
MicroMagnetic modelling of naturally occurring magnetic

mineral systems: II

Dr. Chris M. Maynard, Mr. Paul J. Graham

EPCC, The University of Edinburgh,

James Clark Maxwell Building,

Kings Buildings, Mayfield Road,

Edinburgh, EH9 3JZ

21/02/2013

Abstract

This report presents the results of the second HECToR dSCE project to port and parallelise a code

(microMag) which models the magnetic properties of mineral systems on to HECToR. This code

represents the magnetisation within a structure using vectors located at the vertices of a finite element

mesh in order to generate a high-fidelity 3D micro-magnetic model.

The scientific goal of this project is to enable the investigation of large-scale simulations with

increased system-size and precision which are currently not possible. These simulations will be of

benefit to research into mineral- and palaeo-magnetism.

The key aims of this project are: to complete the parallelisation of the code started in the original

project, with particular focus on the generation of the stiffness matrices; and to incorporate a mesh

repartitioning algorithm into the code in order to enhance performance.

The PETSc library has been used to provide almost all the required parallel and numerical

functionality. Critically, the interfaces it provides to third party libraries such as the adaptive timestep

ordinary differential equation solver CVODE and the mesh partitioning library ParMETIS have been

utilised.

The outcome of this project is a working, parallelised microMag code on HECToR. A benchmark on

a model containing more than 100,000 elements showed speedups of over four times faster on 16

cores.Thus the project has enabled the investigation of large-scale simulations with increased system-

size and precision which were previously not possible.

Table of Contents
1 Introduction ... 3

2 Algorithmic details .. 3

3 Work plan .. 4

3.1 Variations from workplan ... 4

4 Implementation ... 5

4.1 Verification and Profiling ... 5

4.2 ParMETIS, PETSc and Partitioning .. 6

4.3 Data Conversion Optimisation .. 6

5 Results ... 7

6 Further work .. 10

7 Summary ... 11

8 Acknowledgements ... 11

1 Introduction

There are many problems in the geosciences that rely on the ability to accurately determine the

magnetic properties of minerals and the stability of the palaeomagnetic recordings that they contain.

For example, the investigation of the behaviour of the geomagnetic field depends largely on the

observed field variations on or above the Earths surface. Temporal records of direct observations

stretch back less than two hundred years, and so a more detailed analysis is dependent of ancient

recordings made in rocks as they are formed. Geological interpretation of the directional recordings of

the ancient field led to the discovery, over 50 years ago, that the Earths oceanic and continental plates

are continuously moving. Today, a more thorough understanding of magnetic mineralogy enables a

detailed analysis of not only of fine scale continental block motions and rotations, but also

emplacement temperatures and thermo-temporal history of the rocks to be determined. In addition,

magnetic mineralogy is frequently used as a proxy for determining palaeoclimate variations.

All these applications depend on an understanding of how the magnetic properties of minerals change

with the mineral microstructure, chemistry, grain geometry and inter-grain magnetic interactions. The

complexity and diversity of naturally occurring magnetic minerals makes the numerical

micromagnetic problem a much more difficult task than that applied to the generally more ideal man-

made recording media. The increasing sophistication of environmental-magnetic investigations relies

on a high-fidelity magnetic re-coding processes occurring in natural magnetic mineral systems. Yet

our understanding of the fundamental processes that enable common magnetic minerals to record the

local geomagnetic field’s direction and intensity and to retain this information over geological time

scales is far from complete. A much better understanding of the recording process in natural materials

is required in order to assess the reliability of rock-magnetic recordings.

Equilibrium magnetic domain structures are determined by integration of the Landau-Lifshitz-Gilbert

equation of motion. Finite element methods are the preferred technique when dealing with irregular

geometries since magnetic domain structures are sensitive to the accuracy with which grain

geometries can be modelled. Before the dCSE project the code, microMag, existed as a serial code

written in Fortran90. Some initial work had been undertaken in investigating methods of

parallelisation. This was the basis for the work-plan submitted as part of the dCSE proposal.

2 Algorithmic details

The numerical micromagnetic model represents the magnetisation within a structure using 3D

Cartesian vectors (each of unit length) placed at the N vertices of a finite element (FE) mesh.

Tetrahedral elements are employed to reduce the discretisation error. The size of the computational

cell is governed by the micromagnetic quantity, termed the exchange length, which restricts the

maximum cell size.

