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Abstract:

The laser-driven helium atom is a nearly ideal system for both experiireamdatheoretical exploration

of quantum mechanical correlation and quantum mechanical energgregeetween matter and light.
Non-classical correlation (also called entanglement) is one of the most foystand anti-intuitive fea-

tures of the quantum mechanical universe. For example correlation, fartheof entangled qubits, is at
the heart of most formulations of quantum computing, and correlated phaterwhat makes quantum
cryptography feasible. Correlation is something shared between parficlgse case of laser-driven he-
lium we are concerned with correlation between pairs of electrons ejattedtiie atom by the strong
laser fields, a process called non-sequential double-electron ioniZ&t&Dl). NSDI is a subtle effect,

deeply buried within the integrated atomic wavefunction, but it reveals in detpdrtant features of the
ionization dynamics of correlated quantum mechanical systems [1, 2, 3].

Helium - the simplest of all multi-electron atoms - is the only multi-electron atom for lwhigorous
(quantitatively correct) numerical solutions of the full-dimensional equatmiimotion (Schidinger’s
equation) can be obtained. Laser-driven hydrogen is similarly sustefdibigorous study numerically,
but hydrogen’s single electron cannot exhibit the correlation effeetisrttake multi-electrons of such
interest. The physics of single electron atoms driven by high intensity ladetion has been well un-
derstood for many decades. Helium turned out to be very different irreébjgect - every high integrity
solution of the helium Sckidinger’s equation we obtained revealed effects that were unpregdscigutis-
ing and unexplained.

HELIUM [4] is a code that solves the non-relativistic time-dependent @thger equation for a two-
electron atom or ion exposed to intense linearly-polarised laser fields - alépendent 5-dimensional
partial differential equation. The HELIUM time propagator was designaddet a requirement for un-
usually small integration truncation errors. This requirement stems from,@other things, difficulties
encountered modelling non-sequential double-electron ionization (N80ypical integration might for
example find total NSDI yields of the order 10or even 102, constraining local truncation errors to
considerably less than 1€ in a wavefunction normalised to unity. This requirement may be impossible
to meet with low order integration schemes. For this reason HELIUM usesbanaay-order Arnoldi
propagator [4]. The Arnoldi propagators often demonstrate improvedration efficiency in the limit of
high order even if small truncation errors are not a requirement.

In this report we discuss software developments aimed at improving our dbilitydel and analyse the
exchange of energy between the laser and atom during the productioasefcorrelated pairs in NSDI.
These developments include a generalised HELIUM, and new methoddysatte wavefunctions gen-
erated by HELIUM. Discussion of details begins in section 1 below.
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1 Objectives and Outcomes

In section 2 (J.Parker) we discuss the implementation of a new code thadlexterpresent HELIUM to
use generalized laser polarization. The implementation was successfwkeatidcuss the new self-test
modules for the generalized matrix elements used by the new code. The alémiggthe new code to turn



off the new feature so that it behaves identically to HELIUM if linear polatifields are used. Testing
of the new code against the current version of HELIUM verified théwal®ur is identical for a single
linearly polarized laser field polarised along either the z-axis or the x-axis.

One of the surprising (and welcome) outcomes of this project, was thevalisarthat on HECToR, the
performance exhibited better-than-linear scaling as we changed poogesre) count from 253 to 8001.
In other words, the program might be predicted to run a factor of 80@Xf&&er on 8001 cores than on
253 cores. Instead it ran almost a factor of four faster than this predliciMe attribute this to the fact
that on 253 cores the local arrays (on which the computation is perfonvezé)too large to fit in the L2
cache, and hence spilled out into slower memory. By contrast, on 8084,dbe local arrays were small
enough to be contained within the L1 cache, the CPU’s fastest memory.

In section 3 (E.Smyth) we discuss implementation of hybrid MPI-OpenMP phsallen HELIUM, which
may become essential to allow all cores on a node to be utilised as memory @faltsoat the same time
as the changes in section 2 will require larger angular momentum basis sets.

In section 4 (J.Parker) we discuss implementation of a new post-processiago transform output from
HELIUM (in spherical geometry) to cylindrical geometry. The new sofevams on the same number
of processors (cores) as HELIUM runs on, which on HECTOR is tygi@n arbitrary number up to
about 16,000 cores. The program performs correctly, and hassbeeassfully tested on a single coupled
spherical harmonic, pairs of coupled spherical harmonics with knowtyémexpressions in cylindrical
coordinates, and on the HELIUM ground state, (which is composed df & $ecoupled spherical har-
monics). Two of these tests are discussed in section 4.

In section 5 (J.Parker) we discuss the implementation of a multistage algorithtimeforansformation

of the final-state wavefunction from configuration space to momentum spaasumber of tests are

discussed, along with performance measurements on HECToR. Thremetbads, each with its own ad-
vantages, have been developed. Tests on HECToR have verifiedl fbat anethods, the 3 new methods
and the old method, give identical results on a range of core countsatipeof the new methods on a
very large full size wavefunction (8001 processors) is discussed e ohetail in section 5, and bench-
mark timings are presented. The latest incarnations of HECToR have bketoaun the old method

successfully on this core count. Nevertheless, the newer methodshataersially faster.

The accuracy of the momentum space transformation code has beerg&mbgrincorporating Coulomb
functions into the current Bessel function basis set. We have written gregywam for numerically in-

tegrating Coulomb functions, based on an arbitrary order Taylor sergmgator. The new software
performs correctly. Tests include orthonormality checks, comparison wathdmptotically correct for-
mulae, and comparison with the results of independently written code (a pwintiaid integrator based
on low order Numerov method).

As a substantial test of the new software, and as a demonstration of thedamgoof a rigorous quantita-
tive analysis of final-state energy distributions, we have applied the niéwese suite to a problem that
has proved challenging both to theorists and to experimentalists. The rasuttseussed in section 4.
A surprising outcome of this exercise is the finding that the new software allewo solve the difficult

problem in three largely independent ways, and with nearly identicatseJine old method failed at this
problem.

As outlined in the abstract, the scientific research enabled by HELIUMIgyalm exploit HECTOR is
important and unigue. The developments described above greatly edandM'’s versatility; some of
the new science already enabled by the new software is described imsedti&LIUM has always been
a heavy user of HECToR, and as a result the improvements in runtimerparioe reported in sections 2
and 5 will have a beneficial impact on the HECToR user community, by imprd¥EigUM'’s ability to
efficiently use HECTOR resources.

