
MicroMagnetic modelling of naturally occurring magnetic 

mineral systems: II 

Dr. Chris M. Maynard, Mr. Paul J. Graham  

EPCC, The University of Edinburgh,  

James Clark Maxwell Building, 

Kings Buildings, Mayfield Road,  

Edinburgh, EH9 3JZ 

21/02/2013 

             

 

Abstract 

This report presents the results of the second HECToR dSCE project to port and parallelise a code 

(microMag) which models the magnetic properties of mineral systems on to HECToR. This code 

represents the magnetisation within a structure using vectors located at the vertices of a finite element 

mesh in order to generate a high-fidelity 3D micro-magnetic model. 

 

The scientific goal of this project is to enable the investigation of large-scale simulations with 

increased system-size and precision which are currently not possible. These simulations will be of 

benefit to research into mineral- and palaeo-magnetism. 

 

The key aims of this project are: to complete the parallelisation of the code started in the original 

project, with particular focus on the generation of the stiffness matrices; and to incorporate a mesh 

repartitioning algorithm into the code in order to enhance performance. 

 

The PETSc library has been used to provide almost all the required parallel and numerical 

functionality. Critically, the interfaces it provides to third party libraries such as the adaptive timestep 

ordinary differential equation solver CVODE and the mesh partitioning library ParMETIS have been 

utilised. 

 

The outcome of this project is a working, parallelised microMag code on HECToR. A benchmark on 

a model containing more than 100,000 elements showed speedups of over four times faster on 16 

cores.Thus the project has enabled the investigation of large-scale simulations with increased system-

size and precision which were previously not possible.  
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1 Introduction 

There are many problems in the geosciences that rely on the ability to accurately determine the 

magnetic properties of minerals and the stability of the palaeomagnetic recordings that they contain. 

For example, the investigation of the behaviour of the geomagnetic field depends largely on the 

observed field variations on or above the Earths surface. Temporal records of direct observations 

stretch back less than two hundred years, and so a more detailed analysis is dependent of ancient 

recordings made in rocks as they are formed. Geological interpretation of the directional recordings of 

the ancient field led to the discovery, over 50 years ago, that the Earths oceanic and continental plates 

are continuously moving. Today, a more thorough understanding of magnetic mineralogy enables a 

detailed analysis of not only of fine scale continental block motions and rotations, but also 

emplacement temperatures and thermo-temporal history of the rocks to be determined. In addition,  

magnetic mineralogy is frequently used as a proxy for determining palaeoclimate variations. 

 

All these applications depend on an understanding of how the magnetic properties of minerals change 

with the mineral microstructure, chemistry, grain geometry and inter-grain magnetic interactions. The 

complexity and diversity of naturally occurring magnetic minerals makes the numerical 

micromagnetic problem a much more difficult task than that applied to the generally more ideal man-

made recording media. The increasing sophistication of environmental-magnetic investigations relies 

on a high-fidelity magnetic re-coding processes occurring in natural magnetic mineral systems. Yet 

our understanding of the fundamental processes that enable common magnetic minerals to record the 

local geomagnetic field’s direction and intensity and to retain this information over geological time 

scales is far from complete. A much better understanding of the recording process in natural materials 

is required in order to assess the reliability of rock-magnetic recordings. 

 

Equilibrium magnetic domain structures are determined by integration of the Landau-Lifshitz-Gilbert 

equation of motion. Finite element methods are the preferred technique when dealing with irregular 

geometries since magnetic domain structures are sensitive to the accuracy with which grain 

geometries can be modelled. Before the dCSE project the code, microMag, existed as a serial code 

written in Fortran90. Some initial work had been undertaken in investigating methods of 

parallelisation. This was the basis for the work-plan submitted as part of the dCSE proposal.  

2 Algorithmic details 

 

The numerical micromagnetic model represents the magnetisation within a structure using 3D 

Cartesian vectors (each of unit length) placed at the N vertices of a finite element (FE) mesh. 

Tetrahedral elements are employed to reduce the discretisation error. The size of the computational 

cell is governed by the micromagnetic quantity, termed the exchange length, which restricts the 

maximum cell size. 

