminar and is solved on a
uniform mesh using the icoFoam solver for laminar, isothermal, incompressible flow.

Unlike the 2D case, all output was switched off. Further, two cases were create for
cubic meshes with different discretisations, namely 100× 100× 100 and 200× 200× 200.

The 100 × 100 × 100 case is of particular interest as it has been employed elsewhere
[10][11] for benchmarking purposes, and is thus open for comparison.

To create the 3D case, the blockMeshDict file was changed to

hex (0 1 2 3 4 5 6 7) (100 100 100) simpleGrading (1 1 1)

and

hex (0 1 2 3 4 5 6 7) (200 200 200) simpleGrading (1 1 1)

For both the 1003 and 2003 cases, the controlDict file contained

application icoFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 0.025;

deltaT 0.005;

writeControl timeStep;

writeInterval 20;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

For 8 cores, the file decompoiseParDict contains the lines

numberOfSubdomains 8;

method simple

simpleCoeffs

{

n (2 2 2);

delta 0.001;

}

where

n (2 2 2);

9

denotes a cubic layout of 8 processors, npx = 2, npy = 2 and npz = 2, in a virual grid.
Indeed, many processor configurations were investigated. For instance, for 8 processors,
(8× 1× 1, (1× 8× 1), (1× 1× 8), (4× 2× 1), (1× 2× 4), etc. Simulations were run for
numberOfSubdomains= 1, 2, 4, 8,

It has previously been reported, [10], that varying the processor virtual topology
when running a 3D lid-driven cavity flow case on a Cray XT4/XT5, has little affect on
performance. Our investigation showed that, to a first approximation, this is indeed
the case. However, we found a slight performance gain if the value of npz is as low as
possible. This is due to the fact that C++ stores the last dimension of arrays contiguously
in memory and, if the last dimension is not distributed over processors, then more data
will be kept in cache lines.

We ran the 1003 and 2003 cases for 5 time step, and 2003 case again but for 40 time
steps, to investigate the impact of start-up.

A summary of the results are displayed in figure 1.

 10

 100

 1000

 10000

 10 100 1000

T
im

e
(s

ec
s)

Number of cores

’100’
’200’

’200.lin’
’200.40’

Figure 1: Timing results for 3D lid-driven cavity flow, where ‘100’ is the 1003 case, and ‘200’ is
the 2003 case, both running for 5 time steps, ‘200.4’ is the 2003 case, both running for 40 time
steps, and ‘200.lin’ is the perfect scaling line for comparison only

The timing and performance results are presented in table 1, where performance
figures are calculated as described in 6.2.2.

From table 1, it can be seen that for the 1003 case running for 5 time steps, the
optimum number of cores is 128, for the 2003 case running for 5 time steps, the optimum
number of cores is 512. However, the optimum number of cores for 2003 case running
for 40 time steps is 1024. This implies that running the simulation for only 5 time steps

10

Number 1003, 5 time steps 2003, 5 time steps 2003, 40 time steps
of cores Time (Performance) Time (Performance) Time (Performance)

4 795.3 (-) 8803.9 (-) - (-)
8 410.7 (1.94) 4514.0 (1.95) - (-)

16 203.1 (2.02) 2069.0 (2.18) - (-)
32 102.9 (1.97) 1068.9 (1.94) - (-)
64 41.4 (2.49) 519.8 (2.06) - (-)

128 21.8 (1.90) 277.2 (1.88) 11691.6 (-)
256 19.2 (1.14) 139.5 (1.99) 5322.1 (2.20)
512 23.3 (0.82) 70.7 (1.97) 2586.1 (2.06)

1024 42.9 (0.54) 59.8 (1.18) 1488.7 (1.73)
2048 53.4 (0.80) 67.4 (0.78) 1272.6 (1.17)
4096 - (-) 104.7 (0.73) 1623.9 (0.78)

Table 1: Timing and performance results for 3D lid-driven cavity flow

was not long enough to remove the startup cost of the simulation.
Thus, from this exercise, we can suggest that, if using icoFoam in 3D, with a regular

mesh, then for simulations with 2003, or 8 million grid points, we recommend running
on 1024 cores.