2 Work package 1. Extensions to HELIUM to allow calculations with
crossed laser fields

In the original program HELIUM the laser light is assumed to be linearly s#dr which effectively
removes a degree of freedom from the dynamics - the problem becomeéisreeBsional time-dependent
partial differential equation. In this section we describe the implementation ekgended version of
HELIUM that allows a second laser perpendicular in polarisation to the fireis removes the rota-
tional symmetry exploited in the original HELIUM program. The problem r/éw the fully general



6-dimensional time-dependent Setinger equation for laser-driven helium.

In HELIUM [4] the angular dependence of the two-electron wavefundsdchandled through a basis set
expansiorjl; [y L M) of coupled spherical harmonics in whitlh, are angular momentum values of each
electron,L is the total (orbital) angular momentum andl its z-component. The wavefunction takes the
form:

U(ry,ro,t) = Foipraa(rire )y 0op (1)
I1,00,L, M T2
where theF}, 1, . m (1,72, t) are time-dependent radial functions to be determined in the calculation.
Through the orthonormality of thé; I» L M), one obtains from the time-dependent Sclinger equation
with Hamiltonian H a set of time-dependent coupled two-dimensional radial equations furtbdons
Fyy o (1,2, t), Viz:

0

F t
iaFl’lléL’M/(Tlvr%t) =TT <l/1 lyL' M'|H Z bty £(T1,72,1)

172

thM>. )
l1,l2,L,M

HELIUM currently solves this set of equations for a single linearly poldriaser field handled within the
electric dipole approximation. This brings only a singfevalue into play. HELIUM gives each processor
responsibility for a particular sub-domain af; (7-) radial space. This is advantageous because the finite-
difference methods used in handling the radial variables then involve ealsest-neighbour processor
communication. Each processor carries all information needed to evaluateyalar integrals entering
the matrix elements of equation (2) and no inter-processor communicatiordischedetermine these.

Originally we planned to use the velocity gauge in implementing the interaction Hamiitdmiarecent
experience with the length gauge interaction Hamiltonian convinced us thantié lgauge is more ef-
ficient, less error prone and just as accurate. Improved efficiendycisioial importance in the crossed
fields problems because of the increased difficulty integrating over therhdjmensional space. For a
particular laser intensity, we might see an order of magnitude or more irdretise size of the basis set
of partial waves for convergence (compared to HELIUM, which use=alily polarised light). For that
reason the implementation uses the length gauge.

Taking the polarisation axis of the first laser as theis, and the polarisation axis of the second laser as
thez axis, we have for their respective electric fields:

E(t)=Ei(t)z = f(t)cos(wit — 0y, )2 and Es(t) = Ea(t)x = g(t) cos(wat — Oy, & (3)

where f(t) andg(t) are time-dependent envelope functions;, are laser frequencies aig, , corre-
sponding phase shifts.

The second laser field brings in the additional Hamiltonian terms:

2
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where the summation runs over both electrons and e is the electric charge elethron. These new
Hamiltonian terms will in turn introduce matrix elements of the form
<UL M'|rjsin 0 cos gj|lilo LM >, j=1,2

with M’ £ M terms in equation (2).

By allowing a completely arbitrary choice of the four angular quantum nusibgs LM >, the new
program can generate solutions to fully general 6-dimensionab8uiger equation for (non-relativistic)
2-electron atoms. The original HELIUM program is restricted to linearly yieda light, which allows us
to fix the M quantum number to a constant. In practice, the M quantum numbsrts&@in HELIUM.

Testing HELIUM _X_FIELDS:

The new crossed fields code, called HELIDMFIELDS has been completed and tested on single proces-
sor workstations, the eight cores of a multiprocessor workstation, onré8 of a workstation cluster, and



on 253 to 8001 cores on HECToR. As part of the testing program, weytkét the numerical integration
produces the same results independently of core count.

Thez-direction (crossed field) laser can be toggled on or off with the followsgmeters:

module Laselnteractions
Logical, parameter :: USErossedrield.Interaction = .True.
Logical, parameter :: USE_PolarisedE_Field = .True.

end module Laseinteractions

If the first parameter above is set to .False., then the program reverts aodiveal HELIUM program.
This provides a convenient test: we can verify that the numerical integsgerformed by HELIUM and
HELIUM _X_FIELDS are identical. If the first parameter above is set to .True. ancettend to .False.
we again produce a program with a linear polarised laser like HELIUMwiditht polarisation in the x di-
rection only. Again we verify that HELIUM and HELIUMK_FIELDS produce identical physical results,
(allowing for the 90 degree rotation; the HELIUM program usegwlarised fields.)

The major modules in HELIUM and HELIUMK_FIELDS (including the Communications MPI mod-
ules and the finite-difference modules) contain self-test routines, somioh are executed at start-

up every time HELIUM is run. The most elaborate of the start-up tests verdyttte elements of the
basis set of partial waves satisfy the desired constraints, that the ghgsiection rules (allowed tran-
sitions between states) are correct, that the Hamiltonian parameter areaysreectly initialised, and
that the matrix-elements have been correctly calculated. The matrix-elemetits ahgular part of

of the problem,< 115L M'|r; sin; cos ¢;|l1l1oLM >, can be formulated in terms of products of 3-j
and 6-j symbols [5]. The test routines calculate the 3-j and 6-j symbuéraedifferent methods using
equations 2.12, 2.18, 2.22, 2.24, 2.24 and 2.25 of [5]. Comparison okgudts can detect program-
ming errors, or degraded accuracy in difficult limits (lafgdor example). The most exhaustive is a set
of matrix-element tests that runs for about an hour on a typical procemso is disabled during nor-
mal runs of HELIUMX_FIELDS. This test routine calculates (among other things) the matrix-elements
< BI5L'M'|rjsin; cos ¢;|l1la LM >, by two independent methods. The first method uses a summa-
tion of products of three 3-j symbols using equ. 2.20 of Ref. [5]. Thmsd method uses the HE-
LIUM _X_FIELDS standard approach: a product of a 6-j and 3-j symbols.

