
Improving the performance of GWW

A DCSE project

D. Casterman

The University of Sheffield, Mappin street, S1 3JN, Sheffield

Abstract

This report presents the implementation of a full pencil (stick) decomposition of the

3D FFT for the improvement of the Quantum Espresso (QE) package. This algorithm

is compared with the existing plane decomposition algorithm implemented in QE.

This new algorithm is intrinsically slower than the previous algorithm for a small

number of processors. However, the two algorithms present similar performance for

the number of processors equal to the maximum scaling limit of the plane

decomposition algorithm which is equal to the number of grid points along the z axis

of the 3D function. The pencil decomposition algorithm is also shown to scale up to

1024 processors with a speed-up of 67 % compared to the computational time of 1

processor (A performance which depends on the FFT grid). The improvement of this

scalability is of great interest in Quantum Espresso as it will enable users to study

larger and more realistic systems, i.e. having a supercell containing more atoms. The

algorithm presented in this report can also be transferred to other codes.

Improving the performance of GWW: a dCSE project

__

2

Contents

1-Introduction .. 3

1.1-Presentation of the project ... 3

1.2-Quantum Espresso and GWW ... 4

1.3-Benefits .. 4

2-FFT algorithm ... 6

2.1-Algorithm ... 6

2.2-FFTW ... 11

3-Performance .. 12

3.1-Tests and comparison with previous algorithm ... 12

3.2-Accuracy of the results .. 14

3.3-Improvement with 2D virtual grid of processors ... 15

4-Conclusion ... 17

Acknowledgements .. 17

References ... 19

Improving the performance of GWW: a dCSE project

__

3

1-Introduction

1.1-Presentation of the project

This report presents the work package 3 of the dCSE project “Improving of the GWW

package” and completes the work carried out by Iain Bethune at the University of

Edinburgh who covers the work packages 1 and 2 [1]. The main objective of this

work package 3 is to implement a new FFT algorithm based on pencil decomposition.

This new algorithm does not replace the existing plane decomposition implemented in

the Quantum Espresso (QE) package but completes this algorithm when the number

of processors used for the calculation is greater than the intrinsic limit of the 2D plane

decomposition algorithm defined in QE by the number of points along the z axis of

the 3D functions to be transformed. A detailed breakdown of WP3 is:

 Code Familiarisation (2 months). (Completed)

 Isolate code for FFT routine and devise a test set (1 month). (Completed)

 Implement pencil distribution within FFT routines in PW (ie given the existing

data distribution do any necessary communication within FFT routines to get

data into the new pencil form) (4 months). (Completed)

 Modify data distribution of PW and PH (5 months). (Incomplete)

 Testing and validation (Concurrent with 1-4).

 Report on 3D FFT for knowledge transfer. (Completed)

As a result, this report presents a complete description of the full pencil

decomposition for the evaluation of the 3D Fast Fourier Transform (3D FFT) to

improve the scalability of the PW and PH codes of the QE package [2]. This full

pencil decomposition partially follows the work presented by Jacode and Sigrist [3-4].

The integration of this algorithm in the main PW and PH codes has not been

successful as the project ran out of time. Although the data distribution in PW and PH

has been modified according to the new algorithm, other errors hampers the the code

to run and seems to be too complex to debug or predict within the timescales of this

project. The code has been delivered to NAG. All the calculations presented in this

report were carried out on the national computer grid facility, HECToR [5].

Improving the performance of GWW: a dCSE project

__

4

1.2-Quantum Espresso and GWW

Quantum Espresso [2] (opEn Source Package for Research in Electronic Structure,

Simulation, and Optimization) is an integrated suite of computer codes for electronic-

structure calculations and materials modelling at the nanoscale. It is based on density-

functional theory, plane waves, and pseudopotentials (both norm-conserving and

ultrasoft) and implements a range of pseudopotentials and exchange correlation

functionals, including Hartree-Fock and hybrid functionals (PBE0, B3LYP, HSE). It

is developed by an international collaboration of the DEMOCRITOS National

Simulation Center (Trieste) with several other materials science centres in Europe and

the USA. The code is based on different executables implemented for different

purposes:

- pw.x (Electronic and Ionic Structure, including MD)

- ph.x (Phonons using Density Functional Perturbation Theory)

As explained by I. Bethune [1], Quantum Espresso is written in Fortan 90, consisting

of over 300,000 lines of code in nearly 1000 source files. In addition to the source for

each executable, there is a common Modules directory containing code shared by all

the executables. This includes common functionality such as I/O, parallelisation, data

types, as well as the FFT. A number of external libraries are required including an

FFT library (e.g. FFTW3) as well as BLAS, LAPACK and ScaLAPACK for linear

algebra operations.

