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Abstract:

The laser-driven helium atom is a nearly ideal system for both experimental and theoretical exploration
of quantum mechanical correlation and quantum mechanical energy exchange between matter and light.
Non-classical correlation (also called entanglement) is one of the most mysterious and anti-intuitive fea-
tures of the quantum mechanical universe. For example correlation, in theform of entangled qubits, is at
the heart of most formulations of quantum computing, and correlated photons are what makes quantum
cryptography feasible. Correlation is something shared between particles. In the case of laser-driven he-
lium we are concerned with correlation between pairs of electrons ejected from the atom by the strong
laser fields, a process called non-sequential double-electron ionization(NSDI). NSDI is a subtle effect,
deeply buried within the integrated atomic wavefunction, but it reveals in detailimportant features of the
ionization dynamics of correlated quantum mechanical systems [1, 2, 3].

Helium - the simplest of all multi-electron atoms - is the only multi-electron atom for which rigorous
(quantitatively correct) numerical solutions of the full-dimensional equations of motion (Schr̈odinger’s
equation) can be obtained. Laser-driven hydrogen is similarly susceptible to rigorous study numerically,
but hydrogen’s single electron cannot exhibit the correlation effects that make multi-electrons of such
interest. The physics of single electron atoms driven by high intensity laser radiation has been well un-
derstood for many decades. Helium turned out to be very different in thisrespect - every high integrity
solution of the helium Schrödinger’s equation we obtained revealed effects that were unpredicted, surpris-
ing and unexplained.

HELIUM [4] is a code that solves the non-relativistic time-dependent Schrödinger equation for a two-
electron atom or ion exposed to intense linearly-polarised laser fields - a time-dependent 5-dimensional
partial differential equation. The HELIUM time propagator was designed tomeet a requirement for un-
usually small integration truncation errors. This requirement stems from, among other things, difficulties
encountered modelling non-sequential double-electron ionization (NSDI). A typical integration might for
example find total NSDI yields of the order 10−8 or even 10−12, constraining local truncation errors to
considerably less than 10−12 in a wavefunction normalised to unity. This requirement may be impossible
to meet with low order integration schemes. For this reason HELIUM uses an arbitrary-order Arnoldi
propagator [4]. The Arnoldi propagators often demonstrate improved integration efficiency in the limit of
high order even if small truncation errors are not a requirement.

In this report we discuss software developments aimed at improving our abilityto model and analyse the
exchange of energy between the laser and atom during the production ofthese correlated pairs in NSDI.
These developments include a generalised HELIUM, and new methods to analyse the wavefunctions gen-
erated by HELIUM. Discussion of details begins in section 1 below.
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1 Objectives and Outcomes
In section 2 (J.Parker) we discuss the implementation of a new code that extends the present HELIUM to
use generalized laser polarization. The implementation was successful andwe discuss the new self-test
modules for the generalized matrix elements used by the new code. The designallows the new code to turn
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off the new feature so that it behaves identically to HELIUM if linear polarized fields are used. Testing
of the new code against the current version of HELIUM verified that behaviour is identical for a single
linearly polarized laser field polarised along either the z-axis or the x-axis.

One of the surprising (and welcome) outcomes of this project, was the observation that on HECToR, the
performance exhibited better-than-linear scaling as we changed processor (core) count from 253 to 8001.
In other words, the program might be predicted to run a factor of 8001/253 faster on 8001 cores than on
253 cores. Instead it ran almost a factor of four faster than this prediction. We attribute this to the fact
that on 253 cores the local arrays (on which the computation is performed)were too large to fit in the L2
cache, and hence spilled out into slower memory. By contrast, on 8001 cores, the local arrays were small
enough to be contained within the L1 cache, the CPU’s fastest memory.

In section 3 (E.Smyth) we discuss implementation of hybrid MPI-OpenMP parallelism in HELIUM, which
may become essential to allow all cores on a node to be utilised as memory per core falls at the same time
as the changes in section 2 will require larger angular momentum basis sets.

In section 4 (J.Parker) we discuss implementation of a new post-processingcode to transform output from
HELIUM (in spherical geometry) to cylindrical geometry. The new software runs on the same number
of processors (cores) as HELIUM runs on, which on HECToR is typically an arbitrary number up to
about 16,000 cores. The program performs correctly, and has beensuccessfully tested on a single coupled
spherical harmonic, pairs of coupled spherical harmonics with known analytic expressions in cylindrical
coordinates, and on the HELIUM ground state, (which is composed of a set of 6 coupled spherical har-
monics). Two of these tests are discussed in section 4.

In section 5 (J.Parker) we discuss the implementation of a multistage algorithm forthe transformation
of the final-state wavefunction from configuration space to momentum space. A number of tests are
discussed, along with performance measurements on HECToR. Three newmethods, each with its own ad-
vantages, have been developed. Tests on HECToR have verified that all four methods, the 3 new methods
and the old method, give identical results on a range of core counts. Operation of the new methods on a
very large full size wavefunction (8001 processors) is discussed in more detail in section 5, and bench-
mark timings are presented. The latest incarnations of HECToR have been able to run the old method
successfully on this core count. Nevertheless, the newer methods are substantially faster.

The accuracy of the momentum space transformation code has been enhanced by incorporating Coulomb
functions into the current Bessel function basis set. We have written a newprogram for numerically in-
tegrating Coulomb functions, based on an arbitrary order Taylor series propagator. The new software
performs correctly. Tests include orthonormality checks, comparison with the asymptotically correct for-
mulae, and comparison with the results of independently written code (a public domain integrator based
on low order Numerov method).

As a substantial test of the new software, and as a demonstration of the importance of a rigorous quantita-
tive analysis of final-state energy distributions, we have applied the new software suite to a problem that
has proved challenging both to theorists and to experimentalists. The results are discussed in section 4.
A surprising outcome of this exercise is the finding that the new software allows us to solve the difficult
problem in three largely independent ways, and with nearly identical results. The old method failed at this
problem.

As outlined in the abstract, the scientific research enabled by HELIUM’s ability to exploit HECToR is
important and unique. The developments described above greatly expandHELIUM’s versatility; some of
the new science already enabled by the new software is described in section 5. HELIUM has always been
a heavy user of HECToR, and as a result the improvements in runtime performance reported in sections 2
and 5 will have a beneficial impact on the HECToR user community, by improvingHELIUM’s ability to
efficiently use HECToR resources.

