
Improving Load Balancing and Parallel Partitioning in Fluidity

Paul Woodhamsa,, Jon Hillb, Patrick Farrellb

aHECToR CSE Team, The Numerical Algorithms Group Ltd., Oxford
bEarth Systems and Engineering, Imperial College London, London

Abstract

Fluidity is a non-hydrostatic, finite element/control volume CFD numerical forward model used in
a number of scientific areas; geodynamics, ocean modelling, renewable energy, and geophysical
fluid dynamics. The applications cover a range of scales from laboratory-scale problems, through
to whole earth mantle simulations. One of the unique features of Fluidity is its ability to adapt the
computational mesh to the current simulated state: dynamic adaptive remeshing. When running
on multiple processors the adapted mesh must be load balanced, which involves swapping ele-
ments from processor to processor. Zoltan is a library that performs such dynamic load balancing.
Here, we document the steps taken to integrate Zoltan within Fluidity which extends the current
functionality of Fluidity, thereby extending the range of science areas that it can be applied to.
Although there is a small performance hit over the current customised load balancing library, this
is only noticeable when the number of elements per process is small.

1. Aims and Objectives

The purpose of this project was to re-engineer the parallel anisotropic mesh adaptivity and load
balancing algorithms of Fluidity (Piggott et al., 2009; Gorman, 2006) by incorporating Zoltan,
a collection of data management services for unstructured, adaptive and dynamic applications.
The aim of this was to improve the scaling behaviour of Fluidity and allow the adaptive remeshing
algorithms (Pain et al., 2001) to be used in parallel, on any element pair, rather than being restricted
to a single pair.

Zoltan includes a suite of parallel partitioning algorithms, data migration tools, parallel graph
colouring tools, distributed data directories, unstructured communication services, and dynamic
memory management tools. In addition to possibly improving scaling, the inclusion of Zoltan has
also improved software sustainability, and add new functionality. This will deliver new perfor-
mance capabilities that will prepare Fluidity for petaflop systems, such as those proposed by the
PRACE project, when combined with the new capabilities will enable new science to be carried
out.

In addition to allowing new features to be added to the adaptivity capabilities of Fluidity, the
inclusion of Zoltan has allowed Fluidity to be coupled with other models such as atmospheric
and ice-sheet models, a key part of future research, as these applications require a non-standard
discretisations. Finally, a recent development in Fluidity was the addition of Lagrangian particles,
which are free-moving particles in the flow and are used as either detectors or within agent-based
modelling. This is now in need of parallelisation which, when considering possible contradictory

Email addresses: paul.woodhams@nag.co.uk (Paul Woodhams), jon.hill@imperial.ac.uk (Jon Hill)

dCSE report March 4, 2012

load-balancing objectives between the mesh and the particles, is a non-trivial task. Load-balancing
and parallel data migration algorithms for such purposes already exist in the Zoltan library (e.g.
Rendezvous) and hence has aided in this objective.

The project was set out into six distinct packages of work with measurable deliverables. These
were as follows:

1. To become familiar with the Fluidity code, build process and benchmark suite. A short
report detailing the times for computation, communication, data migration and adaptivity
for one of the benchmarks would be produced.

2. Adding the Zoltan solution for parallel adaptivity as a compile time option for Fluidity.
Using the Zoltan interface to ParMETIS the functionality of the previous solution should
be replicated and the Zoltan solution should pass all tests in the Fluidity test suite (unit,
short, medium and long). Additional tests comparing Zoltan functionality against the pre-
vious solution as well as unit tests for the communications functionality of Zoltan should
be completed. A short report detailing the implementation produced as a dCSE Technical
Report.

3. Zoltan solution used as the default in all Fluidity development branches and future releases
of Fluidity. All Zoltan development branches merged back into the trunk and all tests pass-
ing using the Zoltan solution. Documentation for all Zoltan options provided in the Fluidity
manual and Fluidity options system, Diamond (Ham et al., 2009).

4. Investigate performance improvements for Fluidity using the various Zoltan options made
available through the Fluidity options system, diamond. Aim is for a reduction of 15%
or more in communication time for all HPC benchmarks when using the Zoltan solution
compared against the previous solution. Aim for speed-up from 64 to 2048 processes to be
increased by 15% using the Zoltan solution compared to the previous solution. All work
to be documented in a short report. Code extensibility as important as code performance
improvements but there are no deliverables related to this.

5. Final report including profiling results for the four HPC benchmarks completed.

6. Participate in and present updates on progress at the Fluidity HPC Workshops.

This report will begin by giving some background on Fluidity, along with the adaptivity and paral-
lel adaptivity algorithms implemented in Fluidity. The Zoltan library will then be discussed. This
will be followed by a description of the implementation and the profiling results from the HPC
benchmarks run on HECToR will be presented. Finally the conclusion will give details of the
outcomes from this project and how it has benefited HECToR users.