GWW (GW Calculations using Wannier functions, gww.x), is a recent addition to the

Quantum Espresso package and is developed by Dr. Paulo Umari, the code calculates

polarisation using a basis of localised Wannier orbitals within the GW approximation,

an approach which is around two orders of magnitude faster than conventional plane

wave basis methods.

1.3-Benefits

Quantum espresso is a widely used code in the scientific community studying

condensed matter physics. The improvement of its scalability is crucial for the study

of more and more complex and realistic structures. Recently, the study of atomic

structures as large as 1200 atoms has been presented in the literature [6]. For such a

Improving the performance of GWW: a dCSE project

__

5

system, the computational burden is important and requires the scalability of the code

to 1000s of processors in order to evaluate the relevant properties such as the band

structure of the system. In particular, the GW method has been shown over the last

decades to be the most accurate method to estimate this band structure as it models

correctly the complex interaction between electrons. However, this method has so far

been limited to few atoms as the computational demand to solve the problem is too

important. However, a smart solution and implementation of this method has recently

been added by Paolo Umari to the Quantum Espresso package making the package of

great interest for the entire scientific community studying the physics of materials.

Improving the performance of GWW: a dCSE project

__

6

2-FFT algorithm

2.1-Algorithm

The first step is to create two sub-communicators Comm_Row and Comm_column

from the standard communicator MPI_COMM_WORLD. In this regard, the processors

are artificially organized as a 2D Cartesian grid with Ncol columns and Nrow rows.

To do so, the function MPI_COMM_SPLIT is used in the following way,

! This creates the subgroup COMM_COLUMN for transpose in full pencil 3d fft

color1 = (mpirank-mod(mpirank,Ncol))/Ncol

key1 = mod(mpirank,Ncol)

CALL MPI_COMM_SPLIT (MPI_COMM_WORLD, color1, key1, COMM_COLUMN, ierr)

CALL MPI_COMM_RANK(COMM_COLUMN,me_column,ierr)

! This creates the subgroup COMM_ROW for transpose in full pencil 3d fft

color2 = mod(mpirank,Ncol)

key2 = (mpirank-mod(mpirank,Ncol))/Ncol

CALL MPI_COMM_SPLIT (MPI_COMM_WORLD, color2, key2, COMM_ROW, ierr)

CALL MPI_COMM_RANK(COMM_ROW, me_row, ierr)

The indices mpirank, me_row and me_column are respectively the ranks in the

communicators MPI_COMM_WORLD, Comm_row and Comm_column. This

decomposition can be illustrated by the sketch presented in Figure 1 which shows the

re-organization of 32 processors into an 8x4 grid. In this case, the coordinates of

processor mpirank where  mpirank 0..31 , is given by the following equation

(where mod is the modulo function),

 

 

mpirank mod(mpirank, Ncol)
mpirank ,mod mpirank, Ncol

Ncol

mpirow,mpicol

 
  
 



 (1)

Improving the performance of GWW: a dCSE project

__

7

0

31

mpi

rank

Ncol

Nrow

Comm_row

Comm_column

Figure 1. Sketch representing the re-organization of the processors in a 2D Cartesian

grid. In this figure, the blue and red ellipses respectively show the sub-communicators

Comm_row and Comm_column to which the processor mpirank belongs to.

Having created the two communicators, the second step is to determine the number of

1D FFTs to be done by each processor. Ideally, this number should be the same in

order to distribute the workload evenly. To do so, a Np x 4 matrix, called

FFT_Sticks(Np,4), is added in the fft_dlay_descriptor used in Quantum espresso (Np

is the total number of processors). Here, stick is employed as a synonym of pencil (i.e.

a 1D FFT), and FFT_sticks(:,4) contains all the necessary information concerning the

number of pencils (sticks) carried by each processor between each

MPI_ALLTOALLv call. In order to illustrate this statement, the number of 1D FFT

along x carried by the processor mpirank is equal to FFT_sticks(mpirank+1,1)*

FFT_sticks(mpirank+1,2).

