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Abstract

The AVS/Express Distributed Data Renderer visualization product
has been ported to HECToR to allow visualization of large datasets using
parallel software rendering. A number of changes to the AVS code were
required to run in the HECToR environment, the most significant being
the ability to make MPI calls from the main AVS/Express user interface
executable running on a login node, and the addition of an MPI-based im-
age compositing scheme. Initially the MRBV project was only considering
non-interactive batch execution of AVS/Express. However scalability im-
provements in the code allow interactive use with higher process counts
than any other previous installation of the product.
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1 Introduction

The AVS/Express visualization product [1] is a scientific visualization applica-
tion allowing the rendering of many forms of data. It uses the visualization
pipeline method [2] in which data is read in to the system, possibly filtered,
and then mapped to geometry for rendering. At each stage the user is able to
control how that stage processes the data, whether it be choosing an appro-
priate file reader, deciding how the data is filtered (for example whether it is
down-sampled or cropped) and then how that data is converted to geometry.
This last stage usually employs a suitable visualization technique such as isosur-
facing or volume rendering to produce an image of the dataset. AVS/Express
provides a user interface in which these stages are represented by modules and
allows the user to connect the modules together forming a data-flow style net-
work. Figure 1 shows an example network in which data is read in via a file
reader module before being cropped (filtered) and then mapped to geometry via
various isosurface modules and an orthoslice module. All geometry is sent to
the viewer module at the bottom of the network. A module may have its own
parameters which are controlled in the user interface panel on the left. The user
can interact with the visualization in the viewer window.

Figure 1: AVS/Express Network Editor and Visualization Window.

The particular version of AVS/Express to be ported is the AVS/Express
Distributed Data Renderer (DDR) Edition, version 7.2.1. This product pro-
vides parallel module computation by allowing the AVS modules to execute on
decomposed datasets, whereby the dataset is split in to smaller domains of data
and distributed to a number of compute processes which then process the data
according to the AVS modules in use. In addition to the standard AVS Software
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and OpenGL renderers, the DDR edition also provides a parallel renderer (re-
ferred to as the MPU renderer for historical reasons) that is capable of rendering
the geometry generated by the parallel modules. Separate rendering processes
receive geometry from particular compute processes, render an image of the
geometry and then composite the images together to form a final visualization
of the entire dataset. This technique is referred to as sort-last rendering [3]
and allows a dataset to be rendered that exceeds the capabilities of a single
rendering process (whether that be a GPU or software renderer). This version
of the product is able to render data on distributed compute nodes where no
GPU hardware is available using the MesaGL [4] software implementation of
OpenGL [5].

A motivation for this project is that the visualization of large datasets has
long been a bottleneck in applications where validation of data acquisition from
scientific equipment is required at an early stage. Such validation would al-
low correctness of methods (such as the set up of a physical experiment) to
be determined prior to further computational or imaging-machine resources be-
ing spent. This is particularly important to our target end users in Materials
Science. Despite advances in GPU hardware, researchers are able to produce
datasets that are too large to visualize using modern graphics workstations and
clusters. An alternative to multi-GPU systems is to use the large memory and
core counts offered by supercomputers such as HECToR even if GPU hardware
is not available.

2 The dCSE Project

The main goal of this dCSE project is to port AVS/Express DDR to the Cray
XT4 hardware provided by HECToR (Phase2a). This will allow the visualiza-
tion of large datasets that currently exceed the capabilities of our GPU-based vi-
sualization systems. Working with Materials Science we have access to datasets
that are typically 50–500GB in size. The datasets provide material density data
acquired by CT scanning equipment, some of which is provided by the Henry
Moseley X-Ray Imaging Facility at Manchester [6]. We also expect to acquire
datasets from the I12 JEEP beamline at the Diamond Light Source, RAL. It
should be noted that AVS/Express DDR is not limited to this type of data and
so will be of use to researchers working with other forms of data. In particular
AVS has NetCDF [7] and HDF5 [8] readers in addition to the generalised AVS
Field reader which allows many forms of data to be described and read in to
the application.