2. Background

2.1. Fluidity

Fluidity is an open source, general purpose, multi-phase computational fluid dynamics code ca-
pable of numerically solving the Navier-Stokes equations and accompanying field equations on
arbitrary unstructured finite element meshes in one, two and three dimensions (Piggott et al.,
2009; Pain et al., 2005). It is used in a number of different scientific areas including geophys-
ical fluid dynamics (Mitchell et al., 2010), computational fluid dynamics (Hiester et al., 2011),
ocean modelling (Pain et al., 2005) and mantle convection (Davies et al., 2011). It uses a finite

2

element/control volume method which allows arbitrary movement of the mesh with time depen-
dent problems, allowing mesh resolution to increase or decrease locally according to the current
simulated state (Fig. 1). It has a wide range of element choices, including mixed formulations.
Fluidity is parallelised using MPI and is capable of scaling to many thousands of processors on
the UK national HPC service, HECToR. Other innovative and novel features are a user-friendly
GUI, Diamond (Ham et al., 2009) and a python interface which can be used to calculate diagnostic
fields, set prescribed fields or set user-defined boundary conditions.

Figure 1: Example of a Fluidity adaptive mesh simulation of the lock-exchange problem. The mesh is
adapted to the temperature field (red-blue colour) and velocity (not shown). The mesh is refined where a
sharp curvature exists, preserving this interface, whilst reducing overall computational load (Hiester et al.,
2011)

2.2. Adaptivity

Dynamic adaptive remeshing, hereafter known as adaptivity, is a process of adapting the mesh
according to an error, which is a function of the current model state and user-defined functions.
This allows the a posteriori metric to be used to alter the mesh as the simulation proceeds. Once
a posteriori metrics have been computed, there are many possible ways of modifying the discreti-
sation to achieve some error target. These include h-adaptivity, which changes the connectivity
of the mesh (Berger and Colella, 1989); p-adaptivity, which increases the polynomial order of
the approximation (Babuška and Suri, 1994); and r-adaptivity, which relocates the vertices of the
mesh while retaining the same connectivity (Budd et al., 2009). Combinations of these methods
are also possible (e.g., Houston and Süli (2001); Ledger et al. (2003)).

Fluidity uses a powerful combination of hr-adaptivity, since the meshes produced are not con-
strained by the previous mesh; therefore, this approach allows for maximum flexibility in adapting
to solution features. However, this flexibility comes at a cost: guiding the adaptive remeshing
procedure (choosing what mesh to construct), executing the adaptation (constructing the chosen
mesh) and data transfer of solution fields (from the previous mesh to the newly adapted mesh)
become more complicated than with hierarchical refinement.

The metric, M, on which adaptivity is carried out is calculated as follows. For each field, fi to be
included in the metric, metrics:

Mi =
1
ε fi
|H (fi)| (1)

where ε fi is a user defined weight and |H (fi)| is the matrix formed using the absolute values of the
eigenvalues of the Hessian matrix. The use of a tensor allows anisotropic directional information
to be included and hence influence the adaptivity.

The adaptive algorithm carries out the following stages (also see Fig 2):

3

1. Construct the Hessian of the fields the user has specified for inclusion in the error metric,
which depends on a number of user-defined parameters, such as minimum and maximum
edge lengths.

2. Convert these Hessians into metric tensors (as above).

3. Merge the metric tensors from each field to provide a single metric.

4. Smooth the metric to prevent large jumps in mesh size, equivalent to mesh gradation.

5. Apply any other user-specified constraints on the metric, such as the maximum number of
nodes allowed.

6. This metric is now passed to the adaptivity library which constructs a new mesh based on it.

7. Fields are then transferred from the old mesh to the new mesh via interpolation (Farrell,
2011).

More details of the algorithm and the methods employed can be found in the Fluidity manual and
Farrell et al. (2009)

Figure 2: The parallel adapt algorithm employed by Fluidity

2.3. Parallel Adaptivity

The adaptivity method used in Fluidity as described in the previous section (2.2) is inherently a
serial process. Parallelising the method itself across multiple MPI processes would lead to a large
amount of complexity and interprocess communication. A review of methods is given in Farrell
(2009). Instead the following approach is taken (Fig 3):

• Each process adapts their local mesh, excluding halo elements, according to the algorithm
defined in the previous section.

• The mesh is re-partitioned with high edge-weighting applied to those elements below the
element quality cut-off.

• Repeat the two steps above up to adapt iterations (default value of 3).

• Finally re-partition the mesh without applying edge-weighting to return a load balanced
mesh.

4

This approach uses the serial adaptivity method previously described to adapt all the elements
which are not in a halo. Those elements in a halo are also resident on another process so if they
were adapted the same adaption would be needed on the remote process requiring communication.
By locking the halo elements this communication is avoided but after the local adapt step the
locked elements will not have been adapted and hence may be of poor quality. By re-partitioning
with high edge-weights applied to the poor quality elements the partitioner should attempt to not
cut those edges and hence the poor quality elements will be in the centre of a domain and can
be adapted during the next local adapt iteration. The current load re-balancing is carried out by
bespoke code, Sam Gorman (2006). Sam only works with piecewise linear elements and does
not allow detectors or periodicity within the domain. It is a hard-coded solution, such that any
new element pairs would need bespoke code written in order to perform the migration of data.
However, it does have optimisations that are not present in Zoltan, such as the migration of element
and field data simultaneously.

Figure 3: 2D mesh example where the graph partition is indicated by the broken wavy line: (right) sub-
optimal restricted elements (hatched) forms a polyline; (centre) after repartitioning only isolated elements
remain locked; (left) all elements have been visited.

2.4. Zoltan

Zoltan is a library of routines for parallel partitioning, load balancing and data management
(Devine et al., 2002; Boman et al., 2007). It is developed by Sandia National Laboratories as
an open source library. Zoltan is also available as part of the Trilinos package, again from Sandia
National Laboratories. Zoltan gives access to various different partitioning libraries; ParMETIS,
PT-Scotch as well as its own graph and hypergraph partitioners (Catalyurek et al., 2009). Given
these features it can be used as a replacement for Sam within the Fluidity code.