In this situation, FFT_sticks(mpirank 1 ,1) is the distribution of z points along one

column and FFT_sticks(mpirank 1 ,2) is the distribution of y points along one row.

As a result,

z

Nz
FFT _ sticks(mpirank 1,1)

Ncol

 
   

 
 (2)

where    is the floor function and z is defined as,

z

Nz
1 if mpirow mpirank * Ncol

Ncol

0 otherwise

   
         




 (3)

Improving the performance of GWW: a dCSE project

__

8

Note that ideally z is equal to 0 for all processors which corresponds to an even

distribution of the z points along the column. In the same way, the distribution of y

points along the row is given by with the following equations,

1

y

Ny
FFT _ sticks(mpirank 1,2)

Ncol

 
   

 
 (4)

where y is defined as,

1

y

Ny
1 if mpicol mpirank * Ncol

Ncol

0 otherwise

   
         




 (5)

In the same way, FFT_sticks(mpirank 1 ,3) and FFT_sticks(mpirank 1 ,4) are given

by,

x

Nx
FFT _ sticks(mpirank 1,3)

Ncol

 
   

 
 (6)

With,

x

Nx
1 if mpicol mpirank * Ncol

Ncol

0 otherwise

   
         




 (7)

And,

2

y

Ny
FFT _ sticks(mpirank 1,4)

Ncol

 
   

 
 (8)

With,

2

y

Ny
1 if mpirow mpirank * Ncol

Ncol

0 otherwise

   
         




 (9)

This matrix is then employed in the following algorithm which is illustrated in Figure

2 for a 8x16x24 FFT grid. This algorithm can be detailed as,

1) 1D FFT along x

2) Re-sort data

3) MPI_ALLTOALLv in the sub communicator COMM_COLUMN

4) Unpacking data

5) 1D FFT along y

6) Re-sort data

7) MPI_ALLTOALLv in the sub communicator COMM_ROW

Improving the performance of GWW: a dCSE project

__

9

8) Unpacking data

9) 1D FFT along z

In Figure 2, the actions of “re-sorting” and “unpacking” the data are not shown. If a

NxxNyxNz grid has to be transformed, the ith processor has a maximum number of

elements equal to

x

y

z

N *FFT _ sticks(i 1,1)*FFT _ sticks(i 1,2),

max N *FFT _ sticks(i 1,1)*FFT _ sticks(i 1,3),

N *FFT _ sticks(i 1,3)*FFT _ sticks(i 1,4)

  
 

  
   

 (10)

To carry out the 1D FFT transformation, a simple plan has been employed and is built

by the function, dfftw_plan_dft_1d() in FFTW

type(fft_dlay_descriptor) :: dfft

DO i=0,Np-1

! Number of z per row

a = int(Nz/Nrow)

dummy1 = ((i-mod(i,Ncol))/Ncol);

dummy2 = (Nz-a*Nrow);

IF(dummy1<dummy2) a=a+1

! Number of y per col

b = int(Ny/Ncol)

IF(mod(i,Ncol)<(Ny-b*Ncol)) b=b+1

! Number of x per col after 1st MPI_alltoallv in Comm_column

c = int(Nx/Ncol)

IF(mod(i,Ncol)<(Nx-c*Ncol)) c=c+1

! Number of y per row after MPI_alltoallv in Comm_row

d = int(Ny/Nrow)

dummy1 = ((i-mod(i,Ncol))/Ncol)

dummy2 = (Ny-d*Nrow);

IF(dummy1<dummy2) d=d+1

! FFT_sticks save all these data

dfft%FFT_sticks(i+1,1)=a

dfft%FFT_sticks(i+1,2)=b

dfft%FFT_sticks(i+1,3)=c

dfft%FFT_sticks(i+1,4)=d

ENDDO

Improving the performance of GWW: a dCSE project

__

10

i

FFT_sticks(i,2)

FFT_sticks(i,1)