10 months of development time were allocated to the project, beginning
May 2009, with the possibility of 2 months of NAG CSE support to assist with
optimisation during the 10 month period. This option was not taken up as
it was deemed unnecessary to conduct very low level optimisation due to the
interactive nature of the application.

The main development task was to modify the AVS/Express code such that
it could operate within the HECToR runtime environment. This was broken
down in to the following subtasks:

• Provide a mechanism to allow the AVS/Express main application (net-
work editor, module user interfaces, visualization window) to operate on
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the login nodes, where X11 functionality is available, yet communicate
with parallel module and rendering processes executing on the backend
nodes. Modifications to the AVS source tree should be kept to a mini-
mum, avoiding significant architectural changes that would impact other
platforms. This will make AVS/Express appear more like the open source
ParaView [9, 10, 11] application in structure.

• Modify the image compositing architecture within AVS/Express so that it
can use MPI on the backend nodes. At the time of development an open
source image compositing library is used by AVS/Express. This provides
no MPI functionality and only supports dynamically linked applications.

• Optimise the existing MPI communication within the AVS/Express. It is
known that the parallel renderer uses point-to-point communication which
is expected to reduce scalability to large processor counts.

• Provide AVS networks that demonstrate the common visualization tasks
that users will perform.

AVS/Express must be run from a login node with X11 forwarded over the ssh
connection to the user’s X server. The X server must support the GLX protocol.
This is not a particularly efficient method of running an X11 application and
results in the overall rendering frame rate having an upper bound that cannot
be improved by parallel rendering because the limiting factor becomes the time
needed to transfer the image from the login node to the user’s X server. In
the case of the AVS renderer the upper bound is approximately 5.0 frames
per second (fps) for a 512x512 window and 1.1 fps for a 1024x1024 window
when rendering remotely to a test desktop system running linux. While this
appears to be low the visualization does in fact remain sufficiently responsive
that the user can interact with the visualization. We are more concerned with
the ability to scale out the memory usage to increase the size of dataset that
can be visualized.

The AVS/Express source tree has been compiled with the default GNU com-
piler (currently 4.4.2). This is one of the compilers supported by the AVS build
process for 64bit linux platforms (the other being the Intel compiler). The group
in Manchester have a source code agreement with AVS allowing access to the
AVS/Express source tree although certain components are only available as li-
braries. The build process is to compile the AVS base executable which then
reads the V module description files (AVS/Express uses its own module descrip-
tion language named V ). Processing of the V files generates C/C++/Fortran
code for those modules which is then compiled as part of the build process. This
produces the final express executable.

2.1 Licencing

AVS/Express DDR requires an MPE Developer Edition licence to run. UK
academic users with an existing license should contact AVS UK for details about
accessing their licence on HECToR. Users without a licence should note that
AVS/Express is available under the Eduserv CHEST agreement [12].
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Figure 2: AVS/Express DDR architecture.

3 MPI Forwarding

We now describe the main development task of this dCSE project. It is useful
to consider the current architecture of AVS/Express DDR first.

3.1 Existing DDR Architecture

The existing visualization code is an MPI application that comprises a number of
executables. The main executable is express which provides the AVS network
editor, module user interface and visualization window. This is always rank 0 in
the MPI job. The other components are two types of MPI executables, namely
the pstnode and mpunode executables. described below.