 

Equilibrium magnetic domain structures are determined by a minimisation of the total free magnetic 

energy of the system, which is achieved by integration of the Landau-Lifshitz-Gilbert (LLG) equation 

of motion. Dynamical solutions require the LLG equation of motion to be solved for every time step. 

The total effective field contributions include a computationally intensive non-local (magnetostatic) 

field calculation, and also the local exchange, anisotropy and externally applied field calculations. Of 

the previous four component fields only the magnetostatic field is non-trivial. It is also the most 

computationally intensive part in the determination of the total effective field. A finite volume 

approach is employed to calculate the exchange and anisotropy fields and is essentially determined by 

multiplication of the stiffness matrix by the global magnetisation vector.  

 

The magnetostatic field is solved via a scalar potential approach. This requires the solution of the 

Poisson equation for the divergence of the magnetisation and solution of the Laplace equation for the 



boundary vertices. An efficient boundary element method is employed to approximate the long-range 

interaction. Both equations are discretised using a Galerkin scheme for a linear finite element solution 

of the equations. The solution is obtained via a standard conjugate gradient (BG) solver. The storage 

required in the solution of the Poisson equation is extremely sparse hence efficient sparse matrix 

methods are essential. Also, the tetrahedral finite element basis functions provide an efficient way of 

calculating the remaining three component fields by simple sparse matrix-vector multiplication. 

Bespoke sparse matrix management is required due to the data layout which arises from the efficient 

construction of the initial finite element basis functions.  

 

The matrix arising from the boundary element approximation to the long-range interaction is of size 

N
2
, where N is the number of vertices on the material boundary. In a parallel code this dense matrix 

can be distributed efficiently amongst each individual processing unit. Integration of the stiff system 

of ordinary differential equations (ODEs) arising from the LLG equation of motion requires an 

implicit solver and thus requires the approximate inverse to a sparse 3N system of linear equations. 

The use of explicit methods would be ineffective due the restrictive size of the time-step controlled by 

the stiffness of the system. The implicit method is a variable order solver which is based on a multi-

step backward Euler method with variable coefficients. 

 

3 Work plan 

The original work plan for the 6 month project is split into three sections or work packages (WP), and 

is shown below 

WP1 Efficient and accurate construction of the stiffness matrix code [1 month]  

WP2 Parallel matrix generation implementation [2 months]  

Task 2a Determine sparseness structure of each stiffness matrix  

Task 2b Create PETSc matrix data objects with relevant structure  

Task 2c Determine matrix values and populate PETSc matrix objects  

WP3 Implement call to ParMETIS for mesh generation [2.5 months]  

Task 3a Implement calls to ParMETIS  

Task 3b Implement support for alternative mesh partitions and data decomposition  

Task 3c Benchmark the performance of the code for a large system and write a report  

WP4 Final report in html and pdf format [0.5 months]  

3.1 Variations from workplan 

Chris Maynard was the original member of staff working on this project, but due to a new job left 

EPCC a few months into the project. Once it was apparent that Chris was leaving Paul Graham was 

assigned to the project so there was an opportunity to perform a handover, but obviously this had 

some impact on the technical work as the new staff member needed to get up to speed on the work. 

The main outcome of this was that the project end date was pushed back and the parallelisation of the 

matrix generation implementation (WP2) was curtailed. 

 

The impact for not achieving WP2 on the overall success of the project was relatively small, as 

typically the time spent in initialising the matrix objects is much smaller than the time spent actually 

performing the calculations. That is not to say that it is not worthwhile doing, but performance 

optimisation of the calculation phase would clearly reap larger benefits. To this end the WP3 work 

which could directly affect this was brought forward. 

 



During the project some more detailed profiling of the code was performed, and it was found that one 

of the performance bottlenecks in the code was a data conversion routine introduced in the previous 

project. This routine was necessary to convert data to that required by CVODE, but it was inefficient, 

and thus it was decided that it would be time well spent in optimising this portion of the code. 

4 Implementation 

Coming into this project, the code was parallelised using MPI, but the initialisation phase is 

effectively serial. However, even taking this into consideration, the efficiency of the parallel section 

was very poor and there was still some issues with correctness of results. 

4.1 Verification and Profiling 

The first part of Work package 1 was to verify that code was producing the correct answer. The 

results of the serial and parallel code were compared on a benchmark mesh input file. Whilst similar, 

these outputs were not sufficiently close. However, the serial version of the code uses a preconditioner 

for the CG solver (which only works in serial), namely an Incomplete Cholesky decomposition. 