6.3.1 Environment Variables

At this point, two environment variables were then tested, namely MPICH PTL EAGER LONG

and MPICH PTL MATCH OFF.
The environment variable MPICH PTL EAGER LONG=1, uses the EAGER path for all mes-

sages, regardless of their size.1

The environment variable MPICH PTL MATCH OFF=1 is useful for simulations which
have many small messages and is latency bound.

The ‘200.40’ experiment (2003 case running for 40 time steps) was run three more
times, once with MPICH PTL MATCH OFF set, once with MPICH PTL EAGER LONG, and once
with both environment variables set.

The actual timing result are not contained in this report; however, it was found that
neither environment variables had an adverse effect on performance, irrespective of the
process count. For large processor counts, it was found that setting MPICH PTL EAGER LONG

could give up to a 7% speed-up, especially around the optimum number of processors.
Thus, we employed MPICH PTL EAGER LONG=1 for all other benchmarking in this report,
and include it in the example batch scripts4.2.

Both the 1003 and the 2003 benchmark cases are available on the HECToR’s Open-
FOAM web page [12].

1The default is normally dependent on the total number of MPI ranks, npes say, and is normally set

to 1000000 × 2048/ npes, with a minimum value of 1024 bytes and a maximum value of 128,000 bytes.

11

6.4 Dam Break Tutorial

The 2D Dam Break tutorial has been tested, using the 2nd part of the tutorial, namely
the multiphase/interFoam/laminar/damBreakFine.

Following the tutorial, but also employing MPICH PTL EAGER LONG, the simulation
was run for numberOfSubdomains= 1, 2, 4, 9and16, and the resultant times are displayed
graphically in figure 2 and presented in table 2.

 100

 1 10

T
im

e
(s

ec
s)

Number of cores

’damBreakFine’
’damBreakFine.lin’

Figure 2: Time (secs) for the Dam Break Fine tutorial, where ‘damBreakFine’ is the time to
run the tutorial and ‘damBreakFine.lin‘ is the line of perfect scaling

Number damBreakFine
of cores Time (Perf)

1 174.4 (-)
2 100.5 (1.74)
4 69.1 (1.45)
9 89.0 (0.77)

16 94.9 (0.94)

Table 2: Timing and performance results for the 2D Dam Break Fine tutorial

It can be seen from table 2 that the optimum number of processors is 4; moreover,
it is clear from figure 2 that this problem is simply too small to warrant running in
production on HECToR. The results are included here for the sake of comparison, as
this case is run often as part of the OpenFOAM tutorial.

12

6.5 3D Dam Break

With the assistance of OpenCFD [4], we then extended the 2D Dam Break tutorial case
to run in full 3D, with such a fine mesh that water droplets can be seen.

The value of hex in blockMeshDict is set to

hex (0 1 2 3 4 5 6 7) (184 184 184) simpleGrading (1 1 1)

which gives 6.23 million cells.
Interestingly, as part of the pre-processing routines, the routine blockMesh failed due

to lack of memory when running in HECToR’s serial queue. This was circumvented by
running blockMesh within a small parallel queue. (See Section 4.3).

 10

 100

 1000

 10 100

T
im

e
(s

ec
s)

Number of cores

’dambreak’
’dambreak.lin’

Figure 3: Time (secs) for the 3D Dam Break case, where ‘damBreak’ is the execution times and
‘damBreak.lin’ is the line of perfect scaling

It can be seen from table 3 that the optimum number of processors is 128, when
running interFoam using 6.23 million cells.

The case was configured so that increasing the resolution was simply updating the
value of hex in blockMeshDict to read

hex (0 1 2 3 4 5 6 7) (230 230 230) simpleGrading (1 1 1)

which gives 12.17 million cells. However, it was found that this case was simply too large
to pre-process on either HECToR or Ness.

The 3D Dam Break benchmark case is available on the HECToR’s OpenFOAM web
page [12].

13

Number 3D Dam Break processor
of cores Time (Perf) topology

8 688.3 (-) 4 × 2 × 1
16 362.4 (1.90) 4 × 4 × 1
32 183.8 (1.97) 4 × 4 × 2
64 94.0 (1.96) 4 × 4 × 4

128 53.6 (1.75) 8 × 4 × 4
256 42.3 (1.27) 8 × 8 × 4
512 38.1 (1.11) 8 × 8 × 8

Table 3: Timing,and performance results and processor topology employed or 3D Dam
Break case with 8.23 million cells

6.6 3D Spray

For this final timing exercise, we wished to not only employ another of the many Open-
FOAM codes but also to model a real world simulation of industrial-scale. To this end,
the author and Paul Garlick [5] worked closely to generate and run a 3D turbulent jet
Large Eddy Simulation (LES).