During testing on HECToR we collected data on the performance of HELKIMIELDS as a function of
core count. Figure 1 shows the number of time-steps HELIXNIELDS can perform per second. The
program is compiled with Portland Group pgf90 compiler using the -fasts8epBmisation switches.
Performance is measured on 253, 1035, 2080, 4095 and 8001 ¢oreach case the same problem is
solved - the integration is performed in the same size integration volume (with naniatigns), so that
the total number of floating point operations done by HELILWFIELDS (in each of cases plotted in
Fig. 1) is to good approximation independent of core count. On 103%ceseh core operates on a
128x128 subset of the global grid. On 4095 cores each core openate 64x64 grid. It is clear that on
8001 cores the problem can be integrated in somewhat less than half the quiredeon 4000, i.e. the
scaling is better than linear.

Better than linear scaling (or super-linear scaling) is one of the potentiafiteof parallel processing. If
message passing overhead were negligible, then we would expect tasskiadhof scaling rather more
often, because the on-core data arrays decrease in size as thepobpEead across more cores, so that
(for sufficiently large core count) the data arrays fit inside the CP$&eft RAM cache. If by contrast
the data arrays on which the computation is performed reside in the slowédt fRAn floating-point
operations per second may drop dramatically as more time is spent fetchirfgotiat@memory. On 8001
cores the on-core (complex number) grids are 46x46, or small enouihinaghe CPU’s 64K byte L1
cache. On 253 cores the on-core grids are 262x262, or too largertaHé CPU’s 512K byte L2 cache.
HELIUM _X _FIELDS is sensitive to the speed of memory access, so super-lineagseakrthe result we
were hoping for.

We can see this more clearly by working through the numbers in Fig. 1. Ood®83, the time per inte-

gration step is 1/0.011338 = 88.2 sec. If the scaling were linear, then wiel wrpect the time per step
on 8001 cores to be 88.2 * (253 / 8001) or 2.79 sec. In fact the mehtinre per step on 8001 cores is
0.72 sec. In other words the 8001 core integration runs almost a factdinoés faster than the prediction
obtained by scaling the 253 core result linearly. Speed-up this dramatielg seen because it requires
an unusually high message passing bandwidth, and simultaneously amaliylzasge number of cores to

make the on-core grids sufficiently small.
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Figure 1. Speed of integration by HELIUM_FIELDS as a function of core count on the HECToR
phase2b machine. The same number of floating operations are performachinest independently of

core count, and the same problem is solved independently of core cdunpldt demonstrates the better-
than-linear scaling achieved by HELIUM_FIELDS on HECTOR phase2b.

3 Work package 2. Implementation of a hybrid MPI-OpenMP parallelism
in HELIUM

The very first version of the HELIUM code, run on the Cray T3D an&EBYystems in the 1990s, was
parallelised over the basis set of coupled spherical harmonics. A latgorenodified the parallelism
to be over the 2-D radial grid. The advantage of parallelising over thHalrgudd is that all communica-
tion is then either nearest-neighbour halo exchange or global summatiatiops, rather than the much
more complicated interactions between different basis states. This also edgi®/load balancing, as
the work load varies considerably for different basis states while thkleamt for different radial blocks
is almost constant. The radial parallel HELIUM code has been usedsuenessfully for many years on
both HPCx and HECToR, and has been shown to scale very well to okeorés.

The purpose of this workpackage was to look at re-enabling parallelisntloe basis set as a complement
to the current MPI parallelism over the 2-D radial grid. The motivation faatding this extra level of
parallelism within HELIUM is as follows:

1. To allow the option to scale to higher core counts for a given problemsizas to reduce the time
to solution.

2. Toinvestigate if a hybrid parallelism approach could be a more efficieahsef utilising the same
number of cores.

3: Most importantly, we have seen a reduction in the amount of memory on bIRGI a per core
basis from 3GB/core on the Phase 1 system to 1.33GB/core on the dehase 2b system and to
just 1GB/core on the planned Phase 3 system. Meanwhile, other changestale (workpackage
1) will significantly increase the size of the basis set used, requiring more merapcore. The
memory needed per core can be reduced by reducing the size of thehladiaper core, but
there are practical limits to doing so, and a radial block size of about 9x@ imithimum possible.
Without parallelising over the angular basis states as well, there is a riskutisabn HECToR (or
any similar system) will in future have to leave cores idle due to insufficent mgrirs wasting
compute resources.

Shared memory parallelism techniques (specifically OpenMP) were chosemallelise over the basis
states instead of a distributed memory approach such as MPI, to avoid aalditada storage require-
ments for communication buffers and to minimise the code modifications neededolelays starting
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this workpackage, the target system changed from the quad-coradgptyp the XT4 to the current XE6
system with 24-core nodes and Gemini interconnect. The 24-core codgwise two separate 12-core
chips. However, from a programmers perspective it is better to corisiaefour 6-core "dies”, all shar-
ing memory but with NUMA performance considerations if the OpenMP thregdiaxtended over more
than one die [6]. Thus, to avoid the complications of NUMA we will limit the OpentfiReading to a
maximum of 6 threads and use the appropriate options to aprun to place MPIstashat all threads
associated with a specific MPI tasks reside on the same die.

Code changes

The bulk of the work was applied to the Arnoldi propagator as this is uset@st production runs.
Addition parallelism was added to the calculation of global acceleration amélation as this was easy
to add, though not essential for performance. The modifications wdodl@ss:

1. All communication between MPI tasks (halo exchange and global sumpgdiormed by the mas-

ter OpenMP thread. This is the simplest and most reliable scheme to implemenbMPRIunica-
tion within a threaded code.

2: Within the Arnoldi propagator there is a single parallel region coverlhgfahe computation.
Calls to the subroutine Ham Vector were replaced by a SMP specific version to allow the local
arrays in Hamx_Vector to be replaced by arrays declared at the top level of the Arnadgiggator.
This is essential to allow these arrays to be shared between the OpenldésthFainctions used
to calculate global sums were replaced by similar subroutines to make it mdghttavard to
understand the OpenMP shared status of the result.