Nx

i

FFT_sticks(i,3)

FFT_sticks(i,1)

i

FFT_sticks(i,3)

FFT_sticks(i,4)

Ny

Nz

MPI_ALLTOALLV(COMM_COLUMN)

MPI_ALLTOALLV(COMM_ROW)

FFT_sticks(i,1)
X

FFT_sticks(i,2)
1D FFT along x

FFT_sticks(i,1)
X

FFT_sticks(i,3)
1D FFT along y

FFT_sticks(i,3)
X

FFT_sticks(i,4)
1D FFT along z

Figure 2. Sketch of the decomposed algorithm without “re-sorting and unpacking”

stages. This figure shows how the number of FFT sticks per processors is stored in the

algorithm using FFT_sticks. In this example, The grid is a 8x16x24 grid and

FFT_sticks(i 1 ,1)=3, FFT_sticks(i 1 ,2)=4, FFT_sticks(i 1 ,3)=2 and

FFT_sticks(i 1 ,4)=2.

Improving the performance of GWW: a dCSE project

__

11

2.2-FFTW

Two different approaches can be employed to evaluate many 1D FFTs. The first one

is to create a simple complex-to-complex 1D FFT plan and evaluate a series of FFT

using a loop,

! 1D forward FFT along x

CALL dfftw_plan_dft_1d(plan,Nx,cin,cout,FFTW_FORWARD,FFTW_ESTIMATE)

! Creation of a many FFTs plan

DO i=1,(dfft%FFT_sticks(me_p+1,1)*dfft%FFT_sticks(me_p+1,2))

DO j=1,Nx

cin(j)=f(j+(i-1)*Nx)

ENDDO

CALL dfftw_execute(plan) ! Execution of the plan

DO j=1,Nx

aux(j+(i-1)*Nx)=cout(j)

ENDDO

ENDDO

CALL dfftw_destroy_plan(plan) ! Destruction of the plan

The second approach is to create a more complex plan for many complex-to-complex

ffts. To use this function, one has to understand the notions of stride and distance used

as arguments of the function dfftw_plan_many_fft() of the FFTW library.

nsl=(dfft%FFT_sticks(me_p+1,1)*dfft%FFT_sticks(me_p+1,2))

CALL dfftw_plan_many_dft(plan, 1, Nx, nsl, f(1:), Nx, 1, Nx, aux(1:), Nx, 1, Nx, FFT_FORWARD,

FFT_ESTIMATE) ! Creation of a “Many FFT” plan

CALL dfftw_execute_dft(plan,f,aux) ! Execution of the plan

CALL dfftw_destroy_plan(plan) ! Destruction of the plan

The stride and the distance give an insight to the memory pattern employed to store

the data. Figure 3(a) and (b) respectively show two different patterns: (a) stride = 1

and dist = NX, and (b) stride = NX and dist = 1. These two stride and dist parameters

may be used to reduce the “re-sorting” and “unpacking” data by reorganizing the FFT

algorithm.

Improving the performance of GWW: a dCSE project

__

12

Stride=Nx

Stride=1

Distance=Nx

Distance=1

x1 x1 x1x1

x1x1x1x1

x2 x3 x4

x2x2x2x2

x2 x2 x2 x3 x3 x3

x3x3x3 x3

x4 x4x4

x4 x4 x4x4

Figure 3. Illustration of the memory pattern for (a) stride = 1 and dist = NX, and (b)

stride =NX and dist = 1. The distance corresponds to the difference (in memory)

between the first element of one FFT and the first element of the next FFT to be done.

Stride is the difference (in the memory map) between the first and the second element

for the same FFT.

Having tested the two methods for 50 forwards and backwards FFTs on a 111x143x78

with 64 cores, it was observed that the second approach is faster as it only takes about

0.59s in comparison to 0.66s for the first approach.