Equilibrium magnetic domain structures are determined by a minimisation of the total free magnetic

energy of the system, which is achieved by integration of the Landau-Lifshitz-Gilbert (LLG) equation

of motion. Dynamical solutions require the LLG equation of motion to be solved for every time step.

The total effective field contributions include a computationally intensive non-local (magnetostatic)

field calculation, and also the local exchange, anisotropy and externally applied field calculations. Of

the previous four component fields only the magnetostatic field is non-trivial. It is also the most

computationally intensive part in the determination of the total effective field. A finite volume

approach is employed to calculate the exchange and anisotropy fields and is essentially determined by

multiplication of the stiffness matrix by the global magnetisation vector.

The magnetostatic field is solved via a scalar potential approach. This requires the solution of the

Poisson equation for the divergence of the magnetisation and solution of the Laplace equation for the

boundary vertices. An efficient boundary element method is employed to approximate the long-range

interaction. Both equations are discretised using a Galerkin scheme for a linear finite element solution

of the equations. The solution is obtained via a standard conjugate gradient (BG) solver. The storage

required in the solution of the Poisson equation is extremely sparse hence efficient sparse matrix

methods are essential. Also, the tetrahedral finite element basis functions provide an efficient way of

calculating the remaining three component fields by simple sparse matrix-vector multiplication.

Bespoke sparse matrix management is required due to the data layout which arises from the efficient

construction of the initial finite element basis functions.

The matrix arising from the boundary element approximation to the long-range interaction is of size

N
2
, where N is the number of vertices on the material boundary. In a parallel code this dense matrix

can be distributed efficiently amongst each individual processing unit. Integration of the stiff system

of ordinary differential equations (ODEs) arising from the LLG equation of motion requires an

implicit solver and thus requires the approximate inverse to a sparse 3N system of linear equations.

The use of explicit methods would be ineffective due the restrictive size of the time-step controlled by

the stiffness of the system. The implicit method is a variable order solver which is based on a multi-

step backward Euler method with variable coefficients.

3 Work plan

The original work plan for the 6 month project is split into three sections or work packages (WP), and

is shown below

WP1 Efficient and accurate construction of the stiffness matrix code [1 month]

WP2 Parallel matrix generation implementation [2 months]

Task 2a Determine sparseness structure of each stiffness matrix

Task 2b Create PETSc matrix data objects with relevant structure

Task 2c Determine matrix values and populate PETSc matrix objects

WP3 Implement call to ParMETIS for mesh generation [2.5 months]

Task 3a Implement calls to ParMETIS

Task 3b Implement support for alternative mesh partitions and data decomposition

Task 3c Benchmark the performance of the code for a large system and write a report

WP4 Final report in html and pdf format [0.5 months]

3.1 Variations from workplan

Chris Maynard was the original member of staff working on this project, but due to a new job left

EPCC a few months into the project. Once it was apparent that Chris was leaving Paul Graham was

assigned to the project so there was an opportunity to perform a handover, but obviously this had

some impact on the technical work as the new staff member needed to get up to speed on the work.

The main outcome of this was that the project end date was pushed back and the parallelisation of the

matrix generation implementation (WP2) was curtailed.

The impact for not achieving WP2 on the overall success of the project was relatively small, as

typically the time spent in initialising the matrix objects is much smaller than the time spent actually

performing the calculations. That is not to say that it is not worthwhile doing, but performance

optimisation of the calculation phase would clearly reap larger benefits. To this end the WP3 work

which could directly affect this was brought forward.

During the project some more detailed profiling of the code was performed, and it was found that one

of the performance bottlenecks in the code was a data conversion routine introduced in the previous

project. This routine was necessary to convert data to that required by CVODE, but it was inefficient,

and thus it was decided that it would be time well spent in optimising this portion of the code.

4 Implementation

Coming into this project, the code was parallelised using MPI, but the initialisation phase is

effectively serial. However, even taking this into consideration, the efficiency of the parallel section

was very poor and there was still some issues with correctness of results.

4.1 Verification and Profiling

The first part of Work package 1 was to verify that code was producing the correct answer. The

results of the serial and parallel code were compared on a benchmark mesh input file. Whilst similar,

these outputs were not sufficiently close. However, the serial version of the code uses a preconditioner

for the CG solver (which only works in serial), namely an Incomplete Cholesky decomposition.