3. Parallelism over all the states in the basis set is straightforward to implerize@penMP DO
directives. The workload varies considerably per thread, howeeerethtively small scale paral-
lelism (e.g. 6 threads processing thousands of basis states) means dhadlkracing should not
be a significant problem even with the standard static scheduling of loopdtesaMore advanced
scheduling options are easy to implement if required - a key advantageuadsimemory paral-
lelism.

4: The calculation of eigenvalues and eigenvectors in the small Kryloyaokds duplicated to avoid
the need to share the result from this relatively tiny calculation across afidkri.e. to make the
result local to the caches on each core for subsequent use updatitiy#ad’s portion of the global
wavefunction.

Other propagators and the diffusion equation version of the Arnoldligmrator used for the initialisation
could also be parallelised in this way if desired.

Allowing larger basis sets

The number of basis sets that can run on HECToR will depend upon hatherradial block size chosen
but also the choice of propagator used and the options set for that. &lhe® used a 6th order Arnoldi
propagator and the number of radial blocks was set to 20, giving a tofabg21)/2 = 210 MPI tasks.
The maximum number of states successfully used for different radidt blaes were:

Radial grid per MPI task
16x16 32x32 64x64
Parallelism/node | L_max | Number | L_max | Number | L_max | Number
MPI OMP of states of states of states
24 1 36 17575 23 4900 14 1240
4 6 49 42925 37 19019 22 4324

The scaling in the number of states possible is not linear with the increase in ynavadable by running
fewer MPI tasks per node. Further investigation would be required terstahd in more detail where
memory is required within the code (including e.g. buffers needed within theliliaries) to see if
memory utilisation could be reduced further, to allow even larger basis se¢susdd. Nevertheless, us-
ing a hybrid MPI-OpenMP version allows considerably larger basis séts tsed without leaving cores
idle compared to a pure MPI version.

Efficiency on the same number of cores

The second issue to test is whether or not a hybrid version could be ifficien¢ running on the same
number of cores to solve the same problem. The options available within HEImhake it difficult to

use exactly the same number of cores. To simplify this task, we use just 4§ per node, making sure
that we use 4 per die either as 4 MPI tasks or 4 OpenMP threads. Eveaghttimunumber of cores is not



identical, all these jobs will take up 35 nodes on HECToR, so the cost perofiounning these jobs will
be the same. Run times below (in seconds) are for 180 program time-stepgande all initialisation

and disk I/0. Results are presented for two compilers on HECToR: PGCend

Radial | Radial grid per | OpenMP | Total | Computation time (secs)
blocks MPI task Threads | cores PGI \ CRAY
L_max=20 (Number of states=3311). Total radial grid = 640x640.

20 32x32 4 840 | 387.41 318.97

40 16x16 1| 820| 369.32 327.50
L_max=20 (Number of states=3311). Total radial grid = 1280x1280.

20 64x64 4| 840 1832.00 1581.04

40 32x32 1 820 | 1345.11 1177.85

In general the hybrid version is not as efficient as just using MPL.likédy that any efficiency improve-
ments in reduced MPI communications are outweighed by the less efficidre a#itisation of having

larger radial grids per MPI task. However, for smaller grid sizes pét the hybrid may be more efficient
in some cases. Also the hybrid may be more suitable on other systems whiclowavespecification

interconnects.

Testing strong scaling performance

PGI CRAY
Number | Parallelism/node | OpenMP DO | Runtime | Speedup| Runtime | Speedup
of cores | MPI \ OMP | Scheduling (seconds) (seconds)
Radial grid per MPI task=16x16, Lmax=20 (Number of states=3311)

2016 24 | serial code| N/A 441.14 1.02 418.93 0.98

2016| 24 1| STATIC 449.87 1 409.67 1

4032 12 2 | STATIC 239.34 1.88 230.02 1.78

6048 8 3 | STATIC 168.75 2.67 152.24 2.69
12096 4 6 | STATIC 108.89 413 92.94 4.41

Radial grid per MPI task=16x16, Lmax=36 (Number of states=17575)

2016 24 1| STATIC 2526.37 1 2246.57 1
12096 4 6 | STATIC 561.31 450 474.42 474
12096 4 6 | STATIC,4 608.48 4.15 532.93 422

Radial grid per MPI task=32x32, Lmax=20 (Number of states=3311)

2016| 24 | serial codel N/A 1607.21 1.00| 1432.08 0.99

2016 24 1| STATIC 1601.12 1 1420.67 1

4032 12 2 | STATIC 831.74 1.93 746.55 1.90

6048 8 3 | STATIC 569.95 2.81 512.19 2.77
12096 4 6 | STATIC 329.43 4.86 282.53 5.03
12096 4 6 | STATIC,4 344.17 4.65 307.24 4.62

Radial grid per MPI task=64x64, Lmax=14 (Number of states=1240)

2016| 24 1| STATIC 2950.37 1 2854.34 1

4032 12 2 | STATIC 1491.20 1.98| 1311.72 2.18

6048 8 3| STATIC 1017.52 2.90 905.56 3.15
12096 4 6 | STATIC 545.29 541 478.95 5.96
12096 4 6 | STATIC4 495.66 5.95 445.27 6.41

To test the scalability of the hybrid MPI-OpenMP version, we choose ttheatumber of blocks in both
R1 and R2 of the MPI parallelism of the radial grid to 63, resulting in (63*B2R16 MPI tasks. This
is a strong scaling test, i.e. the amount of work is kept constant for eattepn configuration and we
increase the core count as we increase the number of OpenMP thseald$un times above (in seconds)
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are for 180 program time-steps and exclude all initialisation and disk I/QuiRemre presented for two
compilers on HECToR: PGI and Cray. Some results for the original seviag are included for both
compilers for comparison.

Scalability is generally better for larger radial blocksizes and for largsistsets, as expected. Choosing
a non-default OpenMP DO scheduling option to try and get better loaddiatpgave mixed results but
would be worth investigating before running long production jobs. Futwekwill involve repeating
these experiments (under normal CSE, not dCSE, time) later in the year orewh&MD Interlagos
processors used for the Phase 3 upgrade.