The 3D model is a co-axial atomization model, where a central liquid jet is broken
into droplets by a high-speed surrounding air jet. Applications of this technology are
spray coating equipment and fuel combustors (for jet engines and gas turbines). This 3D
case was based on the primary atomization example case in OpenFOAM, which itself is
a 2D LES.

Initially, a relatively simple grid was developed for a typical geometry of a co-axial
atomizer, whilst considering how to specify realistic boundary conditions to give a jet
break-up length and drop sizes that can be predicted and compared to past experiment
and analysis.

Then the 3D simulation was run using a Reynolds-Averaged Navier-Stokes (RANS)
model, on a relatively coarse grid. The output was a steady-state solution which yielded
information of the turbulence length scales. The minimum length scale was then used to
define the cell size for the more detailed LES model. Finally, the results from the RANS
model was used to initialize the LES model.

The image of the geometry for the atomization model is given in figure 4.
Figure 4, as generated by Paul Garlick [5], shows the inlet locations and boundary

meshes. The liquid enters the domain through the central (blue) patch; the atomizing air
enters through the annular (red) patch. This figurer uses a 1×1×1cm cube, and a mesh
with elementSize=0.2mm. This sets the size of the elements at the inner edge of the
air inlet patch. The element size reduces towards the centre-line, where the atomization
occurs, and increases towards the outer boundaries.

For this benchmark, we have 3 different cases, namely jet coarse, jet medium and
jet fine, and are summarised in table 4.

In table 4 we can see the value for the time step, namely deltaT, is smaller for the fine
case than for both the coarse and medium cases. This is because the maximum Courant
number increases for the finer mesh, and this lower value ensures the the maximum
Courant number will be 0.1.

The 2 × 2 × N decomposition should work well for small values of N . The Scotch

14

Figure 4: 3D Jet [5]

Method may be more efficient for large N .
The file controlDict contains the following lines.

application pisoFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 0.00201;

deltaT 5.0e-08;

writeControl timeStep;

writeInterval 200000;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression compressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

15

Grid elementSize No. of cells Reynolds No. deltaT (secs)

coarse 0.2 mm 300,000 12,000 5.0e-08
medium 0.1 mm 2,500,000 12,000 5.0e-08
fine 0.05 mm 19,000,000 12,000 2.5e-08

Table 4: Summary of the 3 Jet Cases

6.6.1 Benchmarking the parallel versions

Firstly, some of the pre-processing was to large for HECToR, even when ran in a small
parallel queue, thus most pre-processing was performed on Ness.

The method of decomposition was to set the virtual process topology using npx = 2,
npy = 2 and npz = 1, 2, 4, ..., using a simple decompositition method. This ensured that
we had a balanced load-balance for the x-y plane at least.

The timing results for the 3 cases are presented graphically in figure 5 and presented
in table 5, where can see that the code scales well for all 3 cases, where the optimum
number of cores is 64, 256 and 512 for the coarse, medium and fine cases, respectively.

 10

 100

 1000

 10000

 10 100 1000

T
im

e
(s

ec
s)

Number of cores

’jet_fine’
’jet_fine_linear’

’jet_medium’
’jet_medium_linear’

’jet_coarse’
’jet_coarse_linear’

Figure 5: Time (secs) for the three 3D Jet Break Up cases, where jet fine, jet medium
and jet coarse are the times for the fine, medium and coarse cases, and jet fine linear,
jet medium linear and jet coarse linear, are their respective perfect scaling curves.

