
Multigrid solver module for ONETEP, CASTEP and other
codes

Lucian Anton1, Jacek Dziedzic2&3, Chris-Kriton Skylaris2 and Matt Probert4

1Scientific Computing Department, STFC, Daresbury Laboratory
WA4 4AD, UK

2School of Chemistry, University of Southampton SO17 1BJ, UK
3Faculty of Applied Physics and Mathematics, Gdansk University of

Technology, Poland
4Department of Physics, University of York YO10 5DD, UK

November 3, 2013

Abstract

Chemical reactions, drug-protein interactions, surfaces and materials-related interactions are
examples of technologically important processes that happen in the presence of solvents. Sol-
vent effects can be included within ab initio quantum chemistry simulations of such processes
by implicit solvation models. The most accurate models of this kind solve directly the Poisson
Equation (PE) or the Poisson-Boltzmann Equation (PBE) in 3D space, which is computation-
ally very demanding. This report describes the implementation of DL MG, a hybrid parallel
(MPI+OpenMP) geometric multigrid solver for the PE and PBE with continuous charge dis-
tributions in a medium with non-uniform dielectric constant. DL MG was interfaced with
the linear-scaling code for quantum-mechanical calculations based on density-functional theory
(DFT) ONETEP and the state-of-the-art DFT code CASTEP. DL MG has enabled large-scale
DFT calculations on molecules and materials in the presence of solvent as it can solve PE up to
16 times faster as compared to the previously-used multigrid code on the same number of cores.
As a result, the computational cost of including solvent is no longer prohibitive and it has been
made comparable to the cost of calculations in vacuum - enabling a host of applications on ma-
terials and biomolecules which are briefly outlined in this report. Furthermore, significant gains
in performance are provided by the superior parallel scalability of the the new code, up to 1024
cores, due to its hybrid parallelism. We provide a description of the parallelisation strategy used
to implement DL MG as well as detailed performance tests on a number of supercomputers.
DL MG has been developed as a stand-alone library which makes it potentially useful outside
ONETEP and CASTEP, for example in other electronic structure codes, in classical force field
codes and in engineering codes which use multigrid solvers. While DL MG has enabled calcu-
lations which were not computationally feasible up to now, important parts of its development
and its integration within ONETEP and CASTEP were not possible to complete within the
duration of this project and have been outlined here as aims for a future continuation of this
project.
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1 Introduction

1.1 Project description

The goal of this project was to develop in Fortran 95 a hybrid parallel (MPI+OpenMP) multigrid
solver package scalable to at least 1000 cores for typical problems, tuned to the requirements of
the ONETEP http://www.onetep.org/ [1] and CASTEP http://www.castep.org/ [2] codes:
continuous charge distributions, variable permittivity function, Dirichlet, Neumann, periodic
and mixed boundary conditions, linear Poisson equation (PE) and non-linear case as in the
Poisson-Boltzmann equation (PBE).

1.2 Summary of the work done

The parallel multigrid solver DL MG was developed according to the following specifications:

• The standard components of the multigrid solver were implemented for the linear and
non-linear case, but only for Dirichlet and full periodic boundary conditions. More details
are presented in Section 2.2.

• Hybrid parallelism was implemented for general 3D domain partition using MPI topologies
and blocked loops for OpenMP threads. Good scaling, up to 1024 cores in hybrid mode,
was achieved for the typical PE and PBE problems ONETEP and CASTEP need to solve,
see Sections 2.3, A.

• The code was thoroughly tested and integrated in the ONETEP distribution. Basic tests
were performed for CASTEP, more work is needed to achieve full integration, see Sec. 4.

• The solver source code was developed as a self-contained library (in its own directory) that
can be used easily by any other applications.

1.3 Work left outstanding

The following subtasks named in the work packages were not finished in the allocated time.
Justification is provided below for each outstanding item:

• CASTEP integration was done only for the serial version. Towards the end of the project it
became apparent that the multiblock charge density grid decomposition used by CASTEP
requires a more general interface than the 3D decomposition used by DL MG. Also,
CASTEP needs to parallelise the defect correction procedure before a fully parallel sol-
vation calculation can be performed. However, as the typical grids used by CASTEP are
relatively small (smaller than 1293), practical calculation can be performed in OpenMP
mode, or using MPI parallelism with a simple adaptation which gathers the charge density
on one MPI rank and subsequently solves the PE or PBE in serial mode.