Figure 2 shows the scheme now described: the pstnode processes execute
parallel module codes according to the modules in the visualization network. A
key concept is that a dataset is never accessed directly by the express process.
Instead a dataset is decomposed in to a number of smaller sub-domains, one for
each pstnode process. The express process will instruct the pstnode processes
on how they should process their sub-domain of data. For example, a min/max
filtering module may pass its parameters (minimum and maximum values) to
the pstnode processes. They will filter their sub-domains of data accordingly.
A small amount of information may need to be returned to the express process
from each pstnode process so that it can update the user interface. For example,
a reduction on the actual minimum and maximum data values present in each
sub-domain can be used to display the dataset’s overall minimum and maximum
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values in the user interface. Similarly a parallel isosurface module will receive
parameters from the user interface (e.g., the isosurface level to compute) but
the computation will take place within the pstnode processes on their current
sub-domain of data. The sub-domain of data within a pstnode process remains
fixed. It is this decomposition of data and encapsulation within the pstnode
process that allows AVS/Express to work with large datasets. At no point
should sub-domains be gathered and recomposed in the main express process.
Doing so would almost certainly exceed the memory resources of the node on
which the express process is running.

The visualization network will specify which modules should produce ren-
derable geometry. Any geometry produced by the pstnode processes will be
passed directly to an assigned mpunode process. The mpunode MPI processes
execute the AVS/Express rendering methods in parallel. They receive global
scene graph data from express and insert in to the scene graph the geometry
received from their assigned pstnode. Hence each mpunode process only ren-
ders a fraction of the total geometry in the scene. The images produced by
the mpunode processes are composited together (using either depth testing or
alpha blending) and the final image is sent back to the express process for
final display in the user interface. All communication between the various MPI
processes is performed using MPI point-to-point or collective communication fa-
cilities depending on whether the message is domain-specific or common across
all domains. However, at this stage the compositor uses tcp/ip communication
as no MPI layer exists in the open source compositing library used by AVS (see
section 4).

3.2 MPI Proxy

In order that the express user interface process can be run on the HECToR
login node a number of changes to AVS/Express are required. Most significantly
all MPI functionality must be removed from the executable so that it can be run
outside of the MPI job. Two strategies were considered, the first being to add
another communication API to express and the parallel module framework,
removing any dependency on MPI. This strategy was rejected because it would
have resulted in a significant rewrite of large sections of AVS code, in particular
the framework used to manage the parallel modules and rendering. Also, users
developing their own parallel modules would potentially have to be aware of
both the MPI and non-MPI communication methods.

The second strategy, implemented in this project, is to provide an alternative
MPI library that does not use the Cray MPI layer but still allows the express

executable to be linked without major source code changes. The express ex-
ecutable can then continue to make MPI function calls that don’t require the
Cray MPI layer found on the backend nodes.

Our replacement MPI library is referred to as XPMT (Express MPI Tun-
nel). express source includes xpmt nompi.h (rather than <mpi.h>) and is linked
against libxpmt.so. It is compiled as a serial login node executable using the
dual-core programming environment. libxpmt.so contains our MPI functions
which communicate with a proxy MPI process via a standard tcp/ip socket.
This proxy process is a genuine Cray MPI process (always rank 0 in the MPI
job) running on the backend nodes. As shown in Figure 3, the non-MPI express
sends requests for MPI functions to be called on the compute node on which the
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Figure 3: Forwarded MPI from login nodes to compute nodes.

proxy xpnode1 is running. This process receives the request and any required ar-
guments to the requested MPI function. For example, a request for MPI Send()

requires the buffer, count, datatype, destination rank, tag and communicator ar-
guments expected by the MPI function. Upon receiving the request the xpnode

process calls the Cray MPI function with these arguments. Any results of the
function (return type, buffer content etc.) are sent back to the express process
via the socket. Hence the non-MPI express process is unaware that it is calling
MPI functions via a proxy.

The MPI proxy process (xpnode) includes xpmt mpi.h and <mpi.h> and links
libxpmt mpi.a and the Cray MPI libraries. This allows it to map XPMT’s
representation of MPI types to Cray MPI types. In our implementation the
XPMT representation of MPI types are all integers that act as indices in to a
table of real Cray MPI types within the xpnode proxy process. When express

creates new MPI objects (communicators, datatypes, statuses etc.) the proxy
creates the equivalent objects using the Cray MPI layer and a mapping between
the two representations is maintained.