4 Work package 3. Implementation of a new parallel postprocessing code
to transform HELIUM output from spherical to cylindrical geometry

The numerical integration of Sabdinger’s equation (using HELIUM) provides us with time-dependent
solutions to a 6-dimensional partial differential equatidnyy, o, 61, ¢1, 62, ¢2,t) - essentially a 7-
dimensional array of complex numbers. Once this data has been relialdyatgh there remains the
far from trivial problem of extracting useful information. Generally, flst step in attempting to extract
useful physics from the data will involve a dramatic reduction in the dimenkiprd the data. For ex-
ample, integrating away all spatial variablegir|? over a region of space gives the probability of finding
both electrons in that region of space. This quantity, tabulated as a furdtione, is used to monitor
the movement of electrons as they are driven from one region in spaoetteea During ionization, the
electrons are driven from the core of the atom to the periphery of ther@tteg volume. lonization rates
are calculated from the temporal rate of change of this quantity.

One of the best methods of monitoring the evolving physics of a laserdBvaectron atom relies on
P(r1,72,t), the probability density function in the two radial variables= |r;|. P(r1,79,t) is obtained
by integrating away all 4 angular variables|ib|2. In HELIUM, the wavefunction is written on a basis
set of coupled spherical harmonics (Equ. 1), which makes the calcutatiBr, r2, t) straightforward.
Due to the orthonormality of the angular basis set, we get:

P(ri,ra,t) = > By t)]. (5)
1oL, M

This time-dependent probability density has proved very useful in digshing single ionization (where
P shows increase with time fanly one of 1 or 5 large) from double ionization (whe shows increase
with time for both of ; andr; large). However in this probability density function all angular information
is lost. This is disadvantageous since many experiments measure ionisingretaotnenta components
parallel to the laser polarisation axis and it is important to make direct compaviio this experimental
data|7, 8,9, 10, 11, 12].

To remedy this deficiency we have written a parallel code (CYLINDRIC#L§alculate the probability
density in thez variables,P(z, z2). The z direction turns out to be the most useful in general because in
HELIUM the laser light is by convention linearly polarised in the z directidt{z;, z9) is calculated by
integrating the wavefunction ovex » and¢; » (of the cylindrical coordinate system p,(¢, z) for each
electron), so that, at any given time t:

27 0 27 e’}
P(z1, 22,t) :/0 /0 /0 /0 (W (1,79, 1)> prdp1 déy padpa e, (6)

where the laser polarisation axis defines the z-axis of each electromvdhgion of this probability den-
sity function allows us to distinguish the cases of double ionization in which thecZens are ejected
on the same side of the nucleus @ndzs have the same sign) from cases of double ionization with the
two electrons emerge on opposite sides of the nucleuarn(dzs have opposite signs). Moreover we can
track wavepacket as it makes the transition from one case to the othduativgP(z1, 22, t), however,

is a significant computational effort - a four dimensional numerical catade over (potentially) terrabyte
sized arrays spread over tens of thousands of cores.

The program CYLINDRICAL calculate®(z1, 22) by numerically evaluating the integral in Equ. 6 for
each pair £; andzs) in a desired range. To do this, the representatior gfven in Equ. 1 is substituted
into the integral of Equ. 6. The integramd(r, r2)|? is expanded in terms of the spherical harmonics
that appear inl;loLM > and the radial variable {r wavefunctionsF;, ;, r.(r1,r2) (with M=0). The¢
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Figure 2: A slice of the cylindrical-coordinate probability distributié!z;, z2), obtained by applying
transformation Equ. 6 to the radial-coordinate wavefunction given in EQuThe slice ofP(zq, z2)

is constructed by setting; to 0.85 au, and varying the, variable. The exact transformation of the
wavefunction given in Equ. 7 is shown by the red dotted line (Equ. 8). stfid black line shows the
results of the transformation of Equ. 7 R{z1, z2) performed numerically by program CYLINDRICAL.

variables are easily integrated away, leaving an integrapindg, over an integrand composed of a sum
of products of Clebsch-Gordon coefficients, Associated Legenolsspmials, and the, ;, 1.(r1,72)
functions. The radial variables are related to the cylindrical variables by = p? + 2. Because the
integrand is known only at finite-difference grid points that are everdgsg in the radial variables, the
integrand is known only at points that are unevenly spacegl. iBecause of the non-uniform spacings of
the p; variables, the integrand is fitted to a cubic spline, which is used to perforgquemrature.

As a test of the new software, we apply it to the following (unnormalisedgfanction, which resides on
partial wave|l1lo L >=[1,1,2 >:

6
U(ry,ro) = rirae ™ e [1,1,2 >= 8\/7:(221,22 — p1pacos(dy — ¢a))e e’ (7)

This wavefunction can be integrated analytically using Equ. 6 to obtain thelistrédution:

_ 3 2.2 i —2212 2252
P(Zl,ZQ) - 32(2122 32)8 € . (8)

In Fig. 2 we compare the true(z;, z2) (given by Equ. 8) with CYLINDRICAL's numerical integration of

the wavefunction given in Equ. 7. The two methods of calculak(g, , z2) agree to about four significant

figures over most of the range of.zA discrepancy is only apparent at the end points. At the end points

the numerically calculate®(z1, z2) (black line) is clamped to zero, whereas the exact result is ne&f 10

_l’_

Figure 3 is a logarithmic plot of several probability distributions associatedthétround state of helium.
The calculation successfully reproduces the classic features of thentggliwnd state. The helium ground
stateV is calculated numerically by HELIUM and transformedR¢z1, z2) by program CYLINDRICAL.

The ground stat@ is a linear combination of 6 partial waves. The black liR€0), z2), describes the case

in which one electron remains near the nucleysH0), while the other spans the fullrange of the cal-
culation. The inner electron effectively cancels the positive electriqgehair one of the two protons, so
that the wavefunction is essentially that of hydrogen asymptotically. Thendie, P (22, 22), describes

the case in which both electrons are an equal distance from the nuctéum the same side of the atom.
They see an unscreened nucleus (of two positive charges) anceagliatheir wavefunction approaches
that of the ground state of He When the two electrons are far from the nucleus simultaneously, but on
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Figure 3: Three slices of the cylindrical-coordinate probability distribufgn;, z2), obtained by apply-
ing program CYLINDRICAL to the ground state wavefunction of helium. Bleck line showsP(0, z2),
the red lineP(—z2, z2), and the green lin@(z2, z2).

opposite sides of the atom, then their probability distribution is give® by zs, z2), the red line. Again,
the electrons see an unscreened nucleus of two positive chargesiraue distant negative charge, the
other electron, slightly cancels the charge of two protons. The red lineriewbat closer to the hydro-
genic (black line) result.