3-Performance

3.1-Tests and comparison with previous algorithm

To test the algorithm, a simple sine function has been employed. Two different grids

have been used (respectively 128x128x128 and 111x143x78). The last grid enables to

check the validity of the MPI_ALLTOALLv call for random grid numbers. Figure

4(a) respectively shows the speedup obtained for the 128x128x128 FFT grid from the

pencil and plane decomposition of the FFT algorithm. For this test, 5000 forward and

backward FFTs were calculated and the time was recorded as the difference between

the beginning and end of this loop. Both algorithms demonstrate similar speed-up, but

the pencil intrinsically enables the scaling of the FFT to a greater number of

processors. However, looking closely at the computational time, Figure 4(b) shows

that the plane decomposition algorithm is faster for a small number of processors but

the difference between the algorithms drops off as the number of processors

approaches 128, which is the maximum scaling limit for the plane decomposition

Improving the performance of GWW: a dCSE project

__

13

algorithm applied to this grid. For this particular example (128x128x128), the data are

homogeneously distributed on all the processors, i.e. each processor the same number

of plane or pencils. However, this is usually not the case and an optimization of the

pencil decomposition can be obtained.

A method to achieve this goal is proposed in the section 3.3.

(a)

1 10 100 1000

1

10

100

1000

S
p

e
e
d

-U
p

Number of Processors

 Ideal

 Full pencil decomposition

 Plane decomposition

(b)

10 100 1000

100

1000

T
im

e
 (

s
)

Number of processors

 Pencil decomposition

 Plane decomposition

Figure 4. Comparison of the speed-up between the plane decomposition (extracted

from the Quantum Espresso package) and the implemented full pencil algorithm.

Figure (a) presents the comparison of the speed-up of the two algorithms for a

128x128x128 grid and Figure (b) shows the computational time of these two

Improving the performance of GWW: a dCSE project

__

14

algorithms for the same grid. The time for 1 processor is evaluated by applying the

plane or pencil decomposition algorithm to 1 processor. Note that for the plane

decomposition algorithm, the program does not provide the good results when

distributed on the number of processors greater the number of points along z, i.e. 128

in this case.

3.2-Accuracy of the results

Before presenting the optimization of the algorithm, it is important to check the

correctness and the accuracy of the results. For this purpose, Figure 5(a) shows the

part of the function carried by Processor 0 and Figure 5(b) shows the difference

between the original function and the same function after 50 forward and backward

FFTs. This difference is of order 10
-14

 which is acceptably within the expected round

off error for double precision floating point arithmetic.

(a)

0 5000 10000 15000 20000

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

F
u

n
c
ti

o
n

Number of points on proc 0

(b)

0 5000 10000 15000 20000

-4.0x10
-14

-3.0x10
-14

-2.0x10
-14

-1.0x10
-14

0.0

1.0x10
-14

2.0x10
-14

3.0x10
-14

4.0x10
-14

D
if

fe
re

n
c
e

Number of points on proc 0

Figure 5. (a) Part of the function carried by proc. 0 (b) difference between the input

function and the transformed function after 50 forward and backward FFTs.

Improving the performance of GWW: a dCSE project

__

15

3.3-Improvement with 2D virtual grid of processors

The full pencil decomposition requires an organization of the processor as a 2D grid.

As a result, an optimization of the algorithm consists in selecting the most adequate

2D virtual grid of processors which satisfy the condition,

Np Ncol Nrow  (3)

where Np, Ncol and Nrow are the number of processors, the number of column and

row as aforementioned. For each possible 2D grid, the data to be Fourier transformed

are distributed in the same way as presented in section 2.1 and consequently, the

following calculation can be carried out for each situation,

1) Calculation of the maximum number of pencils (sticks) per processor before

each FFT transform (along x, y and z).

2) Evaluation of the weighted mean of these 3 numbers.

The optimal 2D virtual grid of processors is obtained for the distribution which yields

to the minimum weighted mean. This method may not be the best but presents good

results as it is now presented

Based on this definition, the FFT have been calculated for the two grids 111x143x78

and 128x128x128. The speed-ups evaluated on the best and worst 2D distribution of

processors are evaluated for a 111x143x78 grid and presented in Figure 6(a). The best

means that the FFT is evaluated on the most adequate 2D virtual grid of processors

(minimum weighted mean) while the worst is obtained when the weighted mean is

maximum. In Figure 6(a), one can observe that the speed-ups are similar for a small

number of processor (lower or equal to 16), but better performances are obtained for

Np>16. The difference between the two virtual grids reaches a maximum for 256

processors which demonstrate a speed-up difference of 27%.

