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1 Introduction

This project concerns the continuing development of an in-house CFD application Incompact3D
used by the Turbulence, Mixing and Flow Control group at Imperial College. This is a Navier-
Stokes solver that combines the versatility of industrial codes with the accuracy of spectral
codes [7][8]. Thanks to a very successful previous dCSE, Incompact3D can now scale to more
than 100,000 computational cores [9] and it is regularly being used to run 8,000-16,000 core
jobs on HECToR. This enables the group to conduct cutting-edge turbulence researches pro-
ductively, including their recent efforts to understand the physics of turbulence generated by
multi-scale/fractal objects.

The high degree of parallelisation was achieved mainly via the development of a highly
scalable 2D pencil decomposition library with a distributed FFT interface - 2DECOMP&FFT
[10]. This numerical framework contains the reusable software components derived from the
previous Incompact3D dCSE and it can be easily applied to other applications [4] based on
similar numerical algorithms and parallel strategies. The software has subsequently become an
open-source package [1] and is now part of the Open Petascale Libraries [3].

While the introduction of 2D pencil decomposition enables these applications to run at very
large scale, the main impediment to scalability now becomes the high communication cost, often
more than 50% of the total cost in large simulations. On production systems, the communication
cost also tends to increase as the number of cores increases. To tackle this problem, one obvious
solution in theory is to introduce overlap of communication and computation (OCC). Such
overlap is, however, not easily achievable because of the all-to-all communication pattern used
in these applications, its blocking implementations in present MPI libraries, and the general
lack of mature software support. This project attempts to address the problem by introducing
OCC support in the 2DECOMP&FFT framework, in order to facilitate OCC in applications
like Incompact3D.

The project was granted 5 months full-time effort for one person to work on a full-time basis,
which translates to roughly 1 year effort on a 40% part-time basis. The project officially started
in March 2012.

Two work packages in the original proposal were supported. The work package 1 - to intro-
duce flexible data layout support in the 2DECOMP&FFT framework, which is a prerequisite of
other technical works - are discussed in section 4. The work package 2 - to create alternative
FFT code for Incompact3D using non-blocking MPI collectives - are discussed in section 2 & 3.

2 Non-blocking MPI collectives

For applications using all-to-all type of communication, there are several technical approaches
to realising overlap of communication and computation. For example, in a previous HECToR
dCSE project, Anton et al.[4] has shown that OCC may be achieved using OpenMP threads.
This, however, requires replacing the all-to-all calls with non-blocking MPI send/receive calls
(i.e. re-implementing the high-level MPI functions using low-level operations).

Alternatively, one can implement OCC using one-sided communication. This may appear
an attractive idea for Cray XE6 systems with RDMA support built in its GEMINI interconnect.
However, this is generally speaking hard to implement and requires software supports in the form
of low-level system libraries (libntk and libonesided on HECToR), which are, in the author’s
opinion, not mature enough.

This project concentrates on a third approach - to realise OCC using non-blocking MPI
collectives. The idea of non-blocking MPI collectives has been around for quite a long time. It
just narrowly missed the previous MPI-2.2 standard and it is possibly the most scrutinised new
feature in MPI-3.0. The basic idea is straight-forward: it allows applications to issue immediate
collective operations in the form of:
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CALL MPI_I......(......, request, ierror)

! more computations

CALL MPI_WAIT(request, status, ierror)

which facilitates overlap of communication and computation, a feature already available for MPI
point-to-point communication. What is directly relevant to the current project is the functions
MPI IALLTOALL and MPI IALLTOALLV newly introduced in MPI-3.0.

2.1 LibNBC

When this project started in March 2012, the MPI-3.0 standard was not finalised. The spec-
ification was released in September 2012. Naturally it takes more time for library vendors to
actually produce high-quality implementations. For these reasons, all technical works for this
project was based on LibNBC, a prototype implementation of non-blocking MPI collective APIs.
This unfortunately means some technical details contained in this report can become slightly
outdated when it is published, although the principal ideas remain the same.