5 Work package 4. Implementation of a new final-state momentum-space
code for HELIUM

In work package 4 we proposed a new design and a new implementationsufthvare that transforms
the HELIUM final-state wavefunction from configuration-space to momergpace. At the time work
package 4 was proposed, the original design suffered perfornpaoblems, and was limited by the fail-
ure of certain MPI collectives (MPI-Gather) on large core counts ange ldata sets.

The numerical integration generates the wavefunction in configuratiacespr,, r2), but transforma-
tion of the wavefunction to momentum-spakék, , k2) can (in the limit in which the Coulomb potentials
are negligible) be a convenient and accurate way of calculating the fieajyedistribution of the electrons
for comparison with experiment. This transformation is performed by a 2-diioeal Bessel transfor-
mation. In the most recent series of calculations (8000 to 16000 coreEGA®R) the limiting factor on
the size and accuracy of the calculation was not the numerical integratitinkitgehe final-stage Bessel
transformation. The problem occurs because the numerical integratoates on a domain localised in
r1 andrq, but over the full domain of angular momenta, whereas the momentum angbgsestes on a
domain localised in the angular momenfialg L M )) but over the full spatial domain. Subsequent to the
numerical integration, the wavefunction must be rearranged acrossatirermachine. In other words, a
portion of every single wavefunction on each core must be sent to o cores elsewhere on the
machine in order to reassemble the wavefunction appropriately. Perfomsedial the process is too
slow by several orders of magnitude. Performed in parallel by the 80 cthe run-time was tolerable,
(several hours at most) but the memory limitations of the then current MBVa@f severely limited the
size of wavefunction.

Below we report several successful solutions to the problem. The oftwase is 4 to 20 times faster
than the original software as measured on HECToR (pre-Phase28)mfnovement is due to the supe-
rior hardware of the new Phase2B machine, to the use of improved MPtihadl@outines and to better
algorithms. The original proposal was for a fully parallelised solution to thelpm. This goal was met
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through the use of the MPI-alltoallv collective procedure, and this turnétbdoe the fastest solution on
the upgraded HECToR. We report below benchmarks on 8001 cdwag,with details of two other useful
solutions to the problem.

Work package 4 also called for the implementation of a new transformation bh#istate wavefunction
using a basis set of Coulomb radial functions (eigenstates of the fied=malomb Hamiltonian) rather
than a basis set of Bessel functions (which are used in the transfornodtiloa final state wavefunction
to momentum space). The two basis sets are identical in the limit in which the Coulterdiction goes
to zero. New software has been written to generate the Coulomb functitimsysasre needed at run-time.
The Coulomb functions are generated by numerically integrating the 1-eletigbdinger equation with
an arbitrary order Taylor series propagator. Surprisingly, the Coufomtiions are generated as quickly
as the Bessel functions. The entire transformation, including generdtiive dasis set functions and
projecting them onto the final state wavefunction completes in under 4 minutepigaltynedium to
large sized problems. We report details of the new software, the testauitesuccessful use of the new
methods on a significant problem in atom-laser physics that has attractecatterdion and controversy
recently.

We return now to the problem of rearranging and reassembling the wentiefn across 1000's of cores
on HECToR. To clarify the problem, we describe a specific case. Wengtarthe parameters used in the
first benchmark discussed below.

Each core has a local state of 506 partial waves, each of which is a 32ar&y of complex humbers
called a Block. On 8001 cores this amounts to a 66.3 gigabyte total state. The¢ot@ry processed
by HELIUM at run-time in this case is 18 times this value, but only the 66.3 gigattgte is transferred
between cores in Stage 1 of the transformation described below.

The problem is to rearrange this data set across the entire set of 8@31 and subsequently transform
it by writing it on a basis of Bessel or Coulomb functions for energy amalyihis work is done in three
stages. On early incarnations of HECToR, attempts to perform this in a siagle failed, evidently due
to memory limitations and immature MPI systems software.

The first stage rearranges the data across the 8001 cores. In timalaxgproach to this rearrangement,
each of the 8001 cores sends exactly 1 of its 506 blocks to the 1st dud thien assembles all 8001 of
them into an array, and writes the array to disk. This is repeated for éalob 506 partial waves.

A second stage is a single core program that reads each of these Jidinadarrays from the disk, re-
assembles the data into a 2-dimensional partial wave, which is them savek.to dis

The third stage transforms the partial waves from configuration spaceeiaresentation more suitable
for energy analysis of the final-state created by the laser pulse. Thesthgd will be described in more
detail later in this section.

We return to stage 1 and describe new developments and timings on 8081 dtmee new methods
(Methods 2, 3, 4) have been developed that successfully optimise ttiemeiand solve the poor reliabil-
ity problems observed on very early versions of HECToR.

Method 1 is the original and simplest method. It was developed to work drfailare of the MPI collec-
tive routines on the early HECToR, but it was disappointingly slow. The st of the MPI procedures,
pairs of Send/Recv’s, are used to transfer the data between coresSefld/Recv pairs are called 8001
times in a loop over partial waves to transfer 8001 blocks to core 0. Comédsvthis data to disk, and
the process is repeated 506 times, once for each partial wave.

Method 2 uses the same Send/Recv loop as method 1, but modifies the 8004 $ats/Recv by calling
a global synchonization barrier every 1000 iterations through the lobys groduces a surprising and
significant improvement in run-time.

Method 3 uses an MPI collective MPI-Gather to perform the operatiocrithesl above in a single proce-
dure call.

Method 4 (due to Tom Edwards of the Cray Centre for Excellence) usather MPI collective (MPI-
alltoallv), which further parallelises the Input/Output: each of the 506 pavaaks is assigned to a core
and processed in parallel, so method 4 runs on 506 cores - one fopadicth wave.

On test problems of the following size (66.3 gigabyte final-state on 8008 Xxttre typical run time of the
Send/Recv method on the original (pre-Phase2B) incarnation of HE@/EsRabout 2000 seconds. (A
production HELIUM run might use States of 400 gigabyte or greater amdaosiderably longer.)
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Benchmark 1.
8001 cores, 32 x 32 block-size, 506 Partial Waves:
original timings (pre-Phase2B):.