2 Work package 1. Extensions to HELIUM to allow calculations with
crossed laser fields

In the original program HELIUM the laser light is assumed to be linearly polarised, which effectively
removes a degree of freedom from the dynamics - the problem becomes a 5-dimensional time-dependent
partial differential equation. In this section we describe the implementation of an extended version of
HELIUM that allows a second laser perpendicular in polarisation to the first.This removes the rota-
tional symmetry exploited in the original HELIUM program. The problem reverts to the fully general
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6-dimensional time-dependent Schrödinger equation for laser-driven helium.

In HELIUM [4] the angular dependence of the two-electron wavefunction is handled through a basis set
expansion|l1 l2 L M〉 of coupled spherical harmonics in whichl1,2 are angular momentum values of each
electron,L is the total (orbital) angular momentum andM its z-component. The wavefunction takes the
form:

Ψ(r1, r2, t) =
∑

l1,l2,L,M

Fl1 l2 L M (r1, r2, t)

r1 r2

|l1 l2 L M〉 . (1)

where theFl1 l2 L M (r1, r2, t) are time-dependent radial functions to be determined in the calculation.
Through the orthonormality of the|l1 l2 L M〉, one obtains from the time-dependent Schrödinger equation
with HamiltonianH a set of time-dependent coupled two-dimensional radial equations for thefunctions
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HELIUM currently solves this set of equations for a single linearly polarised laser field handled within the
electric dipole approximation. This brings only a singleM value into play. HELIUM gives each processor
responsibility for a particular sub-domain of (r1, r2) radial space. This is advantageous because the finite-
difference methods used in handling the radial variables then involve only nearest-neighbour processor
communication. Each processor carries all information needed to evaluate all angular integrals entering
the matrix elements of equation (2) and no inter-processor communication is needed to determine these.

Originally we planned to use the velocity gauge in implementing the interaction Hamiltonian, but recent
experience with the length gauge interaction Hamiltonian convinced us that the length gauge is more ef-
ficient, less error prone and just as accurate. Improved efficiency is of crucial importance in the crossed
fields problems because of the increased difficulty integrating over the higher dimensional space. For a
particular laser intensity, we might see an order of magnitude or more increase in the size of the basis set
of partial waves for convergence (compared to HELIUM, which uses linearly polarised light). For that
reason the implementation uses the length gauge.

Taking the polarisation axis of the first laser as thez axis, and the polarisation axis of the second laser as
thex axis, we have for their respective electric fields:

E1(t) = E1(t)ẑ = f(t) cos(ω1t − δω1
)ẑ and E2(t) = E2(t)x̂ = g(t) cos(ω2t − δω2

)x̂ (3)

wheref(t) andg(t) are time-dependent envelope functions;ω1,2 are laser frequencies andδω1,2
corre-

sponding phase shifts.

The second laser field brings in the additional Hamiltonian terms:

2
∑

j=1

eE2(t)xj (4)

where the summation runs over both electrons and e is the electric charge of the electron. These new
Hamiltonian terms will in turn introduce matrix elements of the form

< l′1l
′

2L
′M ′|rj sin θj cos φj |l1l2LM > , j = 1, 2

with M ′ 6= M terms in equation (2).

By allowing a completely arbitrary choice of the four angular quantum numbers |l1l2LM >, the new
program can generate solutions to fully general 6-dimensional Schrödinger equation for (non-relativistic)
2-electron atoms. The original HELIUM program is restricted to linearly polarised light, which allows us
to fix the M quantum number to a constant. In practice, the M quantum number is set to 0 in HELIUM.

Testing HELIUM X FIELDS:

The new crossed fields code, called HELIUMX FIELDS has been completed and tested on single proces-
sor workstations, the eight cores of a multiprocessor workstation, on 48 cores of a workstation cluster, and
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on 253 to 8001 cores on HECToR. As part of the testing program, we verify that the numerical integration
produces the same results independently of core count.

Thex-direction (crossed field) laser can be toggled on or off with the following parameters:

module LaserInteractions
Logical, parameter :: USECrossedField Interaction = .True.
Logical, parameter :: USEz PolarisedE Field = .True.

end module LaserInteractions

If the first parameter above is set to .False., then the program reverts to theoriginal HELIUM program.
This provides a convenient test: we can verify that the numerical integrations performed by HELIUM and
HELIUM X FIELDS are identical. If the first parameter above is set to .True. and the second to .False.
we again produce a program with a linear polarised laser like HELIUM, butwith polarisation in the x di-
rection only. Again we verify that HELIUM and HELIUMX FIELDS produce identical physical results,
(allowing for the 90 degree rotation; the HELIUM program usesz-polarised fields.)

The major modules in HELIUM and HELIUMX FIELDS (including the Communications MPI mod-
ules and the finite-difference modules) contain self-test routines, some ofwhich are executed at start-
up every time HELIUM is run. The most elaborate of the start-up tests verify that the elements of the
basis set of partial waves satisfy the desired constraints, that the physical selection rules (allowed tran-
sitions between states) are correct, that the Hamiltonian parameter arrays are correctly initialised, and
that the matrix-elements have been correctly calculated. The matrix-elements ofthe angular part of
of the problem,< l′1l

′

2L
′M ′|rj sin θj cos φj |l1l2LM >, can be formulated in terms of products of 3-j

and 6-j symbols [5]. The test routines calculate the 3-j and 6-j symbols several different methods using
equations 2.12, 2.18, 2.22, 2.24, 2.24 and 2.25 of [5]. Comparison of the results can detect program-
ming errors, or degraded accuracy in difficult limits (largelj for example). The most exhaustive is a set
of matrix-element tests that runs for about an hour on a typical processor, and is disabled during nor-
mal runs of HELIUMX FIELDS. This test routine calculates (among other things) the matrix-elements
< l′1l

′

2L
′M ′|rj sin θj cos φj |l1l2LM >, by two independent methods. The first method uses a summa-

tion of products of three 3-j symbols using equ. 2.20 of Ref. [5]. The second method uses the HE-
LIUM X FIELDS standard approach: a product of a 6-j and 3-j symbols.