LibNBC [2][5] is a reference implementation of the non-blocking MPI collective operations.
For this study, the latest version 1.1.1 (July 2012) was used. Here are technical details of building
and using this library:

2.1.1 On a development system with GNU compiler and OpenMPI

Assume the library is to be installed at LIBNBC DIR (which can be a local path), with GNU
compiler and OpenMPI binaries (such as mpicxx ) in the $PATH, simply do:

./configure --prefix=$LIBNBC_DIR

make

make install

To build applications using the library, add the following flags at linking stage:

$LIBNBC_DIR/lib/libnbc.a -lstdc++ -lmpi_cxx

2.1.2 On HECToR phase 3

On HECToR, assume the library is to be installed at LIBNBC DIR, with the PGI compiler, do:

MPICXX=CC ./configure --prefix=$LIBNBC_DIR --host=x86_64-unknown-linux

make

make install

The –host part allows proper cross-compiling.1 To build applications using the library, pass the
following to the linker:

$LIBNBC_DIR/lib/libnbc.a

2.1.3 Asynchronous Progress

Ideally, MPI libraries can offload communication to interconnect hardware and have processors
concentrate on computation. As reported in [6], such work in being done on some InfiniBand
clusters. When such hardware and library supports are not available, one can use purely software
solutions. libNBC supports the use of threads to progress communication asynchronously. To
switch on such support, add either

1Without the flag, configure would fail because it would attempt to run binaries on the login node causing
’illegal instruction’ errors.
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--with-thread

or

--with-rt-thread

to the command line of the configure script. Unfortunately, applications linked to LibNBC with
these options on all resulted in run-time errors on HECToR. This was not further investigated
because: (1) these are quite low-level software implementation issues that are beyond the scope
of this study; (2) an alternative and practical way to progress communication is available: to
call MPI TEST regularly from the main computational thread of applications.

Implementing fully asynchronous progression is often a platform-specific issue so it is better
to leave the MPI library vendors to address this problem in the future.

3 APIs to support OCC in 2DECOMP&FFT

A number of new APIs have been introduced to the 2DECOMP&FFT framework, in order
to help applications implement overlap of communication and computation using MPI non-
blocking collectives. Depending on the numerical algorithms, there are various ways to achieve
OCC. These are covered in details in this section.

3.1 Low-level API supporting non-blocking global transpositions

For large-scale applications like Incompact3D, the global transposition operations, which inter-
nally use all-to-all type of communication, are often very time-consuming. For example, assume
that application data is distributed as 2D pencils2, to transpose data from X-pencil to Y-pencil
storage, applications need to use the following 2DECOMP&FFT’s communication API:

call transpose_x_to_y(in, out)

where in contains the input data stored in X-pencil, and out contains the output stored in
Y-pencil. This communication routine internally contains the following three steps:

1. Gathering data into the MPI send buffers from the input array.

2. Calling MPI ALLTOALLV (or MPI ALLTOALL, depending on user settings) to redis-
tribute the data among MPI processes.

3. Scattering data from the MPI receive buffers to the output array in a usable form.

In particular, step 2 above is a blocking operation that will not return until the communica-
tion is completed and step 2 is often quite time-consuming in large-scale applications. In the
corresponding non-blocking API, following the design of the MPI non-blocking APIs, the above
operation is broken into two parts:

call transpose_x_to_y_start(handle, in, out, sbuf, rbuf)

call transpose_x_to_y_wait (handle, in, out, sbuf, rbuf)

Here handle is used to identify one particular set of communication. Because many non-blocking
communication calls may be ongoing at the same time, applications need to supply a send buffer
sbuf and a receive buffer rbuf that are associated with each communication. The start routine
packs the MPI send buffer, starts the all-to-all communication, and returns immediately. Later,
a call to the corresponding wait routine ensures the communication is completed and then

2Please refer to http://www.2decomp.org/decomp.html for an introduction of 2D pencil decomposition, in
particular Fig. 2 on that web page for the exact definition of pencils.
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unpacks the MPI receive buffer. Between the start call and the wait call, the content of sbuf
should not be modified and the content of out should not be referenced, to avoid unpredictable
results. Other unrelated computations may be carried out while the communication is ongoing.