The pstnode and mpunode MPI processes are unchanged (they are standard
Cray MPI executables) and will communicate with the xpnode process as though
it were the express process. This is because they think the rank 0 process is
express (and xpnode is always rank 0) and only communicate with it in response
to MPI functions being called by express. For example if express posts an
MPI Recv() the proxy xpnode will make the same function call from rank 0.
When the pstnode or mpunode processes make a corresponding MPI Send() call
the proxy xpnode will receive the data and pass it back to the non-MPI express
process. Hence the sending processes are completely unaware that the xpnode

process is a proxy for express.
It should be noted that the pstnode and mpunode processes communicate

with each other via the Cray MPI layer and so benefit from this optimised library
and its use of the Cray interconnect. The largest data transfer occurs between
a pstnode and its associated mpunode when geometry is passed for rendering.
This communication never touches the proxy xpnode process, occurring entirely

1During this discussion we refer to the proxy as xpnode. In practice we allow pstnode

rank 0 to provide the proxy functionality. This makes writing the aprun command simpler.

See section 3.4.
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within the Cray MPI domain and so suffers no change in performance as a result
of removing Cray MPI from the express user interface. The amount of data
sent by the non-MPI express process via the socket is in general small because
it is mainly command-and-control messages from the express user interface.
The global scene graph information sent from express to the mpunode render
processes is also small because most of the geometry is generated by the pstnode
processes.

3.3 XPMT Performance

Use of the MPI proxy imposes a performance penalty on any MPI communica-
tion to and from the express process. Figure 4 shows execution times for various
tests using the proxy and the standard Cray MPI layer. A Cray MPI executable
was used entirely on backend nodes. The same tests were compiled against the
XPMT replacement library so that what was rank 0 now runs on the login
node and communicates via the xpnode proxy processes (which becomes rank
0 in the MPI job). The remaining ranks are standard Cray MPI executables.
This matches exactly the changes made to AVS/Express. The tests perform
common communication calls (MPI Bcast, MPI Gather, MPI Send, MPI Recv,
MPI Isend, MPI Irecv, MPI Waitall) that are all found in AVS/Express. They
each send or receive using an array of MPI INTs where the size of the array
increases as: 64, 128, 256, 512, 1024, 10242, 2×10242 and 8×10242 (the Gather
test uses array sizes up to 512). The graphs show the total time for all array
sizes used for each test. The use of the MPI proxy can slow communication by
a factor of three, approximately, in some cases. Within AVS/Express most of
the messages from the express process are less than 1K in size. The largest
message sent back to the express process from the compute or render nodes
is usually that containing the final composited rendered image, which for a
512×512 window is 1Mb (assuming 4 bytes per pixel). Given that AVS/Express
is an interactive application (rather than a numerical simulation) we find this
performance penalty acceptable.

3.4 Rank Placement

To simplify the aprun command needed to start the various MPI processes (the
xpnode proxy, several pstnode and mpunode processes) we merge the function-
ality of these processes as follows. A new pstmpunode process is created by
merging pstnode and mpunode. This new process will behave as a pstnode if it
has an even rank or as mpunode if it has an odd rank. If the rank is 0 it behaves
as the MPI proxy process. We retain the pstnode executable and allow it to also
behave as the MPI proxy if running as rank 0. It can also operate as a dummy
process to help rank placement (discussed below). The combined pstmpunode

executable allows a simple aprun command to be used. For example, the com-
mand for a dataset decomposed in to 15 domains and being rendered by 15
rendering processes is:

aprun -n 31 -N <mppnppn> pstmpunode <args>

where <args> are the command line options required by the MPI proxy process
to contact the express process running on a login node (switches specifying
hostname and port number). Note that the MPI proxy rank 0 process prevents
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us using all 32 processes in the 32-core queue (in this example) because the
number of pstmpunode processes must be an even number (so that half can act
as pstnode processes and half as mpunode processes). Hence in this example we
use 15 + 15 + 1 processes (the 1 being the MPI proxy rank 0 process).