During testing on HECToR we collected data on the performance of HELIUMX FIELDS as a function of
core count. Figure 1 shows the number of time-steps HELIUMX FIELDS can perform per second. The
program is compiled with Portland Group pgf90 compiler using the -fastsse -O3 optimisation switches.
Performance is measured on 253, 1035, 2080, 4095 and 8001 cores.In each case the same problem is
solved - the integration is performed in the same size integration volume (with minor variations), so that
the total number of floating point operations done by HELIUMX FIELDS (in each of cases plotted in
Fig. 1) is to good approximation independent of core count. On 1035 cores, each core operates on a
128x128 subset of the global grid. On 4095 cores each core operates on a 64x64 grid. It is clear that on
8001 cores the problem can be integrated in somewhat less than half the time required on 4000, i.e. the
scaling is better than linear.

Better than linear scaling (or super-linear scaling) is one of the potential benefits of parallel processing. If
message passing overhead were negligible, then we would expect to see this kind of scaling rather more
often, because the on-core data arrays decrease in size as the problem is spread across more cores, so that
(for sufficiently large core count) the data arrays fit inside the CPU’s fastest RAM cache. If by contrast
the data arrays on which the computation is performed reside in the slowest RAM, then floating-point
operations per second may drop dramatically as more time is spent fetching datafrom memory. On 8001
cores the on-core (complex number) grids are 46x46, or small enough tofit in the CPU’s 64K byte L1
cache. On 253 cores the on-core grids are 262x262, or too large to fitin the CPU’s 512K byte L2 cache.
HELIUM X FIELDS is sensitive to the speed of memory access, so super-linear scaling was the result we
were hoping for.

We can see this more clearly by working through the numbers in Fig. 1. On 253cores, the time per inte-
gration step is 1 / 0.011338 = 88.2 sec. If the scaling were linear, then we would expect the time per step
on 8001 cores to be 88.2 * (253 / 8001) or 2.79 sec. In fact the measured time per step on 8001 cores is
0.72 sec. In other words the 8001 core integration runs almost a factor of4 times faster than the prediction
obtained by scaling the 253 core result linearly. Speed-up this dramatic is rarely seen because it requires
an unusually high message passing bandwidth, and simultaneously an unusually large number of cores to
make the on-core grids sufficiently small.
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Figure 1: Speed of integration by HELIUMX FIELDS as a function of core count on the HECToR
phase2b machine. The same number of floating operations are performed ineach test independently of
core count, and the same problem is solved independently of core count. The plot demonstrates the better-
than-linear scaling achieved by HELIUMX FIELDS on HECToR phase2b.

3 Work package 2. Implementation of a hybrid MPI-OpenMP parallelism
in HELIUM

The very first version of the HELIUM code, run on the Cray T3D and T3E systems in the 1990s, was
parallelised over the basis set of coupled spherical harmonics. A later version modified the parallelism
to be over the 2-D radial grid. The advantage of parallelising over the radial grid is that all communica-
tion is then either nearest-neighbour halo exchange or global summation operations, rather than the much
more complicated interactions between different basis states. This also improved the load balancing, as
the work load varies considerably for different basis states while the workload for different radial blocks
is almost constant. The radial parallel HELIUM code has been used verysuccessfully for many years on
both HPCx and HECToR, and has been shown to scale very well to over 70k cores.

The purpose of this workpackage was to look at re-enabling parallelism over the basis set as a complement
to the current MPI parallelism over the 2-D radial grid. The motivation for enabling this extra level of
parallelism within HELIUM is as follows:

1: To allow the option to scale to higher core counts for a given problem size, so as to reduce the time
to solution.

2: To investigate if a hybrid parallelism approach could be a more efficient means of utilising the same
number of cores.

3: Most importantly, we have seen a reduction in the amount of memory on HECToR on a per core
basis from 3GB/core on the Phase 1 system to 1.33GB/core on the currentPhase 2b system and to
just 1GB/core on the planned Phase 3 system. Meanwhile, other changes tothe code (workpackage
1) will significantly increase the size of the basis set used, requiring more memory per core. The
memory needed per core can be reduced by reducing the size of the radial block per core, but
there are practical limits to doing so, and a radial block size of about 9x9 is the minimum possible.
Without parallelising over the angular basis states as well, there is a risk that runs on HECToR (or
any similar system) will in future have to leave cores idle due to insufficent memory, thus wasting
compute resources.

Shared memory parallelism techniques (specifically OpenMP) were chosento parallelise over the basis
states instead of a distributed memory approach such as MPI, to avoid additional data storage require-
ments for communication buffers and to minimise the code modifications needed. Due to delays starting
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this workpackage, the target system changed from the quad-core upgrade to the XT4 to the current XE6
system with 24-core nodes and Gemini interconnect. The 24-core nodescomprise two separate 12-core
chips. However, from a programmers perspective it is better to considerit as four 6-core ”dies”, all shar-
ing memory but with NUMA performance considerations if the OpenMP threading is extended over more
than one die [6]. Thus, to avoid the complications of NUMA we will limit the OpenMPthreading to a
maximum of 6 threads and use the appropriate options to aprun to place MPI tasks so that all threads
associated with a specific MPI tasks reside on the same die.

Code changes

The bulk of the work was applied to the Arnoldi propagator as this is used for most production runs.
Addition parallelism was added to the calculation of global acceleration and correlation as this was easy
to add, though not essential for performance. The modifications were asfollows:

1: All communication between MPI tasks (halo exchange and global sums) are performed by the mas-
ter OpenMP thread. This is the simplest and most reliable scheme to implement MPI communica-
tion within a threaded code.

2: Within the Arnoldi propagator there is a single parallel region covering all of the computation.
Calls to the subroutine Hamx Vector were replaced by a SMP specific version to allow the local
arrays in Hamx Vector to be replaced by arrays declared at the top level of the Arnoldi propagator.
This is essential to allow these arrays to be shared between the OpenMP threads. Functions used
to calculate global sums were replaced by similar subroutines to make it more straightforward to
understand the OpenMP shared status of the result.

3: Parallelism over all the states in the basis set is straightforward to implement via OpenMP DO
directives. The workload varies considerably per thread, however the relatively small scale paral-
lelism (e.g. 6 threads processing thousands of basis states) means that load balancing should not
be a significant problem even with the standard static scheduling of loop iterations. More advanced
scheduling options are easy to implement if required - a key advantage of shared memory paral-
lelism.