• The boundary conditions implemented for the solver at this stage only are full Dirichlet
and full periodic for the PE and homogeneous Dirichlet for PBE. Mixed boundary condi-
tions and Neumann boundary conditions will be added as the applications will move to
calculations which require them.

1.4 General aspects of solvation calculations

Implicit solvation models provide a computationally affordable way to model solvent, by repre-
senting it as a dielectric continuum which surrounds and is polarised by the solute and reacts by
back-polarising the solute. In first principles electronic structure calculations this is taken into
account in the self-consistent process so that the electronic density is deformed accordingly by
the presence of the solvent. Furthermore, a number of explicit solvent molecules can be included
when necessary (e.g. water molecules forming hydrogen bonds with an exposed protein active
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site). A large number of solvation modes have been reported in the literature [3]. The equations
relevant to the solvent models in this work are the non-homogeneous Poisson equation:

∇ · (ε(r)∇φ(r)) = −4πρtot(r), (1)

and the Poisson-Boltzmann equation

∇ · (ε(r)∇φ(r)) = −4πρtot(r)− 4π
∑
i

qici exp (−β(qiφ(r) + V (r))) , (2)

where ε is the non-homogeneous dielectric permittivity of the medium (solvent), ρtot(r) is the
total charge density, φ(r) is the sought potential generated by this density in the presence of a
dielectric, qi are the charges of the ions that are in solution, each with a bulk concentration of
ci, V (r) is the steric potential, and β = 1/kT is the usual Boltzmann factor.

Classical and quantum-based approaches differ in how they describe the charge density of the
system, ρtot(r). The former express it as a collection of point charges, represented by Dirac delta
functions [7], the latter use continuous charge densities, typically represented on a Cartesian grid.
This is an important distinction, as it necessitates implementing different numerical approaches
in the solvers in order to tackle the corresponding difficulties. The multigrid solver described
here is geared towards electronic structure calculations and thus assumes that all three quantities
of interest (permittivity ε(r), charge density ρtot(r), and potential φ(r)) are continuous and are
represented on a Cartesian grid.

However, even in electronic structure methods, the ionic cores are internally represented as
point pseudocharges and careful treatment is needed to correctly describe them in the context
of a multigrid solver. The so-called smeared-ion formalism [8] can be used to replace the
point pseudocharges with Gaussian (“smeared”), Coulombic representation of the cores. In this
formalism, the total charge density is expressed as

ρtot(r) = ρ(r) +
N∑
I

ρI (r) , (3)

where ρ(r) is the electronic charge density, and ρI (r) is a Gaussian density representing core I:

ρI(r) = −ZI

σ3I
π−

3
2 exp

(
−|r−RI |2

σ2I

)
, (4)

where RI is the position of core I, ZI is its charge, and σI is a chosen smearing width in the
order of 1 a0. Appropriate correction terms to energy [8] and forces [9] are needed to ensure they
remain unchanged. The dielectric permittivity can be treated in different ways, depending on
the problem at hand. In solvation calculations it is usually set to a solvent bulk value outside of
a suitably defined cavity around the solute and assumes a value close to unity inside the cavity.
Slightly larger values (2− 5) are occasionally used to model screening effects within the solute.
Two main approaches are employed to define the shape of the cavity. In the first one the cavity
is constructed as a set of overlapping atom-centred spheres, whose radii are parametrised. In the
second approach the permittivity is defined as a function of the electronic density: ε = ε [ρ] (r).
This approach, first proposed by Fattebert and Gygi [10] and later extended by Scherlis et al.
[9] and Dziedzic et al. [11] and Andreussi et al. [13] avoids a discontinuity at the cavity
boundary, replacing it with a steep, but continuous change of the permittivity, which follows
naturally from the change in electronic density. This is the approach used in ONETEP [11] and
CASTEP [12]. Calculations in vacuum use a homogeneous permittivity of 1, whereby equation
(1) simplifies to the homogeneous Poisson equation:

∇2φ(r) = −4πρtot(r). (5)

Consistent treatment of boundary conditions between calculations in vacuum and in solvent
is crucial for obtaining meaningful solvation energies. Periodic boundary conditions often used
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Figure 1: Two-grid iteration for Au = f problem. The smoothing reduces the short
wavelength error components of the initial guess umh . After smoothing the defect d̄mh can
be transferred to a coarser grid without loss of information (restriction); the error found on
the coarse grid v̂m2h is transferred to the initial grid (prolongation). A powerful feature of
this approach is that the solution of the problem formulated on the level 2h can be obtained
recurrently with a further two-grid step.