AVS/Express DDR automatically assigns a pstnode style process to an
mpunode style process (they will all be pstmpunode executables) so that the
pstmpunode(m) can act as the rendering process for that single pstmpunode(p)
process. By using the odd/even scheme we ensure AVS/Express always pairs
pstmpunode(p)2i with pstmpunode(m)2i−1. Ideally we would like these paired
processes to be on the same physical backend node so that they communicate
using intra-node communication. However, the MPI proxy (rank 0) creates an
off-by-one layout where a pstmpunode may be paired with another such process
on a different physical node. This may result in a small performance reduc-
tion. It is possible to overcome this off-by-one problem at the expense of a few
dummy processes. By using the pstnode executable we can specify a number
of dummy processes that do not contribute to AVS module processing. They
are there simply to pad out the physical node on which the MPI proxy pro-
cess is running. This then allows all pstmpunode process pairs to be placed on
the same physical node. The number of dummy pstnode processes is always
mppnppn−1. When using dummy pstnode processes we also use pstnode as the
MPI proxy process. Hence the total number of pstnode processes is equal to
the mppnppn value. However, the small gain in performance may not be worth
the cost of running a few dummy processes. The aprun command when us-
ing dummy pstnode processes (for the 32-core queue) when using mppnppn=2

becomes:

aprun -n 2 -N 2 pstnode <args> : -n 30 -N 2 pstmpunode

or, using four processes per node, the number of domains is reduced to 14:

aprun -n 4 -N 4 pstnode <args> : -n 28 -N 4 pstmpunode

A ddr shell script is available that generates the PBS jobscripts given the
number of domains required, the mppnppn setting and whether dummy pstnode

processes are to be used to help rank placement. The script will submit the
express job to the serial queue on the login node. When this process executes,
it will submit the pstmpunode job to the relevant parallel queue. The express

process then listens for the parallel job starting. The MPI proxy rank 0 process
will connect to the express process via a socket. At this point the AVS/Express
user interface will appear and the application can be used. This is similar to the
ParaView start-up procedure but is completely automated by the ddr script.
The jobs scripts can be generated but not submitted if customisation is required.

3.5 Summary

We have implemented a method of running the AVS/Express user interface on
the login nodes while performing parallel module processing and rendering on
the backend nodes. Minimal changes to the AVS source code have been made by
allowing the express process to make MPI function calls from the login node.
This is done by forwarding those calls to a proxy rank 0 process running on the
backend nodes. Communication between the various AVS/Express processes
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via the proxy is transparent to those processes. While there is some perfor-
mance reduction associated with this mechanism, the reduction is not critical
for an interactive application and not so great that the application becomes
uninteractive.

The need to forward the X11 user interface over the ssh connection to HEC-
ToR is another performance reducing factor. It would be possible to run the
express process on the user’s local desktop (as a client) provided an ssh tunnel
could be established from the HECToR login node to the user’s desktop. The
MPI proxy process could then have its connection to the login node tunnelled
to express running on the user’s desktop. This would be more efficient than
forwarding the X11 connection from the login node. However, such connections
are not permitted on HECToR.

4 Image Compositing

AVS/Express currently uses the open source Paracomp [13] compositing library,
initially developed by HP. The library requires dynamic linking (it has a frame-
work that requires the use of dlopen()) and supports tcp/ip, InfiniBand and
Mellanox network layers. It also uses multiple pthreads for networking, control
and image operations. The basic compositing method employed is the Sched-
uled Linear Image Compositing [14] method. While this has proved to be an
effective compositing library on render clusters that have InfiniBand or Mellanox
networking, the lack of MPI support, coupled with the use of multiple pthreads
and dynamic linking, resulted in our decision to remove it from AVS/Express
on HECToR. We have compiled the library to provide just the core image com-
positing routines. This can be compiled statically and provides a method of
compositing two images together, using either depth testing or alpha blending.
This is the fundamental image operation required of any compositor.