16

Number Coarse Mesh Regular Mesh Fine Mesh
of cores Time (Perf) Time (Perf) Time (Perf)

4 417.0 (-) 3630.5 (1.18) - (-)
8 211.1 (1.98) 1804.6 (2.01) - (-)

16 105.6 (2.00) 900.9 (2.00) 12931.4 (-)
32 57.7 (1.83) 445.4 (2.02) 6568.7 (1.97)
64 27.2 (2.12) 220.5 (2.02) 3354.1 (1.96)

128 20.6 (1.32) 114.7 (1.92) 1752.0 (1.91)
256 24.5 (0.84) 70.9 (1.62) 947.6 (1.85)
512 - (-) 51.6 (1.37) 546.8 (1.73)

1024 - (-) - (-) 404.9 (1.35)
2048 - (-) - (-) 894.9 (0.45)

Table 5: Timing and performance results for 3D Jet Break Up

7 Conclusion

The main thrust of this work was to port OpenFOAM to HECToR and to give users
directions on how to run their simulations efficiently. To this end, we have benchmarked
a number of cases to give an idea of how many cores should be employed for a given
number of mesh points and a given solver.

The results of the benchmarking is summarised in tabe 6.

Case name solver No. of cells Optimum no. of cores

3D cavity ‘100’ icoFoam 1,000,000 256
3D cavity ‘200.40’ icoFoam 8,000,000 1024

3D dam break ‘dambreak’ interFoam 6,230,000 128
3D jet spray ‘jet coarse’ pisoFoam 300,000 64
3D jet spray ‘jet medium’ pisoFoam 2,500,000 256
3D jet spray ‘jet fine’ pisoFoam 19,000,000 512

Table 6: Benchmarking summary

It is clear from table 6 that there is no simply relation between the optimum number
of cores to be used for a given solver and a given number of cells. However, we can state
that OpenFOAM scales well on HECToR for both simple tutorial cases and for complex
industrial cases.

OpenFOAM is proving to be a very popular CFD package. This is, in part, due to its
open-source nature, wherein, unlike commercial CFD packages, users can examine the
code and alter it as required (although code written by users is typically not included
in future OpenFOAM releases). Further, the code scales well and does not require a
per-core license one finds with commercial codes which can be financially prohibitive.

7.1 Future Work

The current version of OpenFOAM, namely 1.6.x, contains many bug fixes, and this
version should be maintained on HECToR. However, it is not clear when a new version
of 1.6.x is released, as there is no clear centralised announcement service, thus it may

17

be prudent to git the current version on the 1st of each month and/or after HECToR
undergoes an upgrade.

7.2 Acknowledgements

Thanks are due to Chris Greenshields of OpenCFD, Paul Garlick of Tourbillion Tech-
nology Ltd, Patrice Calegari of Bull and Esko Jarvinen of CSC.

18

A Editing and compiling the OpenFOAM source code

To modify the source code you must copy the gzipped tarball from the OpenFOAM
package account and install it in your local work directory. NB this gzipped tarball is
an HECToR-specific version of OpenFOAM-1.6, in that the tarball contains additional
HECToR-specific dynamic libraries and example batch scripts, and excludes html docu-
mentaion, and some unrequired third-party packages (malloc, OpenMPI, zlib and gcc).

In your designated work directory, copy and unpack the gzipped tarball into a new
directory named OpenFOAM, i.e.

cd /work/z01/z01/gavin

mkdir OpenFOAM

cd OpenFOAM

cp /usr/local/packages/openfoam/OpenFOAM-1.6-HECToR.tar.gz .

gunzip OpenFOAM-1.6-HECToR.tar.gz

tar xvf OpenFOAM-1.6-HECToR.tar

This will create the ‘OpenFOAM-1.6’ and ‘ThirdParty-1.6’ directories in your workspace.
To compile, update the OpenFOAM-1.6/etc/bashrc file to point to your new local

installation directory, i.e. for user gavin, change

foamInstall=/work/y07/y07/openfoam/dual-core/OpenFOAM

to

foamInstall=/work/z01/z01/gavin/OpenFOAM

and

export WM_PROJECT_USER_DIR=/work/y07/y07/openfoam/dual-core/$WM_PROJECT/

$USER-$WM_PROJECT_VERSION

to

export WM_PROJECT_USER_DIR=/work/z01/z01/gavin/$WM_PROJECT/

$USER-$WM_PROJECT_VERSION

Then, to compile, update and submit the batch script OpenFOAM-1.6/compile OF,
i.e.,