While the principal of overlap communication and computation is straight-forward, it is up
to application developers to identify suitable opportunities in their algorithms to make use of
the idea. An example is given in the next section.

3.2 Application in 3D FFTs

To demonstrate the use of the non-blocking API above, an algorithm to perform multiple in-
dependent three-dimensional FFTs is presented here. Suppose that data is distributed as 2D
pencils, a typical parallel FFT can be implemented using the following steps:

1. Assume the real-space data is distributed in X-pencil storage, perform 1D FFTs in X
direction first.

2. Transpose from X-pencil to Y-pencil storage.

3. Perform 1D FFTs in Y direction.

4. Transpose from Y-pencil to Z-pencil storage.

5. Perform 1D FFTs in Z direction. The resulting spectral-space data is in Z-pencil storage
(the different data distribution normally does not cause problem in practice. An option is
always available to perform two extra transposes to bring the spectral-space data back to
X-pencil storage).

When the transpositions above are realised using standard MPI ALLTOALLV, which is blocking,
only one parallel FFT can be performed at a time. With the non-blocking API, a new algorithm
can be designed to overlap the communication of one FFT with the computation of another.
While there are many ways to design such algorithms, one of the most straight-forward ways,
proposed in [6] has been implemented in this project. This algorithm can be summarised using
the following pseudo-code, assuming multiple data sets are identified by V i:

1D FFTs in X for V_1

call transpose_x_to_y for V_1 (blocking)

1D FFTs in Y for V_1

call transpose_y_z_start for V_1

do k=2,N

1D FFTs in X for V_k

call transpose_x_to_y for V_k (blocking)

1D FFTs in Y for V_k

call transpose_y_to_z_start for V_k

call transpose_y_to_z_wait for V_(k-1)

1D FFTs in Z for V_(k-1)

end do

call transpose_y_to_z_wait for V_N

1D FFTs in Z for V_N

As can be seen, the Y-to-Z transpose for variable k and the computation of 1D FFT in Z for
variable k-1 are overlapped.

As mentioned earlier, getting libNBC to progress the communication asynchronously turned
out to be unsuccessful on HECToR. MPI TEST calls have to be used to progress the communi-
cation. Normally, multiple 1D FFTs in the algorithm above can be performed in one go using
APIs such as FFTW’s advanced interface. Now they have to be implemented using simple 1D
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FFTs within loops so that the MPI TEST can be inserted and called regularly3. This constraint
should be removed in the future when better MPI implementations become available.

The algorithm above was shown to be effective on HECToR. On phase 2b hardware, by man-
ually optimising the number of MPI TEST calls, up to 15% performance gain can be achieved
when performing a set of independent FFTs of size 15363. On phase 3, without any optimising
practice, a 8% performance improvement was observed with a problem size of 20483. Note that
the problem sizes were chosen on each system for better load balance. Such algorithm was seen
to be particularly efficient with large problem sizes.

3.3 High-level API supporting multiple independent FFTs with OCC

Based on the algorithms presented in the previous section, a high-level API is introduced in
2DECOMP&FFT perform multiple independent FFTs in one function call. This can be very
useful in some spectral-method applications.

As the time of writing, the API is in the following format:

call decomp_2d_multiple_fft(in, out, opt_sbuf, opt_rbuf)

Here both input in and output out are four-dimensional arrays with the last dimension repre-
senting different 3D data sets. Each 3D data set has to follow the pencil-distribution storage
format as defined by the 2DECOMP&FFT library. Two optional workspace arrays may be sup-
plied by applications to be used as send/receive buffers by the MPI collective operations. They
should be at least twice as large as the individual 3D data sets because two separate buffers
are required when implementing communication/computation overlap. If such workspace is not
supplied, the library will internally allocate sufficient scratch space.

The API may be subject to slight change after receiving feedback from key users to bet-
ter accommodate data structures in use in real applications. However, the flexible design of
the 2DECOMP&FFT framework, using Fortran generic interface, enables new syntax to be
introduced easily.