Having removed the Paracomp communication facilities we have implemented
the 2-3 Swap Image Compositing method [15]. This allows all image commu-
nication between render processes (which perform the compositing operations)
to take place within the Cray MPI layer. The 2-3 Swap method is similar to
Binary-Swap Compositing [16] but removes the need to have a power-of-2 num-
ber of render processes. This is important in AVS/Express due to the use of
the MPI proxy process.

Parallel image compositing reduces the time required to blend the rendered
images of the sub-domains (recall the dataset is divided in to sub-domains of
data) from every render process. Sending full sized images from all render pro-
cesses directly to one process for blending (using either depth testing or alpha
blending) would introduce a bottleneck at that process. By dividing images
at every process in screen-space (i.e., discarding rows of pixels) and exchanging
these sub-images, all processes can take part in the blending operation. Eventu-
ally every process will have a sub-image that contains a fully rendered dataset.
The final step is to gather these sub-images at a single process and copy them
in to the image buffer. This final gather step is not such a bottleneck because
the screen-space sub-images are small at this stage (each sub-image contains

1/n
th

of the total number of pixels in the final image, when n is the number of
render processes). All of this communication takes place on the backend nodes.
We then have to send the final image through the MPI proxy process to the
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Figure 5: Image compositing operations for two window sizes (top row). Final
composited image send / recv through the MPI proxy (bottom row).

express process so that it can display it in the user interface.

4.1 Compositor Performance

Figure 5 shows the performance of various compositing operations. The top
row shows timings for one particular rank for an image of size 5122 pixels and
10242 pixels. The rank chosen is the middle rank for each number of render
processes (any arbitrary rank could be used). This gives a snapshot of what
one particular render process is doing during image compositing. All times are
totals for the entire image compositing operation. The Image exchange time is
the total time the middle rank process spends exchanging screen-space images
with other processes during the compositing operation. The Image blend time is
the total time spent blending image pixels (using depth testing). The Image final
gather time is time spent sending the blended sub-image to the single process
(usually the first pstmpunode render process) that gathers the sub-images from
all other render processes. Note that the gather operation writes the sub-images
directly in to the final image buffer. The Total time is the sum of the previous
three operations. Even the slowest compositing times correspond to a frame
rate of 90fps for a 5122 window and 30fps for a 10242 window.
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The second row shows the time required for the express process to receive
the image through the MPI proxy, and the time for the single render process to
send the image to the proxy. The sending time is small because this is occurring
within the Cray MPI layer. The receiving time is significant and will limit the
overall frame rate of the renderer. This image transfer occurs over the tcp/ip
socket through which express and the MPI proxy process communicate.

We have added an OpenMP wrapper around the Paracomp library’s core
image compositing routine. This allows the blending time to be reduced in
the compositing operation for large images. A trade-off is needed between the
number of pstmpunode processes running on a node (usually two or four) against
the number of OpenMP threads dedicated to image blending. However, given
that the image transfer from the MPI proxy to express is the limiting factor, it
is recommended that only one OpenMP thread be used. This allows the number
of pstmpunode processes on a node (mppnppn) to be increased.

5 Parallel Renderer Communication

Examining the AVS parallel renderer code reveals that point-to-point commu-
nication calls are used where collective calls might be more efficient. The MPI
patterns within the renderer were initially developed to match sections of the
code where another non-MPI communication library was used. This library
did not provide collective calls. The main tasks within the renderer where this
communication style occurs are the distribution of the scene graph from the
express process to the pstmpunode render processes and the sending of mes-
sages to update process caches.

The scene graph contains general information (such as camera position, light-
ing, background colour) and also placeholders representing every renderable ob-
ject that will eventually be created by the pstmpunode(p) parallel module pro-
cesses. Renderable objects could be arrays of triangles for an isosurface or tex-
ture data for volume rendering, for example. The renderable objects are stored
in a cache inside the rendering process and the placeholders in the scene graph
reference objects in the cache. The scene graph is sent to every pstmpunode

render process, as are messages that initiate update operations on the caches
within those processes (for example, messages to delete out-of-date geometry
objects). It is the communication of the scene graph and these messages that
can be optimised.