4: The calculation of eigenvalues and eigenvectors in the small Krylov subspace is duplicated to avoid
the need to share the result from this relatively tiny calculation across all threads i.e. to make the
result local to the caches on each core for subsequent use updating that thread’s portion of the global
wavefunction.

Other propagators and the diffusion equation version of the Arnoldi propagator used for the initialisation
could also be parallelised in this way if desired.

Allowing larger basis sets

The number of basis sets that can run on HECToR will depend upon not only the radial block size chosen
but also the choice of propagator used and the options set for that. All tests here used a 6th order Arnoldi
propagator and the number of radial blocks was set to 20, giving a total of (20x21)/2 = 210 MPI tasks.
The maximum number of states successfully used for different radial block sizes were:

Radial grid per MPI task
16x16 32x32 64x64

Parallelism/node L max Number L max Number L max Number
MPI OMP of states of states of states

24 1 36 17575 23 4900 14 1240
4 6 49 42925 37 19019 22 4324

The scaling in the number of states possible is not linear with the increase in memory available by running
fewer MPI tasks per node. Further investigation would be required to understand in more detail where
memory is required within the code (including e.g. buffers needed within the MPI libraries) to see if
memory utilisation could be reduced further, to allow even larger basis sets to be used. Nevertheless, us-
ing a hybrid MPI-OpenMP version allows considerably larger basis sets tobe used without leaving cores
idle compared to a pure MPI version.

Efficiency on the same number of cores

The second issue to test is whether or not a hybrid version could be more efficient running on the same
number of cores to solve the same problem. The options available within HELIUMmake it difficult to
use exactly the same number of cores. To simplify this task, we use just 16 cores per node, making sure
that we use 4 per die either as 4 MPI tasks or 4 OpenMP threads. Even though the number of cores is not

6



identical, all these jobs will take up 35 nodes on HECToR, so the cost per hour of running these jobs will
be the same. Run times below (in seconds) are for 180 program time-steps and exclude all initialisation
and disk I/O. Results are presented for two compilers on HECToR: PGI andCray.

Radial Radial grid per OpenMP Total Computation time (secs)
blocks MPI task Threads cores PGI CRAY

L max=20 (Number of states=3311). Total radial grid = 640x640.
20 32x32 4 840 387.41 318.97
40 16x16 1 820 369.32 327.50

L max=20 (Number of states=3311). Total radial grid = 1280x1280.
20 64x64 4 840 1832.00 1581.04
40 32x32 1 820 1345.11 1177.85

In general the hybrid version is not as efficient as just using MPI. It islikely that any efficiency improve-
ments in reduced MPI communications are outweighed by the less efficient cache utilisation of having
larger radial grids per MPI task. However, for smaller grid sizes per task, the hybrid may be more efficient
in some cases. Also the hybrid may be more suitable on other systems which havelower specification
interconnects.

Testing strong scaling performance

PGI CRAY
Number Parallelism/node OpenMP DO Runtime Speedup Runtime Speedup
of cores MPI OMP Scheduling (seconds) (seconds)

Radial grid per MPI task=16x16, Lmax=20 (Number of states=3311)
2016 24 serial code N/A 441.14 1.02 418.93 0.98
2016 24 1 STATIC 449.87 1 409.67 1
4032 12 2 STATIC 239.34 1.88 230.02 1.78
6048 8 3 STATIC 168.75 2.67 152.24 2.69

12096 4 6 STATIC 108.89 4.13 92.94 4.41

Radial grid per MPI task=16x16, Lmax=36 (Number of states=17575)
2016 24 1 STATIC 2526.37 1 2246.57 1

12096 4 6 STATIC 561.31 4.50 474.42 4.74
12096 4 6 STATIC,4 608.48 4.15 532.93 4.22

Radial grid per MPI task=32x32, Lmax=20 (Number of states=3311)
2016 24 serial code N/A 1607.21 1.00 1432.08 0.99
2016 24 1 STATIC 1601.12 1 1420.67 1
4032 12 2 STATIC 831.74 1.93 746.55 1.90
6048 8 3 STATIC 569.95 2.81 512.19 2.77

12096 4 6 STATIC 329.43 4.86 282.53 5.03
12096 4 6 STATIC,4 344.17 4.65 307.24 4.62

Radial grid per MPI task=64x64, Lmax=14 (Number of states=1240)
2016 24 1 STATIC 2950.37 1 2854.34 1
4032 12 2 STATIC 1491.20 1.98 1311.72 2.18
6048 8 3 STATIC 1017.52 2.90 905.56 3.15

12096 4 6 STATIC 545.29 5.41 478.95 5.96
12096 4 6 STATIC,4 495.66 5.95 445.27 6.41

To test the scalability of the hybrid MPI-OpenMP version, we choose to setthe number of blocks in both
R1 and R2 of the MPI parallelism of the radial grid to 63, resulting in (63*64/2)=2016 MPI tasks. This
is a strong scaling test, i.e. the amount of work is kept constant for each problem configuration and we
increase the core count as we increase the number of OpenMP threads used. Run times above (in seconds)
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are for 180 program time-steps and exclude all initialisation and disk I/O. Results are presented for two
compilers on HECToR: PGI and Cray. Some results for the original serial code are included for both
compilers for comparison.

Scalability is generally better for larger radial blocksizes and for larger basis sets, as expected. Choosing
a non-default OpenMP DO scheduling option to try and get better load balancing gave mixed results but
would be worth investigating before running long production jobs. Future work will involve repeating
these experiments (under normal CSE, not dCSE, time) later in the year on thenew AMD Interlagos
processors used for the Phase 3 upgrade.

4 Work package 3. Implementation of a new parallel postprocessing code
to transform HELIUM output from spherical to cylindrical geometry

The numerical integration of Schrödinger’s equation (using HELIUM) provides us with time-dependent
solutions to a 6-dimensional partial differential equation,Ψ(r1, r2, θ1, φ1, θ2, φ2, t) - essentially a 7-
dimensional array of complex numbers. Once this data has been reliably generated, there remains the
far from trivial problem of extracting useful information. Generally, thefirst step in attempting to extract
useful physics from the data will involve a dramatic reduction in the dimensionality of the data. For ex-
ample, integrating away all spatial variables in|Ψ|2 over a region of space gives the probability of finding
both electrons in that region of space. This quantity, tabulated as a functionof time, is used to monitor
the movement of electrons as they are driven from one region in space to another. During ionization, the
electrons are driven from the core of the atom to the periphery of the integration volume. Ionization rates
are calculated from the temporal rate of change of this quantity.