3.4 3D FFT API using fine-grain OCC

The algorithm discussed in section 3.2 - to overlap communication of one FFT with computation
of another FFT - is called in literature coarse-grain OCC. It is also possible to realise OCC within
a single 3D FFT, which will be referred to as fine-grain OCC.

The idea has been tried in [11] in a distributed FFT algorithm using a similar pencil-
decomposition setting, in which the author probably arbitrarily chose to transpose three quarters
of the data first, start computing on the transposed data, and allow that computation to be
overlapped with the transpose of remaining one quarter of data. Even with such a rudimentary
approach, it is reported that up to 10% performance gain were achieved on HECToR when the
problem size is sufficiently large.

The fine-grain OCC algorithm in this project is more flexible. It can be described as follows:
in Figure 1, the transpose between Y-pencil (left) and Z-pencil (right) can be completed in one
MPI ALLTOALLV operation. It is also possible to redistribute the data in smaller batches, e.g.
one X plane at a time using multiple MPI ALLTOALLV operations.

Similarly, for X ⇔ Y transpose, it is possible to handle data in one Z plane at a time.
There are many possibilities to implement such fine-grain OCC. Following is an algorithm

applying to X ⇔ Y transposes4.

3The best frequency making MPI TEST be calls is algorithm dependent, which, unfortunately, introduces one
extra parameter to applications

4This is chosen because of the favorable memory layout associated with the operations, as will be explained
in Section 4.
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Figure 1: Transpose from Y-pencil to Z-pencil.

1D FFTs in X for Z_1 plane

call transpose_x_to_y_start for Z_1

do k=2,nz (where nz is the size of Z dimension)

1D FFTs in X for Z_k plane

call transpose_x_to_y_start for Z_k

call transpose_x_to_y_wait for Z_(k-1)

1D FFTs in Y for Z_(k-1) plane

end do

call transpose_x_to_y_wait for Z_nz

1D FFTs in Y for Z_nz plane

......

code for Y to Z transpose and 1D FFT in Z

This algorithm has similar logic to the coarse-grain OCC algorithm presented earlier - the
communication for data on Zk plane and the computation of Z(k−1) plane is overlapped. This
algorithm was implemented in a standalone application and was shown to work well.5

4 Flexible data layout for 2DECOMP&FFT

This section covers the efforts under work package WP1 in the original proposal. It lays the
software foundation for other work packages.

4.1 Overview

Previous versions of the 2DECOMP&FFT library only work with three-dimensional arrays in
their natural storage, i.e. (i,j,k) order in Fortran where i is the fastest changing index, regardless
of the pencil orientation of the distributed data. While this is convenient enough for many
applications, there are situations in which more flexible data layouts are desired:

• It is a good practice to operate on the leading dimension of a multi-dimensional array in
Fortran in order to improve cache efficiency, as data elements in the leading dimension are
adjacent to each other in memory. For example, many FFT libraries perform best when
transform stride-1 data, although most do support non-stride-1 input/output.

• Some legacy applications have dimensions of multi-dimensional arrays swapped, presum-
ably an optimisation for old generations of hardware (for example, to increase the vector
length on a vector machine).

5The integration of this algorithm into the 2DECOMP&FFT library was not done because of the unexpected
technical difficulties to reuse 2DECOMP&FFT’s communication API.
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What makes the designing of flexible data layout relevant to this project is the fact that pencils,
the smallest elements in terms of communication in the current 2DECOMP&FFT library, needs
to be further partitioned into blocks, in order to implement communication and computation
overlap (as discussed in section 3.4). While the further partitioning can be done with any data
layout, only certain layouts can be implemented efficiently.

For example, in the transpose shown in Figure 1 earlier, suppose one wants to transpose
one X-plane at a time, it would be desirable that i is the last dimension so that data in each
X-plane is naturally contiguous in memory, making the packing/unpacking of communication
buffers more convenient and efficient.