3. Implementation

The implementation makes use of the Zoltan functions for load balancing and for data migration;
Zoltan LB Balance and Zoltan Migrate. There are also some calls to the auxiliary function
for inverting send/receive lists, Zoltan Invert Lists. In this section an outline of the imple-
mentation will be given as well as some more details on how the implementation was structured.

The implementation follows the basic outline below:

• Setup module variables

• Set Zoltan parameters

• Register Zoltan callback functions
5

• Load balance the nodes making up the mesh

• Migrate owned nodes

• Construct list of halo nodes still needed

• Invert the list of halo nodes needed to get send list

• Migrate the halo nodes

• Construct new mesh and other data structures

• Allocate fields on the new mesh

• Transfer the fields data for each element on the new mesh

• Clean up module variables

All of these steps were implemented in three Fortran module files; Zoltan integration,
Zoltan callbacks and Zoltan global variables. The subroutine zoltan drive from
Zoltan integration implements the process outlined above and it is this routine which is called
from elsewhere in Fluidity. Zoltan callbacks contains all of the callback functions that are pro-
vided to Zoltan. Zoltan global variables is setup to contain various Fluidity variables and
data structures which are shared between Zoltan integration and Zoltan callbacks. It was
unfortunate that global variables were necessary but due to the callbacks required by Zoltan having
a fixed interface this was the only way to allow access to the required Fluidity data structures in
the callback functions.

The auxiliary function Zoltan Invert Lists is very useful as it allows each process to just build
a list of nodes or elements it needs. The list each process creates is the receive list required by the
Zoltan Migrate function and through using Zoltan Invert Lists the send list which is also
required for Zoltan Migrate can be obtained.

It is not feasible to give details in this report of how each of these steps was implemented as many
require understanding of the Fluidity data structures. Further details can be found in the well
documented source code 1.

3.1. Callbacks

As Zoltan is a general purpose parallel re-partitioning and data distribution library it is data ag-
nostic. This means callback functions must be provided which Zoltan can query to retrieve the
information it needs from the Fluidity data structures during the Zoltan library calls. There are
four distinct sets of callback functions implemented in Fluidity; one set for load balancing and
three sets for data migration, one for each of local nodes, halo nodes and fields.

It is not feasible to present full details of the implementation of each of the callback functions
within this report. Instead a brief outline of the key callback functions will be presented here.

3.2. Load Balancing

When making a call to Zoltan LB Balance or Zoltan LB Part Zoltan is only concerned with
the nodes making up the graph as well as how those nodes are connected, the edges. Four callback
functions must be provided for these library calls:

1https://launchpad.net/fluidity

6

1. Counting the number of local nodes.

2. Listing those local nodes.

3. Counting the number of edges associated with each local node.

4. Listing edges for each local node (detailing the neighbouring node the edge connects to).

When providing the lists of nodes and edges a weight can also be provided. In this implementation
non-uniform node weights are only applied when using an extruded mesh (an extruded mesh is one
derived from a 2D surface mesh and extruded in the direction of gravity to produce a 3D mesh).
Weighting is used more heavily for edges as it is key in the parallel adaptivity approach taken in
Fluidity as described in section 2.3.

Edge weighting is applied in the callback function zoltan cb get edge list. This callback
must provide for each edge of every local node the neighbouring node the edge connects to and
which process currently owns the neighbour node. We also choose to provide an edge weight for
each edge. The pseudo code (Listing 1) below details the implementation.

Listing 1: Edge weighting pseudo-code

f o r node = 1 t o # l o c a l nodes
s t o r e g l o b a l i d f o r each n e i g h b o u r i n g node
s t o r e owning p r o c e s s f o r each n e i g h b o u r i n g node
f o r e l e m e n t = 1 t o # e l e m e n t s a s s o c i a t e d wi th l o c a l node

d e t e r m i n e e l e m e n t q u a l i t y
i f (q u a l i t y < l o c a l minimum q u a l i t y)

l o c a l minimum q u a l i t y = q u a l i t y
f o r n b o r n o d e = 1 t o # n e i g h b o u r i n g nodes

f o r e l e m e n t = 1 t o # e l e m e n t s a s s o c i a t e d wi th n e i g h b o u r node
d e t e r m i n e e l e m e n t q u a l i t y

i f (q u a l i t y < n e i g h b o u r minimum q u a l i t y)
n e i g h b o u r minimum q u a l i t y = q u a l i t y

m i n q u a l i t y = min (n b o r m i n q u a l i t y , l o c a l m i n q u a l i t y)
i f (m i n q u a l i t y < e l e m e n t q u a l i t y c u t o f f)

e d g e w e i g h t = c e i l ((1 . 0 − m i n q u a l i t y) ∗ 20)
e l s e

e d g e w e i g h t = 1 . 0

my max weight = max (my edg e we i gh t s)
my min weight = min (my edg e we i gh t s)
MPI AllReduce (my max weight , max weight , 1 , MPI FLOAT , MPI MAX)
MPI AllReduce (my min weight , min weigh t , 1 , MPI FLOAT , MPI MIN)