Switching off the preconditioner in the serial code reduced the difference between the outputs. In

particular, the resultant vector of the CG solve with preconditioner differed by 3 significant figures, or

1% relative difference to the parallel version: switching off the preconditioner reduced the

discrepancy to 12 significant figures. Preconditioning should not change the answer, only how it is

computed. However, in such a numerical system, rounding errors can be significant. This effect can

possibly be seen for a linear system with a large condition number, or if the rounding errors become

significant when computing the preconditioner itself, rather than the CG solve. By systematically

replacing the matrices and vectors with the identity or zero, the difference of the serial and parallel

code was tracked though the code, and any remaining difference in the original code verified to be

numerical rounding error.

Using PETSc self instrumentation features to profile the code revealed it spent large amounts of time

in Matrix-Vector operations. Further profiling with the CRAY-PAT tool was performed. It reported

large amounts of time were spent in MPI communication routines. This confirmed that the stiffness

matrices were responsible for the large amounts of communication and hence slow performance.

The default PETSc data distribution for matrices is by row across the processor ranks. For a sparse

matrix, there is a special data structure with a distinction between matrix elements which are in the

diagonal block the set of rows which belong to the processor, and those which are off-diagonal.

Matrix-Vector operations on the diagonal block are completely local. The off-diagonal pieces require

communication. The code was constructing the stiffness matrices, in serial, as FORTRAN arrays,

before constructing PETSc distributed data objects and populating them with the values in the

FORTRAN arrays. Whilst this is ultimatley a rather inefficient process, it is not the cause per sé of the

poor performance when operating with those matrices. They are constructed correctly with the right

values.

It was believed that the cause of the poor performance came from the partioning of the mesh, or rather

the lack of any formal partitioning. The mesh for any particular geometry is generated by a third party

library called Cubit. This is an entirely serial code. Its output is a text file which has the co-ordinates

of the vertices, the tetrahedra connectivity list, i.e. what is the vertex number of each vertex of the

tetrahedra, and a list of the elements which are on the boundary with how many faces they are

connected to. The microMag code knows nothing about partitioning this mesh in parallel. It simply

reads in the file, creates the stiffness matrices with the rows and columns based on the values from the

mesh file. PETSc then chops these matrices up by row resulting in effectively an arbitrary partition of

the mesh. This means that tetrahedra which are connected to each other are distributed across

processors. This results in more block off-diagonal than diagonal elements in the matrix and thus

potentially a very high communication overhead. Creating a much more efficient partition should help

minimise the communication overheads.

This requirement is essentially work package three. In consultation with the code owner it was

decided, that as the partitioning is critical to the performance of the code, to bring forward work

package 3 and implement the partitioning with ParMETIS before completing work package two. The

process employed for this was to first implement a new program to partition the mesh independently.

Then the existing microMag code could read the reordered mesh file without further modification,

thus allowing for quicker development and testing of the reordering aspect.. Once this was working

the partitioning code would then be incorporated into the microMag code so it can be used as a single

stage operation.

4.2 ParMETIS, PETSc and Partitioning

PETSc has rather useful feature in that it provides interfaces to several third-party partitioning

libraries. ParMETIS is the default partitioning library, and rather than call the native interface to

ParMETIS, using the PETSc interface reduces the amount of code integration required at a later stage.

The partitioning is done by vertex rather than element.

The methodology for partitioning is:

 Read in mesh data from the PATRAN file

 Convert to a format recognised by ParMETIS

 Generate the new partition using ParMETIS

 Apply the new ordering to the mesh data

 Create the PETSc matrices from the repartitioned mesh

The idea is that the mesh has been well ordered by the repartitioning, so the matrices will also be well

ordered, and thus communication will be minimised. There are two new subroutines:

repartVert - this is actually a program used during development which invokes the repartitioning

independently of the MicroMag code. It reads in the test model data, and then calls the subroutine

reorder, then writes out the newly repartitioned data.

reorder – in this routine, firstly the connectivity data for the vertices is generated, and then used to

create the adjacency lists required by PETSc/ParMETIS. The PETSc data structures are then created

and the partitioning invoked. The new partition data (which is a list of vertixes with a map of where

their new position on the processors is), is then gathered to the rank 0 process, and the partitioning

applied, which is effectively a reordering of the vertices and the tetrahedral elements. Finally the

vertex and tetrahedra data is broadcast back to the appropriae process elements.