#!/bin/bash --login

#PBS -q serial

#PBS -N compile_OF

#PBS -l walltime=05:00:00

#PBS -A y07

. /opt/modules/3.1.6/init/bash

module swap PrgEnv-pgi PrgEnv-gnu

module swap gcc gcc/4.3.3

module swap xt-mpt xt-mpt/3.2.0

source /work/y07/y07/openfoam/dual-core/OpenFOAM/OpenFOAM-1.6/etc/bashrc

export LD_LIBRARY_PATH=$WM_PROJECT_DIR/mylib:$LD_LIBRARY_PATH

19

cd $WM_PROJECT_DIR

cp wmake/rules/crayxt/general.orig wmake/rules/crayxt/general

./Allwmake >& make.out.1

cp wmake/rules/crayxt/general.temp wmake/rules/crayxt/general

./Allwmake >& make.out.2

cp wmake/rules/crayxt/general.orig wmake/rules/crayxt/general

./Allwmake >& make.out.3

NB The standard output will appear in three files, namely make.out.1, make.out.2 and
make.out.3. This is because, under the current OS on HECToR, namely CSE 2.1, the
default compilation will fail, however, this behaviour is expected. This is avoided by
performing 3 different phases of compilation, where the standard output of each phase
is written to make.out.1, make.out.2 and make.out.3. This complication will be resolved
once HECToR starts running CSE 2.2.)

B Changes to Source code for HECToR

B.1 Overview

This page describes, in detail, the changes that we made to the OpenFOAM 1.6 source
code, for ‘Linux 64bit’, in order to port the code to HECToR.

B.2 Changes to etc/bash

The line

: ${WM_COMPILER:=Gcc}; export WM_COMPILER

was changed to

: ${WM_COMPILER:=}; export WM_COMPILER

and

WM_MPLIB = | OPENMPI | MPICH | MPICH-GM | HPMPI | GAMMA | MPI | QSMPI

: ${WM_MPLIB:=OPENMPI}; export WM_MPLIB

was changed to

: ${WM_MPLIB:=MPT}; export WM_MPLIB

despite MPT not being an option.
We replaced

WM_ARCH=linux64

export WM_COMPILER_LIB_ARCH=64

export WM_CC=’gcc’

export WM_CXX=’g++’

export WM_CFLAGS=’-m64 -fPIC’

export WM_CXXFLAGS=’-m64 -fPIC’

export WM_LDFLAGS=’-m64’

20

with

if [-e /proc/cray_xt]; then

WM_ARCH=crayxt

else

WM_ARCH=linux64

export WM_COMPILER_LIB_ARCH=64

export WM_CC=’gcc’

export WM_CXX=’g++’

export WM_CFLAGS=’-m64 -fPIC’

export WM_CXXFLAGS=’-m64 -fPIC’

export WM_LDFLAGS=’-m64’

fi

We changed the lines

_foamSource $WM_PROJECT_DIR/etc/apps/paraview/bashrc

_foamSource $WM_PROJECT_DIR/etc/apps/paraview3/bashrc

_foamSource $WM_PROJECT_DIR/etc/apps/ensight/bashrc

to

_foamSource $WM_PROJECT_DIR/etc/apps/paraview/bashrc

_foamSource $WM_PROJECT_DIR/etc/apps/paraview3/bashrc

_foamSource $WM_PROJECT_DIR/etc/apps/ensight/bashrc

i.e. simply commenting out the paraview3 line.
Finally, the line

foamInstall=$HOME/$WM_PROJECT

become

foamInstall=/work/y07/y07/openfoam/dual-core/$WM_PROJECT

B.3 Changes to settings.sh

We added the following lines

compilerInstall=OpenFOAM

compilerInstall=System

case "${compilerInstall:-OpenFOAM}" in

System)

if [-e /proc/cray_xt]; then

export WM_COMPILER_DIR=$GCC_PATH

export WM_COMPILER_BIN=$WM_COMPILER_DIR/bin

export WM_COMPILER_LIB=$WM_COMPILER_DIR/snos/lib64

fi

;;

and

21

MPT)

export MPICH_PATH=$MPICHBASEDIR

export MPI_ARCH_PATH=$MPICH_DIR

export MPICH_ROOT=$MPI_ARCH_PATH

_foamAddLib $MPI_ARCH_PATH/lib

_foamAddLib $MPICH_PATH/pmi/lib

_foamAddLib $MPICH_PATH/util/lib

export FOAM_MPI_LIBBIN=$FOAM_LIBBIN/mpt

;;