n i n e t y w e i g h t = 0 . 9 ∗ max weight
! a v o i d a d j u s t i n g t h e w e i g h t s i f a l l e l e m e n t s a r e s i m i l a r q u a l i t y
i f (min we igh t < n i n e t y w e i g h t)

f o r e d g e w e i g h t = 1 t o # t o t a l edges
i f (e d g e w e i g h t > n i n e t y w e i g h t)

e d g e w e i g h t = n u m t o t a l e d g e s + 1

The implementation loops over all the local nodes and for each node records the global ID and
owning process of all its neighbour nodes. The next step is to calculate the edge weight to apply to
the edge between the local node and each neighbour node. The aim is to apply a high edge weight
to poor quality elements. This is done by first determining the poorest quality element associated
with the local node. Then for each neighbour node the poorest quality element associated with
the neighbour node is determined. The minimum element quality for either the local node or the
neighbour node is then used to calculate the weight applied to the edge between the local node and
that neighbour node.

7

Once all of the edge weights have been calculated the nodes associated with the poorest quality
elements then have their edge weights adjusted to a value one higher than the total number of
edges in the simulation. This makes them uncuttable. Those edges with an edge weight calculated
to be within 10% of the maximum edge weight on any process are given such a weight.

Edge weighting was implemented in such a way as to replicate the behaviour of the previous mesh
repartitioning solution used in Fluidity. However, when using Zoltan, despite the edge weights
being applied correctly, the mesh repartitioning sometimes failed to move the partition boundary
away from the poor quality elements. This was found to be because Zoltan prioritises load bal-
anced partitions over edge weighting and would sometimes ignore edge weighting to meet load
balance criteria. The solution was to loosen the Zoltan parameter, IMBALANCE TOL.

Within Zoltan priority is given to having well load balanced partitions. The amount of load imbal-
ance tolerated in the system is controlled through the IMBALANCE TOL. To determine the imbalance
on each processor the weights of all the objects it is assigned are summed together to get its total
load. The average load is calculated and from this the imbalance is computed as the maximum
load divided by the average load. For example a value of 1.2 for IMBALANCE TOL means that 20%
imbalance is acceptable: that is no process should have more load than 1.2 times the average load.

The default IMBALANCE TOL is 1.075 but for Fluidity this is changed to 1.5. The option has been
made available through the Fluidity options system as load imbalance tolerance. This allows
users to modify the value should they need to for their problem. This solved the problem with poor
elements still being in a halo region after a repartition but added a further issue of empty partitions.

By loosening the IMBALANCE TOL Zoltan would occasionally repartition the mesh in such a way
that a process had no owned nodes. Fluidity assumes that no process will have an empty parti-
tion and hence this causes numerous problems throughout the code. It was not feasible to modify
Fluidity to deal with empty partitions so instead a solution to prevent empty partitions was imple-
mented. This was possible due to the implementation being split into distinct steps, first a load
balance and then data migration.

The solution was to make a load balance call and then check for empty partitions before doing any
data migration. The check for empty partitions was done by checking:

No + Ni − Ne , 0 (2)

where No is the number of nodes owned, Ni is the number of nodes to import, and Ne is the number
of nodes to export. This was possible as the Zoltan LB Balance returns both the number of nodes
being imported to this process and the number of nodes it will be exporting.

If an empty partition would be created following the load balance then the load balance is at-
tempted again but with the IMBALANCE TOL tightened. This process continues until a partition-
ing with no empty partitions is found or the IMBALANCE TOL can be tightened no further. In
this situation a final load balance attempt is made with the edge weighting switched off and the
IMBALANCE TOL at 1.075. This solution prevents empty partitions being created and by going
through this process before migrating the computational cost is reduced.

3.3. Data Migration

There are three calls to Zoltan Migrate within Fluidity, each migrating a different set of data;
nodes, halo nodes and fields. For each of these calls a different set of callbacks are provided to deal
with packing and unpacking the different data being sent. Three callbacks need to be provided for
each Zoltan Migrate call:

1. The amount of storage needed for each graph node (mesh node, mesh halo node or fields
data for an element).

8

2. How to pack data from Fluidity data structures into a Zoltan communication buffer.

3. How to unpack data from a Zoltan communication buffer into Fluidity data structures.

The Zoltan communication buffer is a byte array. This makes directly transferring data between it
and the Fluidity data structures complicated as most Fluidity data is real. To simplify the process
an intermediary real array is used for the packing and unpacking callbacks when migrating fields
data. In the packing routine data is first packed from the Fluidity data structures into the real
array. The Fortran intrinsic procedure transfer is then used to copy the packed real data into the
integer Zoltan communication buffer. When unpacking the data is first copied from the integer
Zoltan communication buffer into a real array and then data is unpacked from the real array into
the Fluidity data structures.

3.4. Detectors

Detectors are either passive particles injected into the flow (Lagrangian detectors) or static probes
within the flow. Lagrangian detectors can be used for a number of applications including calcu-
lating mixing within the flow or as agents in individual-based biological modelling. Both require
high numbers of detectors to be injected into the flow. In a parallel-adaptive run the detectors must
be moved along with their owning element when Zoltan deems that element should be moved to a
new processor.

Within the Zoltan implementation detectors are dealt with in the callback functions for migrating
the fields data. This is because each detector is associated with a particular element rather than a
node and hence it is not known which process should own each detector until the transfer fields
stage. There is also some work involved before and after the use of Zoltan to migrate the fields
data to update certain data structures and to deal with corner cases.