When an image is to be rendered express determines whether it should
generate a scene graph containing new objects and geometry or whether it is
simply re-rendering an existing scene graph, perhaps with a change of camera
position. The former case occurs if, for example, the user changes an isosurface
level value or modifies a volume render transfer function. The renderer must
delete the existing cached objects and receive new ones from the module pro-
cesses. Messages must be sent to all render processes asking them to update
their caches so that all caches are consistent across the rendering processes. In
the latter case, where no new geometry is generated, a much simpler scene graph
can be distributed to the render nodes and no messages requesting changes to
the caches are required. In this case the scene graph will reference existing ge-
ometry in the render nodes’ caches but will include new settings, such as the
camera position. The graphs in figure 6 show times for the communication of a
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Figure 6: Scene Graph build and communication for a new non-cached scene
graph and a subsequent cached scene graph, using MPI Bcast and point-to-point
communication methods.

non-cached new scene graph and a cached scene graph, using the original point-
to-point methods and the new broadcast method. The non-cached scene graph
times includes the time to generate and communicate cache update messages to
all rendering processes.

The visualization for this test contains three isosurfaces of a standard AVS
test dataset. The amount of geometry generated to represent the isosurface is
not important because that geometry is communicated from the pstmpunode(p)
processes to the render processes. We are interested in the messages from the
express process to control render process caches and the distribution of the
overall scene graph.

Replacement of point-to-point methods with MPI Bcast is a simple but
worthwhile optimisation. This change will benefit AVS/Express DDR on other
platforms, not just HECToR, and has been submitted to AVS for inclusion in
their source tree.

6 Example Dataset

A scientifically significant dataset has been provided by the Materials Science
users with which we are working. At this time we have been requested not
to publish any images of that dataset until their work has been considered for
publication elsewhere (it is being submitted to a high-impact publication). The
images are considered key to the impact and novelty of the paper. We intend to
update this report with images once they have been published. However, details
of the size of data set and performance figures can be given.

The dataset is a uniform volume of dimensions 7150×7150×7369 containing
byte data (density values in the range 0–255). The dataset is to be volume ren-
dered and the large size of dataset makes it a useful test case because the paral-
lel volume render module is particularly memory hungry. Each pstmpunode(m)
render process takes a copy of the sub-domain from the pstmpunode(p) pro-
cess (which is typically only executing the parallel file reader code). It also
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allocates another volume that is 1/32 the size of the volume for voxel lighting
calculations. For gigabyte volumes this can be significant. It is memory usage
that dictates how many processes are needed to render the dataset. Volume
rendering takes place at image resolution and so performance is mainly influ-
enced by the size of the final image and whether the transfer function produces
semi-transparent regions in the data (this increases the execution time of the
volume render algorithm). However, the AVS volume renderer does not tile the
image and so adding more processors does not necessarily improve frame rate.
It does, however, reduce the size of sub-domain of data that each pstmpunode

render process will have to store.

5122 10242 5122 10242

Domains 127 255
Total procs 255 511

mppnppn 2 4
GB per Domain 2.8 1.4

Build+Distrib(s) 0.044900 0.045211 0.186890 0.050382
Render(s) 0.469087 0.695153 0.201461 0.672819

Total(s) 0.513987 0.740364 0.388351 0.723201
Frames per sec 1.9 1.3 2.5 1.3

Table 1: Volume rendering a 351GB dataset for two image sizes. The number
of domains used is the minimum number required to volume render this dataset
for the given mppnppn value.

Table 1 shows various statistics obtained when rendering the volume dataset.
Rendering was performed for image sizes of 5122 and 10242. The number of
domains in which to divide the data is the minimum number required to volume
render this data. Dropping down to a smaller queue size (and hence fewer
sub-domains) resulted in the pstmpunode rendering processes running out of
memory. The times given are for operations performed by the express process
on the login node. The Build+Distrib operation is the construction of the scene
graph and distribution to all rendering processes, as discussed in section 5. The
render time is the total time taken from sending out the scene graph to receiving
a composited image back from the render processes. The render processes will
have rendered their data during this operation so it is dependent on the AVS
parallel volume render module. The total time is the sum of the two times. The
Frames per second time is the best time that can be achieved when rendering
the data if no transfer of the image to the user’s remote desktop is required.