in electronic structure calculations in vacuum do not offer a good description of the situation
in solution due to the dielectric screening of the solvent. Zero boundary conditions can be used
[10] in solution, as an approximation to open (“Coulombic”) boundary conditions. Calculations
in vacuum can then use one of many available approaches for the realisation of open boundary
conditions [14] or can be performed under periodic boundary conditions and subsequently cor-
rected [9]. A more elegant and physically sound approach consists in performing all calculations
under open boundary conditions [11, 14], which usually requires changes to how electrostatic
interactions (core-core and pseudocore-electronic) are handled in the electronic structure code.
A further difficulty is the generation of the boundary conditions for the multigrid solver (i.e. the
values of φ(r) on the faces of the simulation cell). An approach suitable for calculations in
vacuum and in solution is outlined in Ref. [11] and the effect of the approximations employed
is described in Ref. [8].

Solvation energies are sensitive to the accuracy of the solution of the Poisson equation,
with second-order discretisation often proving inadequate [8]. Both higher-order methods [9]
and a technique called defect-correction [8] have been used with considerable success. Both
ONETEP and CASTEP employ the latter. Its main advantage is that a second-order multigrid
solver is sufficient, and higher-order accuracy is obtained through an iterative procedure, where
subsequent calls to the solver are used to “defect-correct” the initial solution. For more details
the Reader is referred to Ref. [8].

2 Multigrid algorithm and implementation details

2.1 Introduction

Multigrid techniques provide optimal, or near-optimal, and highly efficient solvers for a broad
set of linear and non-linear equations which are usually derived form several classes of partial
differential equations. The optimality of the multigrid methodology results from the combina-
tion of iterative solvers with grid transformations and is based on two principles: (i) smoothing
iterations: short-wavelength error components can be uniformly attenuated with a broad class
of iterative procedures, (ii) grid coarsening: a smooth error can be transferred to a coarser grid
without significant information loss. Fig. 1 illustrates the basic two-grid iteration which can be
applied recursively in a variety of combinations.
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dl_mg_init, dl_mg_solver, dl_mg_error_string

setup grids, MPI topologies, BC, stencil, data 
transfers

shared data structures,
logs, debug, timer

V-cycle: relax, restrict, prolongation, convergence test

loop kernels, MPI communication 

Figure 2: DL MG code structure. The procedures from the top layer can be accessed by
user applications with a use dl mg statement.

Besides adaptivity, generality and high efficiency, another important feature of multigrid
for todays computer architectures is the possibility to use algorithms with multiple levels of
parallelism, e.g.: the grid over which the solution is sought can be partitioned to MPI tasks which
exchange only halos with their topological neighbours, the update operation for smoothing,
restriction and prolongation can be parallelised further with OpenMP threads [4].

2.2 DL MG description

The main components of DL MG were selected following the standard recommendations for
the PE and PBE. The grid stencils are derived by discretisation of the differential operator at
each level (geometric approach) with the finite differences method. In order to generate the
multigrid levels, the global grid must have sizes given by [q12

n1 + 1, q22
n2 + 1, q32

n3 + 1] with
q1 ≈ q2 ≈ q3 ≤ 20 for an efficient solution at the coarsest level. Coarsening is achieved by
doubling the lattice constant in all dimensions, smoothing uses Gauss-Seidel red-black method,
inter-grid transfers are performed with half-weight restriction and bilinear interpolation. The
non-linear case (PBE) uses the full approximation scheme (FAS). With the above components
one can build a close to optimal and efficient solver for the PE and PBE, provided that the
models used for the permittivity and charge density are smooth and without strong anisotropies
[4].

The V-cycle was selected for multigrid iterations as generally recommended for parallel
computations [4, 5]. MPI parallelism is used for data decomposition; the cuboid global grid
is distributed amongst MPI ranks using a 3D topology. As the coarse grids are derived from
the fine grids by removing the points with even index coordinates in all directions, no data is
exchanged between MPI ranks during inter-grid transfers. The number of MPI ranks can vary
across multigrid levels because some ranks could be assigned zero grid points below a certain
coarsening level, depending upon the global grid size and MPI topology at the finest level. MPI
communication at each level is done in a separate communicator that includes only the active
ranks. The solver is provided with the option to ”agglomerate” the grid domains at a chosen
level and thus to use only one MPI task for the levels below. Domain halos are exchanged
with non-blocking send-receives, the edge and corner points of the local domains are transfered
between ranks by using ordered communication along axes between nearest neighbours [4].