B.4 Changes to wmake/rules

We added a new crayxt directory, based on the contents of the linx64Gcc directory.
The file c++ is identical, except

c++WARN = -Wall -Wno-strict-aliasing -Wextra -Wno-unused-parameter //

-Wold-style-cast -Wnon-virtual-dtor

becomes

c++WARN = -Wall -Wno-strict-aliasing -Wextra -Wno-unused-parameter //

-Wold-style-cast

The file cOpt is identical, except

cOPT = -O3 -fno-gcse

becomes

cOPT = -O3

The file general is identical, except

LD = ld

becomes

LD = ld -A64

Further, we added two new files named general.orig and general.temp, where the
latter is a copy of the updated general file, and the former has replaced

PROJECT_LIBS = -l$(WM_PROJECT) -Wl,--whole-archive -L$(SE_DIR)/lib/snos64 //

-lportals -Wl,--no-whole-archive -liberty -ldl

with

PROJECT_LIBS = -l$(WM_PROJECT) -liberty -ldl

Using three files in this manner makes the compilation much smoother (see below).
The file X is changed from

22

XINC = $(XFLAGS) -I/usr/include/X11

XLIBS = -L/usr/lib64 -lXext -lX11

to

XINC = $(XFLAGS) -I/usr/X11R6/include

XLIBS = -L/usr/X11R6/lib64 -lXext -lX11

Finally, three new files were added: two executable binaries, namely dirToString

and wmkdep, and the text file mplibMPT, which describes the locations of the required
parts of Cray’s MPI library. Specifically, the file contains the following lines

PFLAGS =

PINC = -I$(MPI_ARCH_PATH)/include

PLIBS = -L$(MPI_ARCH_PATH)/lib -L$(MPICH_PATH)/pmi/lib //

-L$(MPICH_PATH)/util/lib -lmpich -lpmi -lalpslli //

-lalpsutil -rt

B.5 Changes to Pstream

We added an MPT environment variable to src/Pstream/Allwmake to employ the Cray
MPI library. Specifically,

case "$WM_MPLIB" in

MPI)

was changed to

case "$WM_MPLIB" in

MPT | *MPI*)

B.6 Changes to parMetis

The file src/decompositionAgglomeration/parMetisDecomp/Make/options was up-
dated from

EXE_INC = \

$(PFLAGS) $(PINC) \

-I$(WM_THIRD_PARTY_DIR)/ParMetis-3.1/ParMETISLib \

-I$(WM_THIRD_PARTY_DIR)/ParMetis-3.1 \

-I../decompositionMethods/lnInclude

to read

EXE_INC = \

$(PFLAGS) $(PINC) \

-DMPICH_IGNORE_CXX_SEEK \

-I$(WM_THIRD_PARTY_DIR)/ParMetis-3.1/ParMETISLib \

-I$(WM_THIRD_PARTY_DIR)/ParMetis-3.1 \

-I../decompositionMethods/lnInclude

23

B.7 More on mylib

Here is the complete list of libraries contained in the mylib directory, where some are
copied from the front end and some are simply dummy stubs to satisfy runtime require-
ments.