Detectors are implemented as a Fortran derived type with all the information; position, name,
element, type, id, etc. contained within the derived type. For the Zoltan implementation routines
for packing/unpacking the detector information between the derived type and a real buffer were
produced. Originally these were only used within Zoltan but they have since been adopted for use
throughout the detector code in Fluidity whenever detectors are transferred between processes.

Before the fields are transferred the detector lists must be pre-processed. This is done because the
detectors are stored in one or more unordered linked lists and in pre-processing them we avoid
searching these lists during the packing callback. The pre-processing is done as a subroutine call
from the callback function for determining the field data sizes. The pre-processing is done at this
point as this is when the required list of elements being transferred from the process is available.
The pre-processing consists of:

1. Determining the element associated with each detector.

2. If the detector’s element is to be transferred, moving the detector from its current detector
list to a list of detectors to be sent.

3. Keeping a count of the number of detectors to be sent with each element being transferred.

The pseudo code below details how the three pre-processing steps are implemented:

Listing 2: Detector re-distribution

f o r l i s t = 1 t o # d e t e c t o r l i s t s
f o r d e t e c t o r = 1 t p # d e t e c t o r s i n l i s t

9

Dete rmine e l e m e n t t h e d e t e c t o r i s a s s o c i a t e d wi th
f o r e l e m e n t = 1 t o # e l e m e n t s b e i n g t r a n s f e r r e d

Dete rmine e l e m e n t u n i v e r s a l number
i f (d e t e c t o r e l e m e n t = e l e m e n t u n i v e r s a l number)

De te rmine new e l e m e n t owner
i f (new e l e m e n t owner = c u r r e n t e l e m e n t owner)

Do n o t need t o t r a n s f e r t h e d e t e c t o r
e l s e

Move d e t e c t o r t o l i s t o f d e t e c t o r s t o pack
I n c r e m e n t number o f d e t e c t o r s i n t h e e l e m e n t

The implementation aims to avoid traversing the detector lists more than once. For each detector
it is checked if its owning element is on the list of elements being transferred. If a match is
found then the process which will own the element in the new partitioning is determined. If the
new owner is the current owner then the element is only having its data transferred as it will be
in another processes halo in the new partitioning. In Fluidity detectors are only dealt with by
the process which owns the element containing the detector, so for halo elements detectors do
not need to be transferred. If the new owner is not the current owner then the ownership of the
element is changed in the new partitioning and the detector must be transferred. The detector is
moved from its current detector list to a list of detectors being transferred and the count of the
number of detectors in the element is incremented.

The pre-processing of the detector lists gives an array containing the number of detectors in each
of the elements being transferred and an ordered list of the detectors to be transferred. The order in
which detectors were added to the send detector list is the same as the order they will be removed
from the list when the detectors are packed into the communications buffer with the other fields
data. The pre-processing therefore allows the send detector list to be traversed serially during the
packing process and avoids needing to search the send detector list for detectors which must be
sent with each element.

The following modifications are made to the callback functions to add detector functionality to
parallel adaptive simulations in Fluidity:

1. During field data sizes callback the pre-processing of the detector lists is carried out. The
callback also ensures enough memory is available to pack all the detector information along
with the element’s field data using the count of detectors in each element calculated during
the pre-processing.

2. During the field data packing callback, for each element loop over the number of detectors
in the element (as calculated in the pre-processing) and remove each from the send detector
list and pack them into the communications buffer.

3. During the field data unpacking callback for each element read the number of detectors
being sent with it. Loop over the number of detectors transferred with the element checking
to see if they are owned by this process in the new partitioning. If the process now owns the
detector allocate a new detector in the unpacked detector list and unpack the detector data
into it.

Unpacking the detectors within the unpacking of fields data callback also makes use of a temporary
detector list, the unpacked detector list. This is so after the migrate the detectors which were not
transferred can be updated in the normal lists before merging in the detectors that were transferred.
Elements may be transferred to more than one process in the migrate phase. This is because it is
not just owned elements data which is being transferred but halo elements data as well. When
unpacking detectors each process checks the owner of the element containing the detector and
only unpacks to the unpacked detectors list if it is the element owner in the new partitioning.

10

As was briefly mentioned above once the call to Zoltan Migrate has been made and the field
data has been transferred the detector lists containing detectors which were not transferred must be
updated. Local element numbers change between the old and new partitioning and each detector
is associated with a particular local element number so this value must be updated. This is done
using two mappings:

• Between old local element number and the universal element number created from the old
mesh before any data migration.

• Between universal element number and new local element number created from the new
mesh after the node migrations and construction of the new mesh.

Each detector has the element number of the element that owns it first mapped the the universal
element number and then from the universal element number to a new local element number. The
new local element number is stored in the detector.

An additional complication when migrating detectors can be found at this point. A corner case
exists where a detector does not get flagged as being in an element that is being transferred during
the pre-processing of the detector lists, but it is also in an element which will not be owned (or
even known about) on the current owning process in the new partitioning. In this case the detector
is broadcast to all other processors until one accepts it as being within an element that processor
owns.

Finally once the detector lists have been updated those detectors received when migrating the
fields data are merged in from the unpacked detector list. Each detector in the unpacked detector
list was transferred with the element owner set to the elements universal element number. The
universal element number is mapped to the new local element number, the detectors element owner
is updated and the detector is moved from the unpacked detectors list to the appropriate detector
list.