Despite the low frame rate we are able to manipulate the visualization inter-
actively. This includes manipulation of the volume render transfer function to
reveal details within the volume. We have not been able to render this dataset
prior to running AVS/Express on HECToR.

6.1 Batch Rendering

It is possible to use AVS/Express to render image without interacting with the
application user interface. A write image module can be used to capture the
image from the renderer. The application can be started with the -offscreen
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flag to prevent the user interface appearing. However AVS/Express still requires
an X server to connect to even if no interface windows are visible. This means
that the user cannot disconnect from HECToR once a batch rendering job has
been submitted. This is a known problem in AVS/Express that has not been
addressed in this project due to the extensive source code changes required to
remove all X11 dependencies in offscreen mode.

7 Conclusion

This project has ported the AVS/Express DDR commercial visualization code
to the Cray XT4 architecture provided by the HECToR service. Using this
platform we have visualized data acquired by CT X-Ray scanning that is not
able to be rendered on available GPU hardware. The system allows the user
to interact with the visualization, often at an approximate rate of 5 frames
per second. This is just about sufficient for interactive manipulation of the
visualization. The inclusion of a new compositor layer and improvements to the
parallel rendering code have allowed AVS/Express to be used with processor
counts much higher than any previous installations of the product.

The use of the MPI forwarding layer and proxy has eliminated the need for
a significant redevelopment of the communication code within AVS/Express, al-
lowing the communication between the parallel module and rendering processes
to remain within the vendor MPI domain. This allows users to develop their
own AVS parallel modules using the existing AVS framework and move them
without modification to the HECToR installation.

The ability to create custom applications with AVS/Express is one of its key
strengths and will allow domain-specific applications to take advantage of its
parallel renderer on HECToR. There are possible uses of AVS/Express in com-
putational steering applications, where in-place visualization of large datasets is
needed. Additionally simulation code may be developed as AVS parallel mod-
ules, allowing direct visualization of the simulation data.

An example of a user-developed application is the ParaFEM Viewer [17] used
to visualize finite element analysis data generated by the ParaFEM library [18]
available on HECToR. The viewer is an AVS/Express application with a custom
user interface. It currently uses the standard AVS OpenGL renderer, which does
not offer any parallel rendering facilities. Given the size of dataset that can
be generated by FEM code it would be useful to build the ParaFEM Viewer
application against the AVS/Express DDR product on HECToR. This would
give the viewer access to the parallel renderer within DDR. Work would be
needed to modify the application so that it used the AVS parallel modules
rather than the standard serial modules. There are several custom modules
used within the ParaFEM Viewer application and so these would need to be
modified to use the parallel module framework.

The XPMT library and the 2-3 Swap compositing implementations can be
used in other projects (most usefully in visualization applications) where the
user interface is run as part of an MPI job. Non-AVS custom viewer appli-
cations (possibly small, lightweight viewers for specific data formats) can be
developed where the user interface process runs on the login node and commu-
nicates with backend rendering processes. The developer can use MPI for all
communication, avoiding the need to develop a non-MPI communication layer
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for user interface communication to the backend nodes. The 2-3 Swap code
allows backend rendering processes to composite their images to form a final
complete image.

We are hoping to acquire more datasets once the Diamond Light Source I12
beam line is operational. As imaging hardware improves we expect to see larger
datasets becoming available.

Aspects of the work detailed in this report have been accepted for publication
in Proceedings of the Theory and Practice of Computer Graphics Conference
2010 (EGUK) and have been submitted for publication to the Philosophical
Transactions of the Royal Society A as part of the All Hands Meeting 2010.
The work has also been presented at the JISC vizNET 2009 Conference [19].
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