Switching off the preconditioner in the serial code reduced the difference between the outputs. In 

particular, the resultant vector of the CG solve with preconditioner differed by 3 significant figures, or 

1% relative difference to the parallel version: switching off the preconditioner reduced the 

discrepancy to 12 significant figures. Preconditioning should not change the answer, only how it is 

computed. However, in such a numerical system, rounding errors can be significant. This effect can 

possibly be seen for a linear system with a large condition number, or if the rounding errors become 

significant when computing the preconditioner itself, rather than the CG solve. By systematically 

replacing the matrices and vectors with the identity or zero, the difference of the serial and parallel 

code was tracked though the code, and any remaining difference in the original code verified to be 

numerical rounding error. 

 

Using PETSc self instrumentation features to profile the code revealed it spent large amounts of time 

in Matrix-Vector operations. Further profiling with the CRAY-PAT tool was performed. It reported 

large amounts of time were spent in MPI communication routines. This confirmed that the stiffness 

matrices were responsible for the large amounts of communication and hence slow performance. 

 

The default PETSc data distribution for matrices is by row across the processor ranks. For a sparse 

matrix, there is a special data structure with a distinction between matrix elements which are in the 

diagonal block the set of rows which belong to the processor, and those which are off-diagonal. 

Matrix-Vector operations on the diagonal block are completely local. The off-diagonal pieces require 

communication. The code was constructing the stiffness matrices, in serial, as FORTRAN arrays, 

before constructing PETSc distributed data objects and populating them with the values in the 

FORTRAN arrays. Whilst this is ultimatley a rather inefficient process, it is not the cause per sé of the 

poor performance when operating with those matrices. They are constructed correctly with the right 

values. 

 

It was believed that the cause of the poor performance came from the partioning of the mesh, or rather 

the lack of any formal partitioning. The mesh for any particular geometry is generated by a third party 

library called Cubit. This is an entirely serial code. Its output is a text file which has the co-ordinates 

of the vertices, the tetrahedra connectivity list, i.e. what is the vertex number of each vertex of the 

tetrahedra, and a list of the elements which are on the boundary with how many faces they are 

connected to. The microMag code knows nothing about partitioning this mesh in parallel. It simply 

reads in the file, creates the stiffness matrices with the rows and columns based on the values from the 

mesh file. PETSc then chops these matrices up by row resulting in effectively an arbitrary partition of 

the mesh. This means that tetrahedra which are connected to each other are distributed across 

processors. This results in more block off-diagonal than diagonal elements in the matrix and thus 



potentially a very high communication overhead. Creating a much more efficient partition should help 

minimise the communication overheads. 

 

This requirement is essentially work package three. In consultation with the code owner it was 

decided, that as the partitioning is critical to the performance of the code, to bring forward work 

package 3 and implement the partitioning with ParMETIS before completing work package two. The 

process employed for this was to first implement a new program to partition the mesh independently. 

Then the existing microMag code could read the reordered mesh file without further modification, 

thus allowing for quicker development and testing of the reordering aspect.. Once this was working 

the partitioning code would then be incorporated into the microMag code so it can be used as a single 

stage operation. 

4.2 ParMETIS, PETSc and Partitioning 

PETSc has rather useful feature in that it provides interfaces to several third-party partitioning 

libraries. ParMETIS is the default partitioning library, and rather than call the native interface to 

ParMETIS, using the PETSc interface reduces the amount of code integration required at a later stage. 

The partitioning is done by vertex rather than element. 

 

The methodology for partitioning is: 

 Read in mesh data from the PATRAN file 

 Convert to a format recognised by ParMETIS 

 Generate the new partition using ParMETIS 

 Apply the new ordering to the mesh data 

 Create the PETSc matrices from the repartitioned mesh 

 

The idea is that the mesh has been well ordered by the repartitioning, so the matrices will also be well 

ordered, and thus communication will be minimised. There are two new subroutines: 

repartVert -  this is actually a program used during development which invokes the repartitioning 

independently of the MicroMag code. It reads in the test model data, and then calls the subroutine 

reorder, then writes out the newly repartitioned data. 

reorder – in this routine, firstly the connectivity data for the vertices is generated, and then used to 

create the adjacency lists required by PETSc/ParMETIS. The PETSc data structures are then created 

and the partitioning invoked. The new partition data (which is a list of vertixes with a map of where 

their new position on the processors is), is then gathered to the rank 0 process, and the partitioning 

applied, which is effectively a reordering of the vertices and the tetrahedral elements. Finally the 

vertex and tetrahedra data is broadcast back to the appropriae process elements. 