In the main microMag code now has the option of using the partitioning (currently set by a logical

variable called usingreordered, it is suggested that a runtime variable may be more useful in the

future). If this is set to true, then the reorder subroutine is invoked, and a further step is performed to

redetermine the boundary nodes based on the new repartitioning.

4.3 Data Conversion Optimisation

Initial results of the parallel code for both the standard and repartitioned version of microMag were

very disappointing, showing no speedup at all as core counts increased, and in some cases going even

slower. Closer inspection revealed that one of the causes of this was in two data conversion routines

introduced in the previous dCSE project. The microMag code holds the magnetic field in two dif-

ferent data structures. The first is a two-dimensional array of size (NMAX, 3) where NMAX is the

number of finite element vertices, and 3 represents the three physical dimensions in Cartesian space.

The second data structure is a linearised one dimensional array, (3*NMAX). The code switches

between these two data structures several times as the Sundials solver expects a one dimensional

array. Looking at detailed timings for the code, this conversion was quite time consuming as in its

original form it required several PETSc VecScatter calls, which can carry a significant

communication overhead, especially given the frequency with which they were being used. Also, this

overhead increases as the core count increases, so any gains in speed seen in the other parts of the

code were being countered by the increase in execution time from the conversion routines.

It was considered converting the code in order to maintain the one-dimensional representation

throughout, but this would require a fundamental rewrite, so an alternative strategy was employed.

Investigation revealed that the conversion between the two representation could be performed entirely

locally to each processor – there should be no requirement to send data between cores. Thus two new

conversion routines were written so as not to use any communications. Table 1 below shows

pseudocode for the old and new conversion routines

Table 1: comparison of conversion routines

Old conversion

! Set up indices

ISCreateStride(...) ! 1D stride

ISCreateStride(...) ! 3D stride

! Move data between vectors

VecScatterCreate(...)

VecScatterBegin(...)

VecScatterEnd(...)

! Tidy

VecScatterDestroy(...)

ISDestroy(...)

!Repeat for y and z

...

! Done

New conversion

! get local array values

VecGetArrayF90(1dVec, xyz ...)

VecGetArrayF90(xVec, x ...)

VecGetArrayF90(yVec, y...)

VecGetArrayF90(zVec, z ...)

! move data

do i=1, n3d

 x(i) = xyz(3*i-2)

 y(i) = xyz(3*i-2)

 z(i) = xyz(3*i)

end do

! Put back in vectors

VecRestoreArrayF90(...)

....

! Done

These new conversion routines now of the O(10) times faster than the original routines, and also

scaled well with core count. Once this change had been applied parallel speedup was seen in the

overall code for the first time.

5 Results

During development three relatively small test cases were used, and one large test case was used for

final performance timings:

 brick0_300 – a “brick” shape representing a 300nm size particle, 1826 nodes (8751 elements)

 cube_20nm – a simple cube, 20nm long, 31 nodes, 72 elements

 cube_100nm – a simple cube, 100nm long, 2270 nodes, 10955 elements

 sphere – a sphere , approx 136nm radius, 18838 nodes, 100245 elements

Additionally, the code could be adjusted to run for either a set number of timesteps for each test case,

or until the model had converged. Any speedup results reported below are measured against the time

taken for the parallel code to run on one core.

As noted earlier initial results for the parallel performance were very poor until the new data

conversion routines were introduced. Following the introduction of these, some speedup was seen as

discussed below.

Speedup for the smallest test case (cube_20nm) was non-existent, in fact it slowed down on more than

one core. This is entirely due to the size of the model, at only 31 nodes there is not enough work to

justify the overheads of distributing the data and communications. This test case was primarily used to

check for correctness during development as it would take under a minute to run to conclusion.

Figure 1 shows the speedup for two slightly larger test cases, brick0_300 and cube_100nm.

Figure 1: Speedup for the cube_100 and brick_300 test cases

As one can see the speedup is not great, peaking at about 1.7 times faster and 2.0 times faster on 8

cores for the brick and the cube test cases respectively, and then tailing off. For both these cases the

time taken for the largely sequential problem initialisation steps were much less than the total

execution time (in the order of 0.5% of total execution time) so this was not a contributory factor.