3.5. Flredcomp

The Zoltan solution has also been used for the tool, flredecomp, provided with Fluidity. This
tool is for redecomposing an input checkpoint to a new checkpoint using more or less processes.
As the number of elements varies throughout an adaptive simulation, it is possible that the number
of element exceeds the capacity of memory. In this case the simulation can be checkpointed,
redecomposed onto a greater number of partitions and restarted. The tool is also useful for setting
up strong scaling simulations.

When using Zoltan in flredecomp the same code as called from adaptivity is used but with the
logical flredcomping set to true. This changes various options within zoltan drive. The
partitioning is carried out with uniform edge-weighting applied as we are only doing a single
iteration with the goal being a load balanced final partitioning.

When called from flredecomp the implementation must use Zoltan LB Partition instead
of Zoltan LB Balance as the Zoltan parameters NUM GLOBAL PARTS and NUM LOCAL PARTS

are only used when using Zoltan LB Partition. Each of these must be set by every pro-
cess with NUM GLOBAL PARTS the same for all processes but NUM LOCAL PARTS independent for
each process. NUM GLOBAL PARTS tells Zoltan the total number of partitions to be created and
NUM LOCAL PARTS tells Zoltan the number of partitions to be placed on the specific process.
Zoltan LB Balance is in essence a specialised version of Zoltan LB Partition where
NUM GLOBAL PARTS is the number of processes being run on and NUM LOCAL PARTS is one for
all processes. For flredecomp the NUM GLOBAL PARTS is the number of processes the check-
point should be decomposed onto. When scaling up NUM LOCAL PARTS is one for all processes

11

and when scaling down is one for all processes up the target number of processes and zero for all
others.

4. Profiling

A single benchmark case was tested which represent a common use-case for Fluidity simulations.
This is a backward-facing step CFD example (Fig. 4) on a piecewise-linear continuous Galerkin
discretisation (P1P1). This discretisation is a common choice for CFD applications and also allows
comparisons to Sam as a baseline. Other benchmark cases were either not adaptive, or if made
adaptive, could not be performed using Sam.

Figure 4: Snapshot of a tracer field from the backward facing step benchmark (top) and the adaptive mesh
(below) with domain partition boundaries shown in red.

It was unfortunately not possible to use ParMETIS through Zoltan on HECToR for any of the
profiling runs. This had previously been possible on HECToR but at the time the profiling runs
were conducted there appeared to be a bug in Zoltan 3.5. Runs using ParMETIS through Zoltan
failed due to requiring an extra callback which according to the Zoltan documentation should not
be needed. This issue has been raised with the Zoltan developers. The code has previously been
run on HECToR and other systems using ParMETIS through Zoltan 3.4 so this issue should be
resolved in the near future.

It was also not possible to conduct profiling runs on HECToR which used PT-Scotch through
Zoltan on more than 16 processes. This appears to be a problem with PT-Scotch which gives an
MPI error when running on more than one core of the HECToR system. This issue has been raised
as a bug on HECToR system.

The profiling results presented below are from runs on the HECToR Phase 3 system. The Phase
3 system is a Cray XE6 system, offering a total of 2816 XE6 compute nodes. Each compute
node contains two AMD 2.3 GHz 16-core processors giving a total of 90,112 cores – a theoretical
peak performance of over 800 Tflops. There is presently 32 GB of main memory available per
node, which is shared between its thirty-two cores, the total memory is 90 TB. The processors
are connected with a high-bandwidth interconnect using Cray Gemini communication chips. The
Gemini chips are arranged on a 3 dimensional torus. Further profiling work on the Phase 3 system
of the other test cases was not possible due to time constraints.

Figures 5 through 10 above show the profiling results for the small backward-facing step bench-
mark run on HECToR. This is a small benchmark which uses approximately 23,000 elements that
is typically run on 32-64 processes. Here it has been run on up to 256 processes to test the differ-
ent partitioners. In addition, dynamic adaptivity of the mesh was performed every two timesteps,
rather than the usual 10 to 20. As such, the adaptive algorithm dominates the runtime of these
benchmarks. In most problems this would not be the case and instead the assemble and solve
phases would dominate the total runtime.

Figure 5 show the performance of the Zoltan implementation matching the Sam performance up
to 8 processes. At >8 processes the overall runtime for Zoltan becomes greater than that for Sam.

12

100 101 102 103

No. Procs.
101

102

103

104

To
ta

lr
un

tim
e

(s
)

Sam
Graph
Hypergraph
Scotch
Linear

Figure 5: Total run time for small backward facing step benchmark.

100 101 102 103

No. Procs.
101

102

103

104

To
ta

la
da

pt
tim

e
(s

)

Sam
Graph
Hypergraph
Scotch
Linear

Figure 6: Total adapt time for small backward facing step benchmark. Note that the increase in total adapt
time mirrors the total run time (Fig. 5)

This is due to the increased adapt time when using Zoltan (Fig. 6). It was expected that the time
to complete the adapt phase in Zoltan may be longer than in Sam due to Zoltan being a general
purpose solution. Sam only works for particular element types which allow the field data to be
migrated at the same time as the nodes. The Zoltan solution requires an extra migration phase
to migrate the fields data separately. Figure 10 show that the extra migration only impacts the
Zoltan performance when the partitioner is being worked heavily, as happens when you have a
small problem being divided up on to too many processes. The same increase is not seen in the
serial adapt times (Fig. 9).