One of the best methods of monitoring the evolving physics of a laser-driven 2-electron atom relies on
P (r1, r2, t), the probability density function in the two radial variablesri = |ri|. P (r1, r2, t) is obtained
by integrating away all 4 angular variables in|Ψ|2. In HELIUM, the wavefunction is written on a basis
set of coupled spherical harmonics (Equ. 1), which makes the calculationof P (r1, r2, t) straightforward.
Due to the orthonormality of the angular basis set, we get:

P (r1, r2, t) =
∑

l1,l2,L,M

|Fl1 l2 L,M (r1, r2, t)|2 . (5)

This time-dependent probability density has proved very useful in distinguishing single ionization (where
P shows increase with time foronly one of r1 or r2 large) from double ionization (whereP shows increase
with time forboth of r1 andr2 large). However in this probability density function all angular information
is lost. This is disadvantageous since many experiments measure ionising electron momenta components
parallel to the laser polarisation axis and it is important to make direct comparison with this experimental
data [7, 8, 9, 10, 11, 12].

To remedy this deficiency we have written a parallel code (CYLINDRICAL)to calculate the probability
density in thez variables,P (z1, z2). The z direction turns out to be the most useful in general because in
HELIUM the laser light is by convention linearly polarised in the z direction.P (z1, z2) is calculated by
integrating the wavefunction overρ1,2 andφ1,2 (of the cylindrical coordinate system - (ρ, φ, z) for each
electron), so that, at any given time t:

P (z1, z2, t) =

∫

2π

0

∫

∞

0

∫

2π

0

∫

∞

0

|Ψ(r1, r2, t)|2 ρ1dρ1 dφ1 ρ2dρ2 dφ2, (6)

where the laser polarisation axis defines the z-axis of each electron. Theevolution of this probability den-
sity function allows us to distinguish the cases of double ionization in which the 2 electrons are ejected
on the same side of the nucleus (z1 andz2 have the same sign) from cases of double ionization with the
two electrons emerge on opposite sides of the nucleus (z1 andz2 have opposite signs). Moreover we can
track wavepacket as it makes the transition from one case to the other. EvaluatingP (z1, z2, t), however,
is a significant computational effort - a four dimensional numerical quadrature over (potentially) terrabyte
sized arrays spread over tens of thousands of cores.

The program CYLINDRICAL calculatesP (z1, z2) by numerically evaluating the integral in Equ. 6 for
each pair (z1 andz2) in a desired range. To do this, the representation ofΨ given in Equ. 1 is substituted
into the integral of Equ. 6. The integrand|Ψ(r1, r2)|2 is expanded in terms of the spherical harmonics
that appear in|l1l2LM > and the radial variable (ri) wavefunctionsFl1,l2,L(r1, r2) (with M=0). Theφ
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Figure 2: A slice of the cylindrical-coordinate probability distributionP (z1, z2), obtained by applying
transformation Equ. 6 to the radial-coordinate wavefunction given in Equ.7. The slice ofP (z1, z2)
is constructed by settingz1 to 0.85 au, and varying thez2 variable. The exact transformation of the
wavefunction given in Equ. 7 is shown by the red dotted line (Equ. 8). Thesolid black line shows the
results of the transformation of Equ. 7 toP (z1, z2) performed numerically by program CYLINDRICAL.

variables are easily integrated away, leaving an integral in dρ1 dρ2 over an integrand composed of a sum
of products of Clebsch-Gordon coefficients, Associated Legendre polynomials, and theFl1,l2,L(r1, r2)
functions. The radial variablesri are related to the cylindrical variables byr2

i = ρ2
i + z2

i . Because the
integrand is known only at finite-difference grid points that are evenly spaced in the radial variablesri, the
integrand is known only at points that are unevenly spaced inρi. Because of the non-uniform spacings of
theρi variables, the integrand is fitted to a cubic spline, which is used to perform thequadrature.

As a test of the new software, we apply it to the following (unnormalised) wavefunction, which resides on
partial wave|l1l2L >= |1, 1, 2 >:

Ψ(r1, r2) = r1r2e
−r1

2

e−r2
2 |1, 1, 2 >=

√
6

8π
(2z1z2 − ρ1ρ2cos(φ1 − φ2))e

−r1
2

e−r2
2

. (7)

This wavefunction can be integrated analytically using Equ. 6 to obtain the truedistribution:

P (z1, z2) =
3

32
(z2

1z
2
2 +

1

32
)e−2z1

2

e−2z2
2

. (8)

In Fig. 2 we compare the trueP (z1, z2) (given by Equ. 8) with CYLINDRICAL’s numerical integration of
the wavefunction given in Equ. 7. The two methods of calculatingP (z1, z2) agree to about four significant
figures over most of the range of z2. A discrepancy is only apparent at the end points. At the end points
the numerically calculatedP (z1, z2) (black line) is clamped to zero, whereas the exact result is near 10−22.

Figure 3 is a logarithmic plot of several probability distributions associated withthe ground state of helium.
The calculation successfully reproduces the classic features of the helium ground state. The helium ground
stateΨ is calculated numerically by HELIUM and transformed toP (z1, z2) by program CYLINDRICAL.
The ground stateΨ is a linear combination of 6 partial waves. The black line,P (0, z2), describes the case
in which one electron remains near the nucleus (z1 = 0), while the other spans the fullz range of the cal-
culation. The inner electron effectively cancels the positive electric charge of one of the two protons, so
that the wavefunction is essentially that of hydrogen asymptotically. The green line,P (z2, z2), describes
the case in which both electrons are an equal distance from the nucleus, and on the same side of the atom.
They see an unscreened nucleus (of two positive charges) and as a result their wavefunction approaches
that of the ground state of He+. When the two electrons are far from the nucleus simultaneously, but on
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Figure 3: Three slices of the cylindrical-coordinate probability distributionP (z1, z2), obtained by apply-
ing program CYLINDRICAL to the ground state wavefunction of helium. Theblack line showsP (0, z2),
the red lineP (−z2, z2), and the green lineP (z2, z2).

opposite sides of the atom, then their probability distribution is given byP (−z2, z2), the red line. Again,
the electrons see an unscreened nucleus of two positive charges, buta more distant negative charge, the
other electron, slightly cancels the charge of two protons. The red line is somewhat closer to the hydro-
genic (black line) result.