1. Send/Recyv (original method) 2108 seconds
upgraded HECToR (Phase2B):

1. Send/Recv (original method) 662 seconds

2. Send/Recv (with global barrier) 311 seconds

3. MPI-Gather 242 seconds

4. MPI-alltoallv 102 seconds

Benchmark 2.
8001 cores, 120 x 120 block-size, 55 partial waves:
original timings (pre-Phase2B):.

1. Send/Recv (original method) 1715 seconds
upgraded HECToR (Phase2B):

1. Send/Recv (original method) 422 seconds

2. Send/Recv (with global barrier) 390 seconds

3. MPI-Gather 399 seconds

4. MPI-alltoallv 210 seconds

On HECToR method 4, the MPI-alltoallv, is presently the fastest. Unfortunatésymethod cannot be
used on all machines because it runs on a set of cores equal in nuntteentamber of partial waves. The
number of partial waves is very typically in the 500 to 3000 range, so metldogg not work on the few
cores available on a workstation or on clusters of workstations. The@éfter solution (method 3) has
the advantage that it runs on the same number of cores as the originaicaliméegration, so that it will
work wherever HELIUM works. In the future it may be desirable to fuss thethod to the numerical
integration and run as an optional final step. The Send/Recv (with glabaéh is the simplest of MPI
procedures, and is the most reliable - we have never seen it fail - andfieisas fast or faster than the
MPI-Gather. Because any one of these methods may be the preferreadneth particular limit, the
present software offers all four of them. The user chooses theedasiethod by setting a constant in a
parameter module at the start of the program. The chosen method is thenatalleetime from a case
statement.

Retaining all 4 methods is also of much benefit in the testing process. Durtimgtebe output files of
Methods 2-4 are compared with the output of Method 1 in order to verifytkigabinary outputs of the 4
methods are identical.

We turn now to the problem of generating Coulomb radial functions, aratiogea transformation that
replaces Bessel functions with both unbound and bound-state Coulafialb ftanctions. The Coulomb
functions - solutions of the Sabdinger equation for one electron in a Coulomb potential - are generated
in different ways for the bound and unbound states. In general théo@d functions are eigenstates of
the finite-difference Hamiltonian, and therefore if highest accuracyssetbthey must be calculated on
the finite-difference grid with the HELIUM program’s special boundasgditions. This requirement can
be relaxed in the case of unbound states. To good approximation the taltofeunbound states can be
treated as though we are in continuous space, rather than on a gridreteligaints, and standard methods
to perform the numerical integration can be used. On the other handhigéraccuracy in the treatment
of the bound states is essential. For example we need to remove from thstéitgalvavefunction the
ground state (a bound state with a population of about 0.5) leaving behinchtioeind states (the signal
we want to analyse) which may have a population of aboat' 1@\n error of 1 part in 18 in this case
would obliterate the signal we are interested in.

The desired bound states therefore are obtained through a partialdgigemposition of the finite-difference
Hamiltonian (a large sparse matrix). An iterative Arnoldi-Lanczos methodad tesextract from this ma-
trix the first N eigenvectors with the smallest eigenvalues. Typically N is se totbe first 50 lowest
energy bound states of the field-free 1-electron singly-ionised heliumiltdmian are generated and saved
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to disk. After HELIUM has generated a final-state wavefunctigrall components of in the direction
of these 50 orthogonal bound states are removed.

Originally, the next step was to Fourier transform the wavefuncii¢ry , r2) to momentum space, by
integrating¥ (ry, r2)exp(—ipiry )exp(—ipara) overdr;d®r, to get¥ (py, p2). When this Fourier in-
tegration is performed over angular and radial variables, rather thasi@a coordinates, then it becomes
an integral in the radial variables over Bessel functions, rather thae plaves.

The new software packages provide Coulomb functions as the prfgh®ugh optional) replacement
for the Bessel functions. A public domain package for generating Coufamdiions (using low order

Numerov method) was tested but proved to be unreliable and inaccuragebifrary order Taylor’s series
integrator was written to replace it. The higher order of the new method enhigje accuracy numer-
ical integration without much loss in run-time performance. The Numerov metipachlly propagated

solution of the Schirdinger equation with local truncation errors of order40The 10th order Taylor

integration gave local truncation errors significantly smaller tharnt®.0

The higher accuracy of the Taylor propagator also makes it easier i thahare in the integration during
the testing process. One of the standard test routines included with thefiexare generates Coulomb
functions from known analytical formulas. Comparison of these resultstivitmumerically integrated
results verifies that maximum error in the integrated Coulomb function is of thex 40~°. Another test
routine verifies that the Coulomb functions are orthogonal and have feetd norm.

Asymptotically (at large radial distances r), the Coulomb eigenfunctionthaBlessel functions are iden-
tical up to a phase. Testing of the new software includes verification th&dbhkmb functions approach
the correct values asymptotically.

As a substantial test of the new software, and as a demonstration of theéanmgeof a rigorous quanti-
tative analysis of final-state energy distributions, we have applied the aftmese suite to a contentious
problem that has proved challenging both to theorists and to experimentadists|y calculation of non-
sequential double ionization cross sections in the 2-photon double ionizdtieium. Theoretical cal-
culations of these ionization cross sections have yielded predictions tlyainvenagnitude by a factor
of 200: 5x 10~°* cn? sec at the low end to 10" cn¥ sec. We ignore sequential double ionization,
a process in which one electron is singly-ionised leaving the other in a bstatelof He". lonization

of this residual bound electron at some later time produces a pair of ftasmbarrelated electrons. The
process of interest to us is the non-sequential one, in which two codedégetrons are freed from the
atom and ejected near simultaneously.

To minimise production of sequentially ionised electron pairs the calculationfisrped at a relatively

low field intensity: 163 W/cm?. The pulse in ramped on smoothly over 18 field periods, held constant
for 30 field periods, and then ramped to zero intensity over 18 field peribde numerical integration
proceeds for another 30 field periods field-free to allow the doubly-éohedectron pairs to depart the
strong coulomb field of the residual ion, and to separate from each athikeyndo so. Subsequent anal-
ysis treats the electrons as though they are non-interacting so that eaithretfaay be regarded as an
element of a single-electron dynamical system. This assumption is tested binglkhe electrons to
travel an additional 30 field periods field-free, so that their mutual intieradiminishes by a large factor.
Recalculation of the physical quantities of interest provides an estimatasifigity to mutual interaction.