OpenMP parallelism is implemented using one parallel region that covers the V-cycle loop
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and the subroutine which builds the stencil coefficients. The local domain is decomposed in
thread blocks with an algorithm that ensures equal work for all threads even in the case of
very thin local domains (situation encountered in ONETEP in certain use cases). Block sizes
can be tuned also for better cache utilisation, if necessary. First touch policy is used to ensure
optimal memory access on NUMA architectures. MPI communication inside OpenMP regions is
handled by the master thread (the so-called funnelled mode), mainly for reasons of portability.
Data transfers between MPI buffers and halos are done using one thread per local grid side with
the help of “single” directives.

The software package is developed in Fortran 95, uses modules and derived data types
for information encapsulation and for maintaining a hierarchal structure of the package. The
software stack organisation is sketched in Fig. 2.

Besides the solver subroutines, several auxiliary procedures and programs were developed
to ensure solver correctness, to assess its performance and to help its integration with user
applications:

• In debug mode a detailed print of the residual at each multigrid level and iteration step
can be enabled with a preprocessor macro.

• A grid dump subroutine is provided (for any multigrid component), which writes the global
grid values in an unique logical layout with the help of MPI IO. The grid dumps can be
compared using an auxiliary program which reports statistics of data differences between
two runs with different MPI topologies or numbers of OpenMP threads.

• The solver is equipped with a timer module which can collect the time spent in computation
per OpenMP threads and MPI communication at every multigrid level. The average,
minimum and maximum time values per thread and multigrid level are reported in the log
file.

• A test suite was developed that checks solutions obtained with the solver against analytical
solutions across various grid sizes, boundary conditions, MPI topologies and numbers of
OpenMP threads.

• The build system is based on a generic Makefile, the variables which depend on the par-
ticular system setup (such as: compiler, libraries, etc) are specified in a set of include
files.

2.3 Testing and performance

DL MG correctness and performance were thoroughly tested using a three stage procedure.

1. Basic correctness tests on a set of problems with known solutions. A systematic exploration
of MPI topologies and numbers of OpenMP threads was done using the testing script.
DL MG average convergence rate (the average ratio of two consecutive residual norms)
is close to 0.125 which is in agreement with the values reported in literature and it is
independent of grid sizes.

2. Inclusion of DL MG in the ONETEP test suite. The quantities computed with DL MG co-
incided with the reference ones within the prescribed tolerance, i.e. agreement was achieved
with the previously used solver.

3. The performance of DL MG was measured in a solvation calculation performed with
ONETEP for a realistic system (T4 lysozyme protein, 2615 atoms), with the system dis-
cretised over a grid with sizes 513× 513× 577 [8]. Fig. 3 shows that at large core counts
DL MG is almost 16 times faster compared to the the previous solver. Using DL MG
ONETEP can perform this calculation with good scalability up to 128 MPI ranks, see
Fig. 4.

An observations is now in order: DL MG scales fine up to 1024 cores in hybrid mode, see Fig. 6,
this will be useful for the next generation of ONETEP protein models that will use 5 to 10
times more atoms than the current models.
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DL MG was incorporated in the serial version of CASTEP, the correctness test was passed,
the computation efficiency was twice that of the previous multigrid solver. DL MG non-linear
branch for PBE has passed the elementary correctness tests across the various MPI topologies
and number of OpenMP threads.

In Sec. A we present more performance data collected on HECToR [16] and IRIDIS4 [17]
systems for hybrid parallel mode scaling.

3 Project impact

Since August 2013 the DL MG code (with its updated versions that were developed until the
end of this dCSE project) has been included in the ONETEP academic distribution. For the
first time this has enabled practical calculations with the solvent model in ONETEP, which
is now similar in computational performance to standard “vacuum” calculations, as opposed
to being impractically slow before this dCSE project. This has enabled a number of leading
research groups in the UK and internationally who use ONETEP to continue their (long overdue)
projects which required the solvent model. A selection of these projects is:

• Simulations of materials for solar cell applications by the group of Dr Gilberto Teobaldi
(currently on HECToR and due to continue also on ARCHER) at the University of Liver-
pool.

• Simulations of the interactions of proteins with carbon-based nanoparticles in order to
investigate the toxicity of nanoparticles to biological tissues, by the group of Professor
Irene Yarovsky at RMIT University (Australia).

• Drug optimisation applications by the group of Dr Chris-Kriton Skylaris at the University
of Southampton in research projects supported by Boehringer Ingelheim (currently on
HECToR and due to continue also on ARCHER).