5 Work package 4. Implementation of a new final-state momentum-space
code for HELIUM

In work package 4 we proposed a new design and a new implementation of thesoftware that transforms
the HELIUM final-state wavefunction from configuration-space to momentum-space. At the time work
package 4 was proposed, the original design suffered performanceproblems, and was limited by the fail-
ure of certain MPI collectives (MPI-Gather) on large core counts and large data sets.

The numerical integration generates the wavefunction in configuration-spaceΨ(r1, r2), but transforma-
tion of the wavefunction to momentum-spaceΨ(k1,k2) can (in the limit in which the Coulomb potentials
are negligible) be a convenient and accurate way of calculating the final energy distribution of the electrons
for comparison with experiment. This transformation is performed by a 2-dimensional Bessel transfor-
mation. In the most recent series of calculations (8000 to 16000 cores on HECToR) the limiting factor on
the size and accuracy of the calculation was not the numerical integration itself, but the final-stage Bessel
transformation. The problem occurs because the numerical integration operates on a domain localised in
r1 andr2, but over the full domain of angular momenta, whereas the momentum analysis operates on a
domain localised in the angular momenta (|l1l2LM〉) but over the full spatial domain. Subsequent to the
numerical integration, the wavefunction must be rearranged across the entire machine. In other words, a
portion of every single wavefunction on each core must be sent to one ormore cores elsewhere on the
machine in order to reassemble the wavefunction appropriately. Performedin serial the process is too
slow by several orders of magnitude. Performed in parallel by the 8000 cores, the run-time was tolerable,
(several hours at most) but the memory limitations of the then current MPI software severely limited the
size of wavefunction.

Below we report several successful solutions to the problem. The new software is 4 to 20 times faster
than the original software as measured on HECToR (pre-Phase2B). The improvement is due to the supe-
rior hardware of the new Phase2B machine, to the use of improved MPI collective routines and to better
algorithms. The original proposal was for a fully parallelised solution to the problem. This goal was met
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through the use of the MPI-alltoallv collective procedure, and this turned out to be the fastest solution on
the upgraded HECToR. We report below benchmarks on 8001 cores, along with details of two other useful
solutions to the problem.

Work package 4 also called for the implementation of a new transformation of thefinal state wavefunction
using a basis set of Coulomb radial functions (eigenstates of the field-free Coulomb Hamiltonian) rather
than a basis set of Bessel functions (which are used in the transformationof the final state wavefunction
to momentum space). The two basis sets are identical in the limit in which the Coulomb interaction goes
to zero. New software has been written to generate the Coulomb functions asthey are needed at run-time.
The Coulomb functions are generated by numerically integrating the 1-electron Schr̈odinger equation with
an arbitrary order Taylor series propagator. Surprisingly, the Coulombfunctions are generated as quickly
as the Bessel functions. The entire transformation, including generation of the basis set functions and
projecting them onto the final state wavefunction completes in under 4 minutes in typical medium to
large sized problems. We report details of the new software, the test suite,and successful use of the new
methods on a significant problem in atom-laser physics that has attracted muchattention and controversy
recently.

We return now to the problem of rearranging and reassembling the wavefunction across 1000’s of cores
on HECToR. To clarify the problem, we describe a specific case. We startwith the parameters used in the
first benchmark discussed below.

Each core has a local state of 506 partial waves, each of which is a 32 x 32 array of complex numbers
called a Block. On 8001 cores this amounts to a 66.3 gigabyte total state. The total memory processed
by HELIUM at run-time in this case is 18 times this value, but only the 66.3 gigabytestate is transferred
between cores in Stage 1 of the transformation described below.

The problem is to rearrange this data set across the entire set of 8001 cores, and subsequently transform
it by writing it on a basis of Bessel or Coulomb functions for energy analysis. This work is done in three
stages. On early incarnations of HECToR, attempts to perform this in a single stage failed, evidently due
to memory limitations and immature MPI systems software.

The first stage rearranges the data across the 8001 cores. In the original approach to this rearrangement,
each of the 8001 cores sends exactly 1 of its 506 blocks to the 1st core, which then assembles all 8001 of
them into an array, and writes the array to disk. This is repeated for each of the 506 partial waves.

A second stage is a single core program that reads each of these 3-dimensional arrays from the disk, re-
assembles the data into a 2-dimensional partial wave, which is them saved to disk.

The third stage transforms the partial waves from configuration space to arepresentation more suitable
for energy analysis of the final-state created by the laser pulse. The thirdstage will be described in more
detail later in this section.

We return to stage 1 and describe new developments and timings on 8001 cores. Three new methods
(Methods 2, 3, 4) have been developed that successfully optimise the run-time and solve the poor reliabil-
ity problems observed on very early versions of HECToR.

Method 1 is the original and simplest method. It was developed to work around failure of the MPI collec-
tive routines on the early HECToR, but it was disappointingly slow. The mostbasic of the MPI procedures,
pairs of Send/Recv’s, are used to transfer the data between cores. The Send/Recv pairs are called 8001
times in a loop over partial waves to transfer 8001 blocks to core 0. Core 0 writes this data to disk, and
the process is repeated 506 times, once for each partial wave.

Method 2 uses the same Send/Recv loop as method 1, but modifies the 8001 callsto Send/Recv by calling
a global synchonization barrier every 1000 iterations through the loop. This produces a surprising and
significant improvement in run-time.

Method 3 uses an MPI collective MPI-Gather to perform the operation described above in a single proce-
dure call.

Method 4 (due to Tom Edwards of the Cray Centre for Excellence) uses another MPI collective (MPI-
alltoallv), which further parallelises the Input/Output: each of the 506 partialwaves is assigned to a core
and processed in parallel, so method 4 runs on 506 cores - one for eachpartial wave.

On test problems of the following size (66.3 gigabyte final-state on 8000 cores) the typical run time of the
Send/Recv method on the original (pre-Phase2B) incarnation of HECToRwas about 2000 seconds. (A
production HELIUM run might use States of 400 gigabyte or greater and run considerably longer.)

11



Benchmark 1.