Figure 4 shows the helium atom final state created by the 30 field perioddalser described above.
Plotted is the log of the probability distribution of the two electrons in momentum shagdP 1, k2)),
wherek; is the magnitude of the i-th electron’s momentum in atomic units (au). P is a probalgiity d
sity, so the probability of finding electrons 1 and 2 with momeéntaks in a region of arealk,dks is
P(k1, k2)dkidks. The total kinetic energy K of the two electrons is (in atomic units) &:1-2 + k22) /2.

The prominent circular arc in Fig. 4 therefore marks a region of conktaatic energy. The radius of
the arc is k = 0.78 au, giving a kinetic energy K #X = 0.30 au. The laser frequency in atomic units is
1.6 au. (One au is 27.2 eV in energy.) The ground state energy of helil#r®337 au, so a 2 photon
transition transferring 3.2 au to the 2 electrons should create free elgan@nof total energy 0.30 au,
exactly as observed. In this case the total kinetic energy is, within theaagcaf the calculation, equal
to the total energy of the electron pair.

The vertical and horizontal bands represent final states in which fote @lectrons is bound, and the
other ionised. One of the electron is localised in momentum (the unbound elgcml the value of its
momentum is largely independent of the momentum of the other electron. Thisastirast to the case
described above, in which knowledge of the momentum of the first elekfroanstrains the momentum
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Figure 4: Joint probability distribution of the helium final state electrons &fteitation by a 30 field

period 28.5 nm laser pulse. The state is plotted in momentum space (the Faurgotm of the spatial
wavefunction?) with angular variables integrated away, leaving only the radial compopétts elec-

tron momentumk; andk,. Logarithm of the probability density(R;, k2) is shown, colour coded, with
black the highest magnitude and blue lowest.

k1 (au)
0.0 0.5 1.0

Figure 5: Joint probability distribution of the helium final state electrons afteitation. Pulse character-
istics are as described in Figure 4, but all bound states up to principaiipmaaumber 9 were removed
from the final state prior to transformation to momentum space.
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of the other electron téy = /(2K — k;?).

The circular arc we identify as non-sequential double ionization. Popalatithis region represents cor-
related electron pairs ejected non-sequentially during the laser-atonciigaralhe quantity of interest
to us in this class of problems is the probability that such an event occura @iven laser intensity).
The processes is a 2-photon process (two 1.6 au photons are abkoidngise the -2.9 au ground state to
produce pairs of free electrons of total energy 0.3 au). It followstti@probability scales as the square
of the intensity. The ionization cross section for this process is propottiotiae probability divided by
the intensity squared, since we are in a perturbative regime. The catigsse especially useful because
it is intensity independent.

When the cross section is calculated (by integratirig F() over the circular arc to obtain the probabil-
ity all events occurring it this region of momentum space) we discover whydlmilation has proved
difficult. There is no natural division between the arc and the linear festinat represent bound states.
The calculated probability can vary by a factor of 2 or more dependingedhtbice of boundary between
arc and band. In momentum space (Fig. 4) it appears that the two featinesirc representing non-
sequential double ionization and the bands representing bound stagefsiseat.

From the data displayed in Fig. 4 we cannot reliably calculate the doubleatmrizross section, (which
is proportional to population in the circular arc), but with the new softwaredluced in this section we
have been able to develop 3 methods of calculating the desired quantity wittggeatitative accuracy.
The 3 methods of analysis independently give the same answers to withioehper

The first of these methods is performed using the momentum space appesacived above, but with a
single pre-processing stage in which all bound states (up to principatquanumber 9) of the residual
He™ ion are removed. The bound states are eigenstates of the hydrogeniorHean the finite-difference
grid, calculated using the same boundary conditions used during the nahiatégration performed
by HELIUM on an identical finite-difference grid. The bound states aleutated in advance using an
Arnoldi eigen-decomposition, and stored in an external file. Figure Wsliwe helium final state in mo-
mentum space with these bound states removed. All that remains is the dasivéat @rc. Integration
over the probability density function in the arc yields the desired physicattify: probability of non-
sequential double ionization.

The second approach to this problem is the more satisfactory in generalidaedt decomposes the helium
final state into a linear combination of states that are eigenstates of the &eltidlium Hamiltonian (in
the limit in which the two final state electrons are non-interacting). This newg b&gigenstates, which
we call Coulomb states, differs subtly from the basis set used to confteuctomentum space final state
shown in Fig. 4. In fact the Coulomb states are identical to the momentum sfaées i® the region
of space in which the Coulomb potential can be neglected, which is generalga#e in this problem.
This asymptotic equality between the basis sets is used as part of the sftestreuite. Unfortunately,
the difficulty described above, in which unbound states appear fusee tootind states, occurs in the
region of space in which the Coulomb potential is non-negligible. The useolo@b states solves this
problem. In the Coulomb basis we are able to resolve the bound and thenghdtates. As a result, in the
Coulomb basis it is not necessary to remove bound states from the fingbstateo analysis. This was
an unexpected result. Figure 6 shows final state written on a basis ofrGloskates. Clear space now
separates the circular arc from the bound state that caused the diffidei@sbed above. Calculation of
the probability of non-sequential double ionization (integration (@f; Pk2) over the arc) yields the same
answer as the momentum space calculation (Fig. 4).

Finally, in Fig. 7 we show the final state in Coulomb space with bound states eein@omparison with
the momentum space calculation (Fig. 5) shows only subtle differencessérential double ionization
probabilities obtained from the data of Fig. 7 agree with the previous calawatio
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Figure 6: Joint probability distribution of the helium final state electrons &fteitation. The state is
written on a basis set of Coulomb functions. Logarithm of the probabilityitieissshown. Pulse charac-
teristics are as described in Figure 4, and no bound states have beaedemo
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Figure 7: Joint probability distribution of the helium final state electrons &fteitation. The state is

written on a basis set of Coulomb functions. Logarithm of the probabilityitieissshown. Pulse charac-
teristics are as described in Figure 4, but all bound states up to principatign number 9 are removed
from the final state.
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