Figure 2 shows a plot of the speedup vs the number of vertices per core after the data has been

distributed: this gives an idea of the amount of work each core has to do for these two test cases

0.0

0.5

1.0

1.5

2.0

2.5

0 4 8 12 16 20 24 28 32

Sp
e

e
d

u
p

Cores

cube_100nm

brick0_300

Figure 2: speedup as a function of vertices per core after data distribution

Now to consider the much larger test case, sphere. For this case, the initialisation is a larger

proportion of the total runtime, approximately 3% for the sequential version. Also, due to time

constraints some of the benchmarking runs were only performed for one thousand timesteps rather

than to full convergence (a single core run of this benchmark takes approximately 10 hours to

converge). Thus Figure 3 shows the speedup at 1000 timesteps for two cases: the purely parallel

calculation, and the combined total speedup including initialisation. Of course, as it was a limited

timestep run the initialisation becomes even more significant, and in fact accounts for over half the

execution time beyond four cores at 1000 timesteps. Clearly though, one can see that the speedup is

much more pronounced for this large test case, hitting 5 times faster at 16 cores.

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Sp
e

e
d

u
p

Vertices per core

brick_300

cube_100

Figure 3: Speedup for sphere, for pure calculations and for calculations and initialisation

combined, for 1000 timestep runs

The repartioning was also tested on this test case, but in this instance a full run to convergence was

performed (which also gives an idea of how the intialisation affects the total speedup).

Table 2: Timings for sphere to full convergence

 Serial 16 cores Speedup 16 cores
repartitioned

Speedup

Initialisation 890 1359 1905

Calculation 30366 6121 5.0 7278 4.2

Total 31256 7480 4.2 9183 3.4

Table 2 shows the timings for the sphere test case for three runs: serial, 16 cores, and 16 cores using

the repartitioning. Unfortunately the figures indicate that the repartitioning does not offer any

performance improvement, and in fact slows the code down. The repartitioning increases the time

spent in intialisation as expected but, it also increases the time spent doing the calculation. It is not

clear what is the cause for this, unfortunately due to time constraints no further investigation was

possible.

6 Further work

Further investigation into the repartitioning would be desirable, as it is not clear why it has been

detrimental to the performance. Also, there is scope for both serial and parallel optimisations in the

code: much of this project was spent trying to ensure that the code produced correct answers rather

than in performance optimisation, and during this the author has spotted various opportunities for

performance enhancement which unfortunately time constraints have prevented. For example, there

are several pointwise vector divides in the core algorithm which could be refactored to

multiplications, and some static vectors which are recalculated at every timestep unnecessarily. The

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 4 8 12 16 20 24 28 32

Sp
e

e
d

u
p

Cores

Just calc

combined

initialisation could also be parallelised. These and other suggestions will be passed on to the code

owners.

7 Summary

The key aims of this project were: to complete the parallelisation of the code started in the original

project, with particular focus on the generation of the stiffness matrices; and to incorporate a mesh

repartitioning algorithm into the code in order to enhance performance. This has been partially

achieved: the code now works correctly in parallel, which it did not at the start of the project.

Speedups of over four times faster have been seen for a large test case, which for this class of finite

element problem is not unreasonable. The code also now has the capability to utilise repartitioning,

although initial results suggest that this does not enhance performance.

The scientific goal of this project was to enable the investigation of large-scale simulations with

increased system-size and precision which are currently not possible. These simulations will be of

benefit to research into mineral- and palaeo-magnetism. This has been achieved, as the code can now

be used to run large simulations, in parallel, taking advantage of the memory and compute power

available on HECToR. In addition, the code makes use of the PETSc library, so should be portable to

other systems.

8 Acknowledgements

This project was funded under the HECToR Distributed Computational Science and Engineering

(CSE) Service operated by NAG Ltd. HECToR - A Research Councils UK High End Computing

Service - is the UK’s national supercomputing service, managed by EPSRC on behalf of the

participating Research Councils. Its mission is to support capability science and engineering in UK

academia. The HECToR supercomputers are managed by UoE HPCx Ltd and the CSE Support

Service is provided by NAG Ltd. http://www.hector.ac.uk

References

[1] The SUNDIALs library https://computation.llnl.gov/casc/sundials/main.html

[2] The Metis library http://glaros.dtc.umn.edu/gkhome/views/metis

[3] The PETSc library http://www.mcs.anl.gov/petsc/petsc-as/

[4] The Edikt project http://www.edikt.org.uk/edikt2/

http://www.hector.ac.uk/