Figure 6(b) presents the best and worst speed-ups for the 128x128x128 grid.

Independently of these distributions of processors, the FFT sticks are homogeneously

distributed, i.e. each processor carries the same number of FFT sticks. As a result, the

FFT speed up is independent of the 2D virtual grid of processors.

Improving the performance of GWW: a dCSE project

__

16

(a)

1 10 100 1000

1

10

100

1000

Grid: 111x143x78

S
p

e
e
d

-U
p

Number of processors

 Ideal

 Best distribution

 Worst distribution

(b)

1 10 100 1000

1

10

100

1000

Grid: 128x128x128

S
p

e
e
d

-U
p

Number of processors

 Ideal

 Best distribution

 Worst distribution

Figure 6. Speed-up of the FFT evaluated on the worst and best 2D virtual grid of

processors for (a) a 111x143x78 grid and (b) a 128x128x128 grid.

Improving the performance of GWW: a dCSE project

__

17

4-Conclusion

A full pencil decomposition of the 3D FFT algorithm is presented in details in this

report. This decomposition requires the creation of a 2D virtual grid of processors

which have been optimized to yield better performances (up to 27% speed-up

increase). As expected, this algorithm is slower than the plane decomposition

algorithm already implemented in the quantum espresso package for small numbers of

processors. However, the two algorithms present similar performances at the

maximum scaling limit of the plane decomposition algorithm (equal to the number of

points along the z axis (stick) is in Quantum Espresso), and the new algorithm is

shown to scale up to 1024 processors. Although this algorithm is applied to QE, it can

also be transferred to other codes developed for various scientific topics outside

material science.

The incorporation of this algorithm into the main GWW codebase could not be

finished because of issues encountered in modifying the distribution of the data

carried by each processors, from planes to pencils. The strategy employed for the

integration of the new algorithm was to split the number of points along the y axis

(wherever it is needed) in the main code (consisting of over 300,000 lines of code in

nearly 1000 source files). While it works in isolation, however, this substitution in

each of the identified source files seems insufficient which implies that more

modifications are required at a deeper level of the code. These modifications appear to

be too complex to predict within the attributed timescales of this project, particularly

with scarce supporting documentation. The debugging also requires a more in-depth

understanding of the relationship between source files and the techniques underlying

the physics in the code. Nevertheless, all the modified source files as well as the

algorithm are available to NAG and QE administrators as required. The work carried

out by I. Bethune shows excellent improvement in comparison to the original

implementation and consequently offers a better performance to QE users.

Acknowledgements

This project was funded under the HECToR Distributed Computational Science and

Engineering (CSE) Service operated by NAG Ltd. HECTOR – A Research Councils

Improving the performance of GWW: a dCSE project

__

18

UK High End Computing Service – is the UK’s national supercomputing service,

managed by EPSRC on behalf of the participating Research Councils. Its mission is to

support capability science and engineering in UK academia. The UK supercomputers

are managed by UoE HPCx Ltd and the CSE Support Service is provided by NAG

Ltd. http://www.hector.ac.uk

Improving the performance of GWW: a dCSE project

__

19

References

[1] “Improving the performance of GWW: A dCSE Project”, I. Bethune (2010).

[2] Quantum Espresso, http://www.quantum-espresso.org/

[3] Fourier Transforms for the BlueGene/L Communication Network, Heike Jagode

(2006).

http://www2.epcc.ed.ac.uk/msc/dissertations/dissertations-0506/hjagode.pdf

[4] “Optimizing parallel 3D Fast Fourier Transformations for a cluster of IBM

POWER5 SMP nodes”, Ulrich Sigrist (2007).

http://www2.epcc.ed.ac.uk/msc/dissertations/dissertations-0607/2298876-27hd07rep1.1.pdf

[5] HECToR website, http://www.hector.ac.uk

[6] F. Varchon, P. Mallet, J.-Y. Veuillen, and L. Magaud, Phys. Rev. B 77, 235412

(2008).

http://www.hector.ac.uk/
http://publish.aps.org/search/field/author/Varchon_F
http://publish.aps.org/search/field/author/Mallet_P
http://publish.aps.org/search/field/author/Veuillen_J_Y
http://publish.aps.org/search/field/author/Magaud_L