 

In the main microMag code now has the option of using the partitioning (currently set by a logical 

variable called usingreordered, it is suggested that a runtime variable may be more useful in the 

future). If this is set to true, then the reorder subroutine is invoked, and a further step is performed to 

redetermine the boundary nodes based on the new repartitioning. 

4.3 Data Conversion Optimisation 

Initial results of the parallel code for both the standard and repartitioned version of microMag were 

very disappointing, showing no speedup at all as core counts increased, and in some cases going even 

slower. Closer inspection revealed that one of the causes of this was in two data conversion routines 

introduced in the previous dCSE project. The microMag code holds the magnetic field in two dif- 

ferent data structures. The first is a two-dimensional array of size (NMAX, 3) where NMAX is the 

number of finite element vertices, and 3 represents the three physical dimensions in Cartesian space. 



The second data structure is a linearised one dimensional array, (3*NMAX). The code switches 

between these two data structures several times as the Sundials solver expects a one dimensional 

array. Looking at detailed timings for the code, this conversion was quite time consuming as in its 

original form it required several PETSc VecScatter calls, which can carry a significant 

communication overhead, especially given the frequency with which they were being used. Also, this 

overhead increases as the core count increases, so any gains in speed seen in the other parts of the 

code were being countered by the increase in execution time from the conversion routines. 

 

It was considered converting the code in order to maintain the one-dimensional representation 

throughout, but this would require a fundamental rewrite, so an alternative strategy was employed. 

Investigation revealed that the conversion between the two representation could be performed entirely 

locally to each processor – there should be no requirement to send data between cores. Thus two new 

conversion routines were written so as not to use any communications. Table 1 below shows 

pseudocode for the old and new conversion routines 

 

Table 1: comparison of conversion routines 

Old conversion 

 
! Set up indices 

ISCreateStride(...) ! 1D stride 

ISCreateStride(...) ! 3D stride 

 

! Move data between vectors 

VecScatterCreate( ... ) 

VecScatterBegin( ... ) 

VecScatterEnd( ... ) 

 

! Tidy 

VecScatterDestroy(...) 

ISDestroy(...) 

 

!Repeat for y and z 

... 

 

! Done 

New conversion 

 
! get local array values 

VecGetArrayF90(1dVec, xyz ...) 

VecGetArrayF90(xVec, x ...) 

VecGetArrayF90(yVec, y...) 

VecGetArrayF90(zVec, z ...) 

 

! move data 

do i=1, n3d 

  x(i) = xyz(3*i-2) 

  y(i) = xyz(3*i-2) 

  z(i) = xyz(3*i) 

end do 

 

! Put back in vectors 

VecRestoreArrayF90( ...) 

.... 

 

! Done 

 

 

These new conversion routines now of the O(10) times faster than the original routines, and also 

scaled well with core count. Once this change had been applied parallel speedup was seen in the 

overall code for the first time. 

 

5 Results 

During development three relatively small test cases were used, and one large test case was used for 

final performance timings: 

 

 brick0_300 – a  “brick” shape representing a 300nm size particle, 1826 nodes (8751 elements) 

 cube_20nm – a simple cube, 20nm long, 31 nodes, 72 elements 

 cube_100nm – a simple cube, 100nm long, 2270 nodes, 10955 elements 



 sphere – a sphere , approx 136nm radius, 18838 nodes, 100245 elements 

 

Additionally, the code could be adjusted to run for either a set number of timesteps for each test case, 

or until the model had converged. Any speedup results reported below are measured against the time 

taken for the parallel code to run on one core. 

 

As noted earlier initial results for the parallel performance were very poor until the new data 

conversion routines were introduced. Following the introduction of these, some speedup was seen as 

discussed below. 