4.2 Strategy

While it is possible to store data in any i,j,k combinations, decision was made to implement only
one combination other than the normal (i,j,k) format. This is described as follows:

• The X-pencil data always remains in the natural (i,j,k) order as i is already the leading
dimension.

• The Y-pencil data can alternatively be stored in (j,i,k) order so that j becomes the leading
dimension.

• The Z-pencil data can alternatively be stored in (k,j,i) order so that k becomes the leading
dimension.

This combination ensures that in all pencil orientations the dimension that is completely local
in memory is always the leading dimension, giving algorithms working on that dimension better
cache efficiency.

Note that based on the reasoning in section 4.1, for Y-pencil data, (j,i,k) order is already
suitable for X ⇔ Y transposes; (j,k,i) order is really desirable for the Y ⇔ Z transposes.
Apparently, both conditions cannot be satisfied at the same time. So additional local transposes
are required in the algorithms preparing the communication buffers.

4.3 Software implementation details

In 2DECOMP&FFT, the alternative data layout is implemented as a pre-processing branch
of code and can be switched on with -DSTRIDE1 flag when building the 2DECOMP&FFT
library. If application chooses to use this option, its 3D arrays should be defined using the
transposed data layout. A number of implementation details are noted here:

• A set of utility routines are introduced that help applications allocate distributed arrays.
These routines handles the memory allocation properly according to users’ storage prefer-
ence so application developers do not need to intervene. Application developers still need
to pay attention to the data layout when looping through the distributed arrays.

• Key I/O routines in 2DECOMP&FFT have been updated to work with the stride-1 data
layout as well. Regardless of the storage in memory, data files generated by these I/O
routines always store 3D arrays in their natural (i,j,k) order to simplify pre- and post-
processing tasks.

• The distributed FFT interface implemented using FFTW 3 API has been updated to sup-
port stride-1 data layout. Bindings with other FFT libraries are not updated unless there
are specific user requirements. Performance differences when using stride-1 data layout
were not seen in small to medium size problems when running on HECToR. According to
the P3DFFT User Guide, enabling stride-1 data structures may ’in some cases give some
advantage in performance’. This is probably because P3DFFT has also introduced loop
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blocking optimisation, which is a technique that can be useful but hard to generalise or
tune automatically.

5 Conclusion and future works

A number of techniques were implemented during this project to enable 2DECOMP&FFT-based
applications to have the ability to overlap communication and computation. In particular, the
following goals have been achieved:

• A set of low-level API have been created in 2DECOMP&FFT to facilitate OCC in algo-
rithms.

• The effectiveness of the API above was demonstrated in an application of multiple inde-
pendent FFTs, achieving a performance gain of up to 15%.

• A high-level API has been provided to enable multiple independent distributed FFTs to
run in a single subroutine call.

• By building on top of the 2DECOMP&FFT library, the CFD code Incompact3D is now
MPI-3 ready and should benefit from the new MPI library development in the future.

• A sample application has been created to demonstrate the use of fine-grain OCC in 3D
distributed FFTs.

• Introduced more flexible data layout in the 2DECOMP&FFT library.

• Updated 2DECOMP&FFT’s I/O code to support additional data layouts.

Software developed within this project has been released wherever appropriate to benefit the
wider community:

• Version 1.5 of the 2DECOMP&FFT library was released in October 2012. This release
has included a number of new APIs derived from this dCSE project. The library is now
used by 8 CFD codes on HECToR, and adopted by many research groups internationally.

• The CFD code Incompact3D has been open-sourced since November 2012 and has already
attracted interests from the research community, leading to new collaboration opportuni-
ties.

There are two additional work packages in the original proposal which were not supported
by dCSE. However, works on them outside the scope of this dCSE project have resulted the
following:

• An API for Global Arrays (GA) integration was introduced in the latest version of 2DE-
COMP&FFT to allow applications to conveniently access GA’s one-sided communication
routines.

• Work has been done on using 2DECOMP&FFT with threaded versions of underlying FFT
libraries. This has been shown to provide good performance on some systems.
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