• Simulations of enzyme catalysis by the groups of Professor Mike Payne (Cambridge) and
Dr Chris-Kriton Skylaris (Southampton) in collaboration with Professor Adrian Mull-
holand (Bristol). The calculations are run on local supercomputing resources as well as
on HECToR (and are due to continue also on ARCHER).

8



• Simulations of adsorption and chemical reactions on the surface of metallic nanoparticles
by the group of Dr Chris-Kriton Skylaris (Southampton) in research projects supported
by Johnson Matthey. The calculations are run on local supercomputing resources as well
as on HECToR (and are due to continue also on ARCHER).

For the above applications alone, the usage of HECToR and ARCHER systems is expected to
be in the region of 15 million AUs per year.

Over 15 participants from UK and abroad were trained at the use of the solvent model at
the ONETEP Masterclass 2013 which was held in Cambridge between 27-30 August 2013.

In addition to the academic version of ONETEP, the DL MG code and the solvent model will
soon be made available in the commercial version of ONETEP which is marketed by Accelrys
and used by researchers in industry.

Overall this project has proved extremely useful for the ONETEP developer and user com-
munities. It is a further demonstration of the success of the HECToR dCSE scheme in enabling
the re-engineering of complex algorithms in such a way that they can be run efficiently on su-
percomputers such as HECToR to benefit their users. While not yet applicable in calculations
with CASTEP, this project has made significant progress towards this goal by developing most
of the necessary groundwork that will be needed in the future completion of the integration of
DL MG with the solvent model within CASTEP.

The usefulness of this work is not limited to solvation models. An equally useful outcome of
the availability of this code within ONETEP and CASTEP is that it also enables their standard
(vacuum) calculations to be run under arbitrary (e.g. open) boundary conditions in the form of
state-of-the-art real space-based electronic structure theory methods. Up to now the standard
implementations of ONETEP and CASTEP relied on Fourier Transforms which necessarily
impose periodic boundary conditions. The open boundary conditions make the simulations of
molecular and nanoparticle systems more realistic by avoiding the supercell approximation.

Furthermore, beyond the realm of electronic structure theory, the DL MG library (which
will be made freely available via a BSD-type license) will find application in fields such as
materials simulations with classical force fields (there are already plans for incorporating it into
the DL POLY package), engineering, fluid mechanics and climate modelling as a few possible
examples of its wide applicability.

4 Conclusion and future work

We have delivered a software package thoroughly tested and integrated in the main branch of
ONETEP. The performance gain offered by DL MG with respect to previous solver, a factor
of almost 16 at large core counts, allows ONETEP users to explore significantly larger or more
complex systems that rely on implicit solvation or open boundary conditions, as detailed in the
previous section.

In order help a wider user base, DL MG is structured as a parallel library package using
MPI+OpenMP with a general 3D domain decomposition, hence it can be used easily to solve
PE and PBE type of equations in other applications, provided that they have specifications
similar to ONETEP or CASTEP.

Nevertheless, more work is needed to complete the unfinished subtasks of this project and to
support the computational requirements of future ONETEP and CASTEP projects. Henceforth
we plan to continue our work in the following directions in order to enhance DL MG capabilities
and performance:

• DL MG was incorporated only in the serial version of CASTEP, which is used currently
for solvation calculations. Because a full parallel calculation with CASTEP depends on
the development of parallel defect correction and of an interface to handle multi-block
partition of data, we decided to delegate future CASTEP developments to a new project.

• Implement more boundary conditions (mixed periodic and Dirichlet, Neumann).
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• Improve parallel scalability and serial performance: As seen in Figs. 7, 9, the MPI com-
munication needs further optimisation; several new ideas which have appeared in literature
recently [6] are a promising starting point. We plan to focus on the optimisation of the
coarsest level solver and the red-black smoother.

• So far our calculations have only included the non-homogeneous Poisson equation.
The ability to work with the non-homogeneous Poisson-Boltzmann equation will
allow our solvation model to include also ionic strengths (i.e. to simulate salt solutions
rather than pure water solutions). This is crucial for biomolecular simulations, as most
processes (e.g. protein-protein or protein-drug interactions or DNA mutations) happen (in
vivo and in vitro) in saline solutions. In order to accomplish this, the non-linear capability
of the solver needs to be developed further, we plan to add more boundary conditions and
a continuation algorithm that is needed for the PBE with strong nonlinearity.