-rwxr-xr-x 1 gavin z01 8179 Mar 30 21:06 libportals.so.1

-rwxr-xr-x 1 gavin z01 201330 Jun 1 14:32 libpmi.so

-rwxr-xr-x 1 gavin z01 37643 Jun 1 14:34 libalpsutil.so.0.0.0

-rwxr-xr-x 1 gavin z01 37643 Jun 1 14:34 libalpsutil.so.0

-rwxr-xr-x 1 gavin z01 37643 Jun 1 14:34 libalpsutil.so

-rwxr-xr-x 1 gavin z01 56080 Jun 1 14:34 libalpsutil.a

-rwxr-xr-x 1 gavin z01 33215 Jun 1 14:34 libalpslli.so.0.0.0

-rwxr-xr-x 1 gavin z01 33215 Jun 1 14:34 libalpslli.so.0

-rwxr-xr-x 1 gavin z01 33215 Jun 1 14:34 libalpslli.so

-rwxr-xr-x 1 gavin z01 46908 Jun 1 14:34 libalpslli.a

-rwxr-xr-x 1 gavin z01 1512997 Jun 1 14:36 libmpich.so.1.1

-rwxr-xr-x 1 gavin z01 1505121 Jun 1 14:39 libc.so.6

-rwxr-xr-x 1 gavin z01 49207 Jun 1 14:39 librt.so.1

-rwxr-xr-x 1 gavin z01 114562 Jun 1 14:40 libpthread.so.0

-rwxr-xr-x 1 gavin z01 404881 Jun 1 14:40 libm.so.6

-rwxr-xr-x 1 gavin z01 19808 Jun 1 14:40 libdl.so.2

-rwxr-xr-x 1 gavin z01 478196 Jun 1 14:43 libgcc_s.so.1

-rwxr-xr-x 1 gavin z01 5118313 Jun 1 14:43 libstdc++.so.6

B.8 Compilation

We employed the following serial batch script to compile

#!/bin/bash --login

#PBS -q serial

#PBS -N compile_OF

#PBS -l walltime=05:00:00

#PBS -A y07

cat $0

. /opt/modules/3.1.6/init/bash

module swap PrgEnv-pgi PrgEnv-gnu

#following line makes serial codes may break on front end dual core nodes.

#module load xtpe-barcelona

module swap gcc gcc/4.3.3

module swap xt-mpt xt-mpt/3.2.0

cd /work/y07/y07/openfoam/dual-core/OpenFOAM/OpenFOAM-1.5

source etc/bashrc

export LD_LIBRARY_PATH=/work/y07/y07/openfoam/dual-core/OpenFOAM/

OpenFOAM-1.5/mylib:$LD_LIBRARY_PATH

./Allwmake >& make.out

This fails after around four hours with

24

make[3]: *** [../OpenFOAM/OpenFOAM-1.5/lib/crayxtDPOpt/libuserd-foam.so] Error 1

This is resolved by editing

../OpenFOAM/OpenFOAM-1.5/wmake/rules/crayxt/general

and replacing

PROJECT_LIBS = -l$(WM_PROJECT) -Wl,--whole-archive -L$(SE_DIR)/lib/snos64 //

-lportals -Wl,--no-whole-archive -liberty -ldl

with

PROJECT_LIBS = -l$(WM_PROJECT) -liberty -ldl

then remaking. We then reinstate this edited line in general and remake once more.
This workaround is necessary due to the OS Cray XT4 CSE 2.1 (as it is now) does

not ship the necessary dynamic libraries. This will be fixed in CSE 2.2.
Note, that there are some ‘portals’ warnings (Cray builds its MPI using ‘portals’),

but we can ignore them, i.e. they appear as mylib is not in LD LIBRARY PATH. They
are, however, not required as we are link in the static portals code. There are a number
of dummy libraries in mylib is just to satisfy runtime requirements, including a dummy
portal library stub.

References

[1] OpenFOAM web page, http://www.opencfd.co.uk/openfoam OpenFOAM web page

[2] HECToR website, http://www.hector.ac.uk

[3] Beech-Brandt, J., Cray Centre of Excellence, 2009, pers comm.

[4] Greenshields, C., OpenCFD, 2010, pers comm.

[5] Garlick, P., Tourbillion Technology Ltd, http://www.tourbillion-technology.com,
2010, pers, comm.

[6] Calegari, P., Bull, 2010, pers comm.

[7] Jarvinen, E., CSC, 2010, pers comm.

[8] Ness User Guide: http://www2.epcc.ed.ac.uk/∼ness/documentation/index.html

[9] OpenFOAM User Documentation, http://www.opencfd.co.uk/openfoam/doc/user.html

[10] OpenFOAM Performance on Cray XT4/XT5, Esko Jarvinen,
OpenFOAM-foorumi, http://openfoamfoorumi.com/wordpress/wp-
content/uploads/2009/02/ofperformanceoncray foorumi.pdf, 2009.

[11] Calegari, P., Gardner, K., Loewe, B., Performance Study of OpenFOAM v1.6 on a
Bullx HPC Cluster with a Panasas Parallel File System, Open Source CFD conference,
Barcelona, Nov., 2009.

25

[12] HECToR OpenFOAM pages: https://wiki.hector.ac.uk/userwiki/OpenFOAM

[13] Garlick, P. and Jusaja, A. K., Laser Sheet Imaging of High-Velocity Air Atom-
ised Water Sprays, 11th International Conference on Liquid Atomization and Spray
Systems, 2009.

26