The hope was that the access to different partitioners, particularly the hypergraph partitioner,
would improve the load balance for the assemble and solve phases and these sections would hence
see a performance improvement. As can be seen from Figures 7 and 8 there has been no perfor-
mance improvement in the assemble or solve phases.

13

100 101 102 103

No. Procs.
100

101

102

103

P
re

ss
ur

e
as

se
m

bl
y

tim
e

(s
)

Sam
Graph
Hypergraph
Scotch
Linear

Figure 7: Pressure assembly time for small backward facing step benchmark.

100 101 102 103

No. Procs.
100

101

102

103

P
re

ss
ur

e
so

lv
e

tim
e

(s
)

Sam
Graph
Hypergraph
Scotch
Linear

Figure 8: Pressure solve time for small backward facing step benchmark.

5. Outcome

The Zoltan based mesh re-partitioning solution was originally incorporated as a compile time
option accessed using the flag --with-zoltan when configuring Fluidity. At this stage all but
the short report on the Zoltan implementation and unit tests from M2 were complete. It was
decided that detailing the implementation in a short report would not be possible. Unit tests for
Zoltan are complicated as the functionality needs to run on full simulations to be tested. As such
it was decided to not add unit tests but to add tests to the Fluidity test suite which compared
the output from an adaptive run using Zoltan with the output from both a run with the previous
implementation and a serial run. This is test 2d circle adapt zoltan sam in the Fluidity test
suite. To test the functionality of Zoltan on element types which could not be done by Sam a
number of additional test were also added, such as parallel p0 consistent interpolation

and diffusion 2d p0 adaptive parallel.

From Fluidity revision 3530, Zoltan has been the default solution for the Fluidity trunk, devel-
opment branches and releases. All tests run as part of the Fluidity buildbot system are using the
Zoltan build and run successfully with Zoltan. The previous solution, Sam, is now a compile time
option accessed by configuring with the flag --with-sam. All options for Zoltan are fully docu-
mented and available through the Fluidity options package, diamond, with full details also given

14

100 101 102 103

No. Procs.
101

102

103

104

S
er

ia
la

da
pt

tim
e

(s
)

Sam
Graph
Hypergraph
Scotch
Linear

Figure 9: Serial adapt time for small backward facing step benchmark.

100 101 102 103

No. Procs.
100

101

102

103

104

To
ta

lm
ig

ra
tio

n
tim

e
(s

)

Sam
Graph
Hypergraph
Scotch
Linear

Figure 10: Total migration time for small backward facing step benchmark.

in the Fluidity manual. This meets all of the work in M3.

Section 4 shows the performance of the Zoltan implementation on one of the HPC benchmark
cases: the backward facing step. Zoltan resulted in a drop in performance from 16 processors
onwards, though at this number of elements per core and with the frequency of adapts it is not
surprising that the performance difference between Zoltan and Sam becomes more pronounced.
The expected performance increase in both the assembly and solve was not evident in this test
case. However, other tests may show better performance, however at this stage it is not clear
which category of simulation would show better performance and there is a limited number of test
cases that can be used as a comparison between Zoltan and Sam.

M1 was to become familiar with the Fluidity source. This was achieved and the completion of the
subsequent work packages shows this. The short report was not written as it was felt it was more
important to continue with the other work. Initial profiling work was done but only for a single
benchmark, the small backward facing step. This was because profiling work was completed as
preparation for this dCSE and presented in the original dCSE proposal.

This work as well as aiming to improve the scaling performance of Fluidity was to improve the
maintainability, extensibility and functionality of the repartitioning solution. The new Zoltan
based implementation has already been extended to allow parallel periodic problems to be solved

15

by Fluidity. Detectors have also been implemented allowing them to be used within all parallel
adaptive simulations as set out as the last element of WP3. The greatest benefit of the Zoltan im-
plementation though is that it is general purpose. It allows any element type to be used in parallel
adaptive simulations. This will enable Fluidity to be used for new science not previously possible.
For example, modelling froths and foams using Fluidity benefits from a P0P1 discretisation and
an adaptive mesh (Brito-Parada et al., 2011). Limiting this to serial simulations only is prohibitive
and therefore the inclusion of Zoltan is enabling new science to be carried out.

Attendance and participation in the HPC workshops run by the Fluidity group was not possible as
none were held during the course of this dCSE project. However details of the work were presented
at the HECToR dCSE Technical Workshop on 4th and 5th October, 2011 and the slides from this
presentation are available http://www.hector.ac.uk/cse/distributedcse/technical2/.

Zoltan has been installed as a module on HECToR available to all HECToR users. All partitioners
(ParMETIS, PT-Scotch and Zoltan graph/hypergraph) are available when using this Zoltan mod-
ule. A centrally installed copy of Fluidity using Zoltan is also available and details have been
added to the Fluidity webpages detailing how to compile Fluidity on HECToR.

During the course of this project several times software or hardware upgrades to HECToR caused
Fluidity to either fail to compile or fail to run. This often caused significant delays and it was
decided to setup a build test. This is a serial job run once a day which attempts to checkout,
configure and compile Fluidity with the results transferred to AMCG systems. These data are
then automatically processed and used to update the status of the HECToR build on the Fluidity
buildbot system. This means that compilation failures of Fluidity on HECToR can be noted earlier
and fixed quicker. Despite being outside the original work plan this work was essential and very
beneficial.