• Improve user accessibility. DL MG will be released through CCPForge [18] and we will
use the software engineering facilities provided by this server to maintain the source code
and documentation.
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A Hybrid parallel performance

In this section we present more DL MG performance and scaling data for hybrid parallelism
in ONETEP and also for calculations over a grid partitioned in 3D MPI topologies which is
representative for CASTEP.

ONETEP uses 1D MPI domain decomposition of its global grid, hence the number of MPI
ranks that can be used for parallelism is limited by the number of grid points in the partitioning
direction (denoted by z). Furthermore, the thickness of the local domain cannot be reduced to
size 1 in the z direction without significant performance loss because of high-order discretisation
needed for certain derivatives in the defect-correction procedure (which is a wrapper around
DL MG). In this context, the OpenMP parallelism inside each MPI domain is one of the options
that can be used to increase computation parallelism.

Fig. 5 shows the hybrid scaling performance for ONETEP components used in solvation
calculation: DL MG, boundary condition and defect correction. This set of data was obtained on
the IRIDIS4 system [17] using the Intel compiler, with 1, 2 and 4 OpenMP threads, respectively.

For the next benchmark the Poisson problem data were extracted from the ONETEP
lysozyme model and solved separately with DL MG on HECToR. Fig. 6 shows the total solver
speed (1/time) for 3 MPI grid partitions to which OpenMP threads are added. The global grid
sizes are: 449 × 545 × 609. The solution was attained in 9 steps for a tolerance of ≈ 10−8,
the convergence factor (the ratio of two consecutive residual norms) was close to 0.125. Data
show that MPI and OpenMP scaling are very good up to 4 threads for all MPI partitions and
acceptable with 8 threads and it stays positive across the whole NUMA node. DL MG internal
timer was used to measure the time spent in the multigrid components (smoother, restriction,
prolongation) at each multigrid level for computation and MPI communication sectors. Fig. 7
shows the scaling of computation and communication for the smoother component, which takes
the largest share of the DL MG run time (≈ 70% amongst multigrid components). Two obser-
vations are in order: i) the communication time decreases with the number of threads inside of
a NUMA node for a 1D grid partition, ii) the degradation of the total speed scaling in Fig. 6 is
correlated with the loss of scaling for the communication sectors seen in Fig. 7. This gives us a
hint where to focus our efforts for parallel performance improvements.

In the last test, done on HECToR as well, 3D MPI topologies were used for global grid sizes
129× 129× 129 which is representative for CASTEP calculations. The MPI 3D topologies were
build with the following rule

2nx × 2ny × 2nz

with ny, ny and nz chosen such that nx ≤ ny ≤ nz, |ni − nj | ≤ 1 i, j ∈ {x, y, z}, the number
MPI ranks being 2nx+ny+nz . Figs. 8, 9 show that 3D MPI problems have a good scaling up
to 256 cores (MPI ranks or OpenMP threads). Similarly to ONETEP, the loss of scalability is
correlated with the crossover between the scaling computation and flat communication.
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Figure 5: a) The partition of computing time amongst ONETEP components used in solvation
components for 1, 2 and 4 OpenMP threads (128 MPI ranks). Hybrid mode scaling of the same
components function of MPI ranks: b) 1 OpenMP thread (16 cores as references), c) 2 OpenMP
threads (32 cores as reference), d) 4 OpenMP threads (64 cores as reference). Although the parallel
performance of the finite difference operations is poor its weight in the ONETEP total run time is
relatively small, see a).
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Figure 6: DL MG scaling on HECToR for a PE
representative for ONETEP. Global grid sizes
are 449 × 545 × 609 partitioned in a 1D MPI
topology. Please note that the hybrid mode is
faster if the number the number of threads per
MPI rank is less than 4, i.e. 32MPI×4threads >
64MPI×2threads > 128MPI×1thread.
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Figure 7: Smoother timings versus number of
OpenMP threads for the top 3 multigrid levels
(for the calculation shown in Fig. 6). In the key
’P’ stands for computation time, ’T’ for commu-
nication time. Run done with 128 MPI ranks.
The degradation of OpenMP scaling observed in
Fig. 6 for more than 8 threads is correlated with
the crossover observed between the computation
and communication time lines.
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Figure 8: DL MG scaling for a PE parti-
tioned with a 3D MPI topology with 1, 2, and 4
OpenMP threads. Global grid sizes 129× 129×
129 are representative for CASTEP; runs done
on HECToR.
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Figure 9: Smoother timings for the top 3
multigrid levels for 3D MPI topologies using 1
OpenMP thread (see Fig. 8). In the key ’P’
stands for computation time, ’T’ for communi-
cation time.
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