 

Speedup for the smallest test case (cube_20nm) was non-existent, in fact it slowed down on more than 

one core. This is entirely due to the size of the model, at only 31 nodes there is not enough work to 

justify the overheads of distributing the data and communications. This test case was primarily used to 

check for correctness during development as it would take under a minute to run to conclusion. 

 

Figure 1 shows the speedup for two slightly larger test cases, brick0_300 and cube_100nm. 

 

 

 

Figure 1: Speedup for the cube_100 and brick_300 test cases 

 

As one can see the speedup is not great, peaking at about 1.7 times faster and 2.0 times faster on 8 

cores for the brick and the cube test cases respectively, and then tailing off. For both these cases the 

time taken for the largely sequential problem initialisation steps were much less than the total 

execution time (in the order of 0.5% of total execution time) so this was not a contributory factor.  

 

Figure 2 shows a plot of the speedup vs the number of vertices per core after the data has been 

distributed: this gives an idea of the amount of work each core has to do for these two test cases 
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Figure 2: speedup as a function of vertices per core after data distribution 

 

Now to consider the much larger test case, sphere. For this case, the initialisation is a larger 

proportion of the total runtime, approximately 3% for the sequential version. Also, due to time 

constraints some of the benchmarking runs were only performed for one thousand timesteps rather 

than to full convergence (a single core run of this benchmark takes approximately 10 hours to 

converge). Thus Figure 3 shows the speedup at 1000 timesteps for two cases: the purely parallel 

calculation, and the combined total speedup including initialisation. Of course, as it was a limited 

timestep run the initialisation becomes even more significant, and in fact accounts for over half the 

execution time beyond four cores at 1000 timesteps. Clearly though, one can see that the speedup is 

much more pronounced for this large test case, hitting 5 times faster at 16 cores. 
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Figure 3: Speedup for sphere, for pure calculations and for calculations and initialisation 

combined, for 1000 timestep runs 

 

The repartioning was also tested on this test case, but in this instance a full run to convergence was 

performed (which also gives an idea of how the intialisation affects the total speedup). 

 

Table 2: Timings for sphere to full convergence 

 Serial 16 cores Speedup 16 cores 
repartitioned 

Speedup 

Initialisation 890 1359  1905  

Calculation 30366 6121 5.0 7278 4.2 

Total 31256 7480 4.2 9183 3.4 

 

Table 2 shows the timings for the sphere test case for three runs: serial, 16 cores, and 16 cores using 

the repartitioning. Unfortunately the figures indicate that the repartitioning does not offer any 

performance improvement, and in fact slows the code down. The repartitioning increases the time 

spent in intialisation as expected but, it also increases the time spent doing the calculation. It is not 

clear what is the cause for this, unfortunately due to time constraints no further investigation was 

possible. 

6 Further work 

Further investigation into the repartitioning would be desirable, as it is not clear why it has been 

detrimental to the performance. Also, there is scope for both serial and parallel optimisations in the 

code: much of this project was spent trying to ensure that the code produced correct answers rather 

than in performance optimisation, and during this the author has spotted various opportunities for 

performance enhancement which unfortunately time constraints have prevented. For example, there 

are several pointwise vector divides in the core algorithm which could be refactored to 

multiplications, and some static vectors which are recalculated at every timestep unnecessarily. The 
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initialisation could also be parallelised. These and other suggestions will be passed on to the code 

owners. 

7 Summary 

The key aims of this project were: to complete the parallelisation of the code started in the original 

project, with particular focus on the generation of the stiffness matrices; and to incorporate a mesh 

repartitioning algorithm into the code in order to enhance performance. This has been partially 

achieved: the code now works correctly in parallel, which it did not at the start of the project. 

Speedups of over four times faster have been seen for a large test case, which for this class of finite 

element problem is not unreasonable. The code also now has the capability to utilise repartitioning, 

although initial results suggest that this does not enhance performance. 

 

The scientific goal of this project was to enable the investigation of large-scale simulations with 

increased system-size and precision which are currently not possible. These simulations will be of 

benefit to research into mineral- and palaeo-magnetism. This has been achieved, as the code can now 

be used to run large simulations, in parallel, taking advantage of the memory and compute power 

available on HECToR. In addition, the code makes use of the PETSc library, so should be portable to 

other systems. 
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