Fluidity is an open source project so this project as well as benefiting all Fluidity users is of wider
benefit to all those interested in dynamic load balancing and adaptive mesh methods. The inclusion
of Zoltan, whilst not increasing performance as hoped, has vastly improved the maintainability of
Fluidity and enabled new areas of science to exploit the adaptive remeshing capabilities of Fluidity
in parallel using all element types.

6. Acknowledgement

This project was funded under the HECToR Distributed Computational Science and Engineering
(CSE) Service operated by NAG Ltd. HECToR - A Research Councils UK High End Computing
Service - is the UK’s national supercomputing service, managed by EPSRC on behalf of the par-
ticipating Research Councils. Its mission is to support capability science and engineering in UK
academia. The HECToR supercomputers are managed by UoE HPCx Ltd and the CSE Support
Service is provided by NAG Ltd. http://www.hector.ac.uk

References

Babuška, I., Suri, M., 1994. The p and h-p versions of the Finite Element method, basic principles and properties.
SIAM Review 36, 578.

Berger, M.J., Colella, P., 1989. Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational
Physics 82, 64–84.

Boman, E., Devine, K., Fisk, L.A., Heaphy, R., Hendrickson, B., Vaughan, C., Catalyurek, U., Bozdag, D., Mitchell,
W., Teresco, J., 2007. Zoltan 3.0: Parallel Partitioning, Load-balancing, and Data Management Services; User’s
Guide. Sandia National Laboratories. Albuquerque, NM.

Brito-Parada, P., Neethling, S., Cilliers, J., 2011. The advantages of using mesh adaptivity when modelling the drainage
of liquid in froths. Minerals Engineering , Corrected proofs.

Budd, C.J., Huang, W., Russell, R.D., 2009. Adaptivity with moving grids. Acta Numerica 18, 111–241.
16

Catalyurek, U.V., Boman, E.G., Devine, K.D., Bozda, D., Heaphy, R.T., Riesen, L.A., 2009. A repartitioning hyper-
graph model for dynamic load balancing. Journal of Parallel and Distributed Computing 69, 711–724.

Davies, D.R., Wilson, C.R., Kramer, S.C., 2011. Fluidity: A fully unstructured anisotropic adaptive mesh computational
modeling framework for geodynamics. Geochem. Geophys. Geosyst. 12.

Devine, K., Boman, E., Heaphy, R., Hendrickson, B., Vaughan, C., 2002. Zoltan data management services for parallel
dynamic applications. Computing in Science and Engineering 4, 90–97.

Farrell, P., 2009. Galerkin Projection Of Discrete Fields Via Supermesh Construction. Ph.D. thesis. Imperial College
London.

Farrell, P., 2011. The addition of fields on different meshes. Journal of Computational Physics 230, 3265 – 3269.
Farrell, P.E., Piggott, M.D., Pain, C.C., Gorman, G.J., Wilson, C.R., 2009. Conservative interpolation between un-

structured meshes via supermesh construction. Computer Methods in Applied Mechanics and Engineering 198,
2632–2642.

Gorman, G., 2006. Parallel Anisotropic Unstructured Mesh Optimisation And Its Applications. Ph.D. thesis. Imperial
College London.

Ham, D.A., Farrell, P.E., Gorman, G.J., Maddison, J.R., Wilson, C.R., Kramer, S.C., Shipton, J., Collins, G.S., Cotter,
C.J., Piggott, M.D., 2009. Spud 1.0: generalising and automating the user interfaces of scientific computer models.
Geoscientific Model Development 2, 33–42.

Hiester, H.R., Piggott, M.D., Allison, P.A., 2011. The impact of mesh adaptivity on the gravity current front speed in a
two–dimensional lock–exchange. Ocean Modelling 38, 1–21.

Houston, P., Süli, E., 2001. hp-Adaptive discontinuous Galerkin finite element methods for first-order hyperbolic
problems. SIAM Journal on Scientific Computing 23, 1226–1252.

Ledger, P.D., Morgan, K., Peraire, J., Hassan, O., Weatherill, N.P., 2003. The development of an hp-adaptive finite
element procedure for electromagnetic scattering problems. Finite Elements in Analysis and Design 39, 751–764.

Mitchell, A.J., Allison, P.A., Piggott, M.D., Gorman, G.J., Pain, C.C., Hampson, G.J., 2010. Numerical modelling of
tsunami propagation with implications for sedimentation in ancient epicontinental seas: The lower jurassic laurasian
seaway. Sedimentary Geology 228, 81 – 97.

Pain, C., Piggott, M., Goddard, A., Fang, F., Gorman, G., Marshall, D., Eaton, M., Power, P., de Oliveira, C., 2005.
Three-dimensional unstructured mesh ocean modelling. Ocean Modelling 10, 5–33.

Pain, C.C., Umpleby, A.P., de Oliveira, C.R.E., Goddard, A.J.H., 2001. Tetrahedral mesh optimisation and adaptivity
for steady-state and transient finite element calculations. Computer Methods in Applied Mechanics and Engineering
190, 3771–3796.

Piggott, M.D., Farrell, P.E., Wilson, C.R., Gorman, G.J., Pain, C.C., 2009. Anisotropic mesh adaptivity for multi-scale
ocean modelling. Philosophical Transactions of the Royal Society A 367, 4591–4611.

17