8001 cores, 32 x 32 block-size, 506 Partial Waves:

original timings (pre-Phase2B):

1. Send/Recv (original method) 2108 seconds

upgraded HECToR (Phase2B):

1. Send/Recv (original method) 662 seconds

2. Send/Recv (with global barrier) 311 seconds

3. MPI-Gather 242 seconds

4. MPI-alltoallv 102 seconds

Benchmark 2.

8001 cores, 120 x 120 block-size, 55 partial waves:

original timings (pre-Phase2B):

1. Send/Recv (original method) 1715 seconds

upgraded HECToR (Phase2B):

1. Send/Recv (original method) 422 seconds

2. Send/Recv (with global barrier) 390 seconds

3. MPI-Gather 399 seconds

4. MPI-alltoallv 210 seconds

On HECToR method 4, the MPI-alltoallv, is presently the fastest. Unfortunately, this method cannot be
used on all machines because it runs on a set of cores equal in number tothe number of partial waves. The
number of partial waves is very typically in the 500 to 3000 range, so method 4does not work on the few
cores available on a workstation or on clusters of workstations. The MPI-Gather solution (method 3) has
the advantage that it runs on the same number of cores as the original numerical integration, so that it will
work wherever HELIUM works. In the future it may be desirable to fuse this method to the numerical
integration and run as an optional final step. The Send/Recv (with global barrier) is the simplest of MPI
procedures, and is the most reliable - we have never seen it fail - and it isoften as fast or faster than the
MPI-Gather. Because any one of these methods may be the preferred method in a particular limit, the
present software offers all four of them. The user chooses the desired method by setting a constant in a
parameter module at the start of the program. The chosen method is then calledat run-time from a case
statement.

Retaining all 4 methods is also of much benefit in the testing process. During testing, the output files of
Methods 2-4 are compared with the output of Method 1 in order to verify thatthe binary outputs of the 4
methods are identical.

We turn now to the problem of generating Coulomb radial functions, and creating a transformation that
replaces Bessel functions with both unbound and bound-state Coulomb radial functions. The Coulomb
functions - solutions of the Schrödinger equation for one electron in a Coulomb potential - are generated
in different ways for the bound and unbound states. In general the Coulomb functions are eigenstates of
the finite-difference Hamiltonian, and therefore if highest accuracy is desired they must be calculated on
the finite-difference grid with the HELIUM program’s special boundary conditions. This requirement can
be relaxed in the case of unbound states. To good approximation the calculation of unbound states can be
treated as though we are in continuous space, rather than on a grid of discrete points, and standard methods
to perform the numerical integration can be used. On the other hand, veryhigh accuracy in the treatment
of the bound states is essential. For example we need to remove from the finalstate wavefunction the
ground state (a bound state with a population of about 0.5) leaving behind theunbound states (the signal
we want to analyse) which may have a population of about 10−7. An error of 1 part in 107 in this case
would obliterate the signal we are interested in.

The desired bound states therefore are obtained through a partial eigen-decomposition of the finite-difference
Hamiltonian (a large sparse matrix). An iterative Arnoldi-Lanczos method is used to extract from this ma-
trix the first N eigenvectors with the smallest eigenvalues. Typically N is set to 50 - the first 50 lowest
energy bound states of the field-free 1-electron singly-ionised helium Hamiltonian are generated and saved
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to disk. After HELIUM has generated a final-state wavefunctionΨ, all components ofΨ in the direction
of these 50 orthogonal bound states are removed.

Originally, the next step was to Fourier transform the wavefunctionΨ(r1, r2) to momentum space, by
integratingΨ(r1, r2)exp(−ip1r1)exp(−ip2r2) overd3r1d3r2 to getΨ(p1,p2). When this Fourier in-
tegration is performed over angular and radial variables, rather than cartesian coordinates, then it becomes
an integral in the radial variables over Bessel functions, rather than plane waves.

The new software packages provide Coulomb functions as the preferred (though optional) replacement
for the Bessel functions. A public domain package for generating Coulombfunctions (using low order
Numerov method) was tested but proved to be unreliable and inaccurate. Anarbitrary order Taylor’s series
integrator was written to replace it. The higher order of the new method enables high accuracy numer-
ical integration without much loss in run-time performance. The Numerov methodtypically propagated
solution of the Schr̈odinger equation with local truncation errors of order 10−4. The 10th order Taylor
integration gave local truncation errors significantly smaller than 10−10.

The higher accuracy of the Taylor propagator also makes it easier to detect failure in the integration during
the testing process. One of the standard test routines included with the new software generates Coulomb
functions from known analytical formulas. Comparison of these results withthe numerically integrated
results verifies that maximum error in the integrated Coulomb function is of the order 10−9. Another test
routine verifies that the Coulomb functions are orthogonal and have the expected norm.

Asymptotically (at large radial distances r), the Coulomb eigenfunctions andthe Bessel functions are iden-
tical up to a phase. Testing of the new software includes verification that theCoulomb functions approach
the correct values asymptotically.

As a substantial test of the new software, and as a demonstration of the importance of a rigorous quanti-
tative analysis of final-state energy distributions, we have applied the new software suite to a contentious
problem that has proved challenging both to theorists and to experimentalists,namely calculation of non-
sequential double ionization cross sections in the 2-photon double ionizationof helium. Theoretical cal-
culations of these ionization cross sections have yielded predictions that vary in magnitude by a factor
of 200: 5× 10−54 cm2 sec at the low end to 10−51 cm2 sec. We ignore sequential double ionization,
a process in which one electron is singly-ionised leaving the other in a boundstate of He+. Ionization
of this residual bound electron at some later time produces a pair of free but uncorrelated electrons. The
process of interest to us is the non-sequential one, in which two correlated electrons are freed from the
atom and ejected near simultaneously.

To minimise production of sequentially ionised electron pairs the calculation is performed at a relatively
low field intensity: 1013 W/cm2. The pulse in ramped on smoothly over 18 field periods, held constant
for 30 field periods, and then ramped to zero intensity over 18 field periods. The numerical integration
proceeds for another 30 field periods field-free to allow the doubly-ionised electron pairs to depart the
strong coulomb field of the residual ion, and to separate from each other as they do so. Subsequent anal-
ysis treats the electrons as though they are non-interacting so that each electron may be regarded as an
element of a single-electron dynamical system. This assumption is tested by allowing the electrons to
travel an additional 30 field periods field-free, so that their mutual interaction diminishes by a large factor.
Recalculation of the physical quantities of interest provides an estimate of sensitivity to mutual interaction.

Figure 4 shows the helium atom final state created by the 30 field period laserpulse described above.
Plotted is the log of the probability distribution of the two electrons in momentum space, Log (P(k1, k2)),
whereki is the magnitude of the i-th electron’s momentum in atomic units (au). P is a probability den-
sity, so the probability of finding electrons 1 and 2 with momentak1, k2 in a region of areadk1dk2 is
P(k1, k2)dk1dk2. The total kinetic energy K of the two electrons is (in atomic units) K =(k1

2 + k2
2) / 2.

The prominent circular arc in Fig. 4 therefore marks a region of constantkinetic energy. The radius of
the arc is k = 0.78 au, giving a kinetic energy K = k2/2 = 0.30 au. The laser frequency in atomic units is
1.6 au. (One au is 27.2 eV in energy.) The ground state energy of helium is -2.9037 au, so a 2 photon
transition transferring 3.2 au to the 2 electrons should create free electronpairs of total energy 0.30 au,
exactly as observed. In this case the total kinetic energy is, within the accuracy of the calculation, equal
to the total energy of the electron pair.

The vertical and horizontal bands represent final states in which one of the electrons is bound, and the
other ionised. One of the electron is localised in momentum (the unbound electron), and the value of its
momentum is largely independent of the momentum of the other electron. This is in contrast to the case
described above, in which knowledge of the momentum of the first electronk1 constrains the momentum
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Figure 4: Joint probability distribution of the helium final state electrons afterexcitation by a 30 field
period 28.5 nm laser pulse. The state is plotted in momentum space (the Fourier transform of the spatial
wavefunctionΨ) with angular variables integrated away, leaving only the radial componentsof the elec-
tron momentum,k1 andk2. Logarithm of the probability density P(k1, k2) is shown, colour coded, with
black the highest magnitude and blue lowest.

Figure 5: Joint probability distribution of the helium final state electrons afterexcitation. Pulse character-
istics are as described in Figure 4, but all bound states up to principal quantum number 9 were removed
from the final state prior to transformation to momentum space.
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of the other electron tok2 =
√

(2K − k1
2).

The circular arc we identify as non-sequential double ionization. Population in this region represents cor-
related electron pairs ejected non-sequentially during the laser-atom interaction. The quantity of interest
to us in this class of problems is the probability that such an event occurs (for a given laser intensity).
The processes is a 2-photon process (two 1.6 au photons are absorbed to ionise the -2.9 au ground state to
produce pairs of free electrons of total energy 0.3 au). It follows thatthe probability scales as the square
of the intensity. The ionization cross section for this process is proportional to the probability divided by
the intensity squared, since we are in a perturbative regime. The cross section is especially useful because
it is intensity independent.

When the cross section is calculated (by integrating P(k1, k2) over the circular arc to obtain the probabil-
ity all events occurring it this region of momentum space) we discover why thecalculation has proved
difficult. There is no natural division between the arc and the linear features that represent bound states.
The calculated probability can vary by a factor of 2 or more depending on the choice of boundary between
arc and band. In momentum space (Fig. 4) it appears that the two features- the arc representing non-
sequential double ionization and the bands representing bound states - are fused.

From the data displayed in Fig. 4 we cannot reliably calculate the double-ionization cross section, (which
is proportional to population in the circular arc), but with the new software introduced in this section we
have been able to develop 3 methods of calculating the desired quantity with good quantitative accuracy.
The 3 methods of analysis independently give the same answers to within 2 percent.

The first of these methods is performed using the momentum space approachdescribed above, but with a
single pre-processing stage in which all bound states (up to principal quantum number 9) of the residual
He+ ion are removed. The bound states are eigenstates of the hydrogenic He+ ion on the finite-difference
grid, calculated using the same boundary conditions used during the numerical integration performed
by HELIUM on an identical finite-difference grid. The bound states are calculated in advance using an
Arnoldi eigen-decomposition, and stored in an external file. Figure 5 shows the helium final state in mo-
mentum space with these bound states removed. All that remains is the desired circular arc. Integration
over the probability density function in the arc yields the desired physical quantity: probability of non-
sequential double ionization.

The second approach to this problem is the more satisfactory in general, because it decomposes the helium
final state into a linear combination of states that are eigenstates of the field-free helium Hamiltonian (in
the limit in which the two final state electrons are non-interacting). This new basis of eigenstates, which
we call Coulomb states, differs subtly from the basis set used to constructthe momentum space final state
shown in Fig. 4. In fact the Coulomb states are identical to the momentum space states in the region
of space in which the Coulomb potential can be neglected, which is generally the case in this problem.
This asymptotic equality between the basis sets is used as part of the software’s test suite. Unfortunately,
the difficulty described above, in which unbound states appear fused to the bound states, occurs in the
region of space in which the Coulomb potential is non-negligible. The use of Coulomb states solves this
problem. In the Coulomb basis we are able to resolve the bound and the unbound states. As a result, in the
Coulomb basis it is not necessary to remove bound states from the final stateprior to analysis. This was
an unexpected result. Figure 6 shows final state written on a basis of Coulomb states. Clear space now
separates the circular arc from the bound state that caused the difficultiesdescribed above. Calculation of
the probability of non-sequential double ionization (integration of P(k1, k2) over the arc) yields the same
answer as the momentum space calculation (Fig. 4).

Finally, in Fig. 7 we show the final state in Coulomb space with bound states removed. Comparison with
the momentum space calculation (Fig. 5) shows only subtle differences. Non-sequential double ionization
probabilities obtained from the data of Fig. 7 agree with the previous calculations.
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Figure 6: Joint probability distribution of the helium final state electrons afterexcitation. The state is
written on a basis set of Coulomb functions. Logarithm of the probability density is shown. Pulse charac-
teristics are as described in Figure 4, and no bound states have been removed.

Figure 7: Joint probability distribution of the helium final state electrons afterexcitation. The state is
written on a basis set of Coulomb functions. Logarithm of the probability density is shown. Pulse charac-
teristics are as described in Figure 4, but all bound states up to principal quantum number 9 are removed
from the final state.
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