
Developing Hybrid OpenMP/MPI Parallelism

for Fluidity-ICOM - Next Generation

Geophysical Fluid Modelling Technology

Xiaohu Guo a, Gerard Gorman b, Michael Lange b,
Andrew Sunderland a, Mike Ashworth a

aAdvance Research Computing Group,
Computational Science & Engineering Department,

Science and Technology Facilities Council,
Daresbury Laboratory, Warrington WA4 4AD UK

bApplied Modelling and Computation Group,
Department of Earth Science and Engineering,

Imperial College London, London, SW7 2AZ, UK

Summary of the Project Progress

In order to further develop Fluidity-ICOM (build upon finite element methods and
anisotropic unstructured adaptive meshing) to run efficiently on supercomputers
comprised of NUMA nodes, mixed mode OpenMP/MPI parallelism has been imple-
mented in Fluidity-ICOM. Benchmarking has already shown that the two dominant
simulation costs are sparse matrix assembly, and solving the sparse linear systems
defined by these equations. The thread-level parallelism of sparse matrix assembly
kernels has been realised through well established graph colouring techniques to
remove the data dependencies in matrix assembly, which allow very efficient par-
allelisation with OpenMP. In the sparse solver we have utilized threaded HYPRE
and the ongoing threaded PETSc branch which results in improved performance
compared to pure MPI version. Various NUMA optimizations have also been imple-
mented. The profiling and the benchmark results of matrix assembly on the latest
CRAY platforms show that the best performance can be achieved by pure OpenMP
within node.

The following list highlights the major developments:

• Matrix assembly node optimisation can be done mostly using OpenMP with effi-
cient colouring method, which avoid the use of mutual synchronization directives:
eg. Critical.

• Regarding PETSc Matrix stashing, it does not have any redundant calculations.
However, it does incur the cost of maintaining and communicating stashed rows,
and this overhead will increase for higher MPI process counts. A further compli-
cation of non-local assembly is that the stashing code within PETSc is not thread
safe.

Final Report for DCSE ICOM

• Local assembly has the advantage of not requiring any MPI communications as
everything is performed locally, and the benchmark results also highlight the fact
that the redundant calculations are not significantly impacting performance when
local assembly is used. Furthermore, the scaling of local assembly is significantly
better than non-local assembly at higher core counts. This makes assembly an
inherently local process. Thus focus is on optimizing local (to the compute node)
performance.

• The current OpenMP standard(3.0), which has been implemented by most pop-
ular compilers, doesn’t cover page placement at all. For memory-bound applica-
tions, like Fluidity-ICOM, it is therefore important to make sure that memory
get’s mapped into the locality domains of processors that actually access them,
to minimize NUMA traffic. In addition to our implementation of first touch pol-
icy, which improves data locality, thread pinning can be used to guarantee that
threads are executed on the cores which initially mapped their memory regions
in order to maintain locality of data access.

• For Fluidity-ICOM matrix assembly kernels, the performance bottle neck becomes
memory allocation for automatic arrays. Using NUMA aware heap managers, such
as TCMalloc, it makes pure OpenMP version outperform the pure MPI version.

• Benchmarking results with HYPRE and threaded PETSc show that mixed mode
MPI/OpenMP version can outperform pure MPI version at high core counts
where I/O becomes major bottleneck for pure MPI version.

• With mixed mode MPI/OpenMP, Fluidity-ICOM can now run up to 32K cores
job, which offers Fluidity capability to solve the ”grand-challenge” problems.

Key words: Fluidity-ICOM; FEM; OpenMP; MPI; NUMA; Graph Colouring;

1 The Fluidity-ICOM dCSE project

The Fluidity-ICOM (Imperial College Ocean Model 1) dCSE project com-
menced on 1st October 2010 and is scheduled to end on the 31st September
2012. This highly collaborative project also involved Gerard Gorman from Ap-
plied Modelling and Computation Group (AMCG), Imperial College London.

Fluidity-ICOM 2 is an open source partial differential equation simulator build
upon various finite element and finite volume discretisation methods on un-
structured anisotropic adaptive meshes It is being used in a diverse range
of geophysical fluid flow applications. Fluidity-ICOM uses three languages

1 Fluidity-ICOM is open source and available for download
https://launchpad.net/fluidity
2 http://amcg.ese.ic.ac.uk/index.php?title=Fluidity

2

(Fortran, C++, Python) and uses state-of-the-art and standardised 3rd party
software components whenever possible.

Using modern multi-core processors presents new challenges for scientific soft-
ware such as Fluidity-ICOM, due to the new node architectures: multiple
processors each with multiple cores, sharing caches at different levels, mul-
tiple memory controllers with affinities to a subset of the cores, as well as
non-uniform main memory access times.

Because of this, there is a growing interest in hybrid parallel approaches where
threaded parallelism is exploited at the node level, while MPI is used for inter-
process communications. Significant benefits can be expected from implement-
ing such mixed-mode parallelism. First of all, this approach decreases the
memory footprint of the application as compared with a pure MPI approach.
Secondly, the memory footprint is further decreased through the removal of
the halo regions which would be otherwise required within the node. For ex-
ample, the total size of the mesh halo increases with number of partitions (i.e.
number of processes). It can be shown empirically that the size of the vertex
halo in a linear tetrahedral mesh grows as O(P 1.5), where P is the number
of partitions. Finally, only one process per node will be involved in I/O (in
contrast to the pure MPI case where potentially 32 processes per node could
be performing I/O on Phase 3 of HECToR), which will significantly reduce the
number of meta data operations on the file system at large process counts for
those applications based on files-per-processes I/O strategy. Therefore, the use
of hybrid OpenMP/MPI will decrease the total memory footprint per compute
node, the total volume of data to write to disk, and the total number of meta
data operations given Fluidity-ICOMs files-per-process I/O strategy.

For modern multi-core architecture supercomputers, hybrid OpenMP/MPI
also offers new possibilities for optimisation of numerical algorithms beyond
pure distributed memory parallelism. For example, scaling of algebraic multi-
grid methods is hampered when the number of subdomains is increased due
to difficulties coarsening across domain boundaries. The scaling of mesh adap-
tivity methods is also adversely effected by the need to adapt across domain
boundaries.

Portability across different systems is very critical for application software
packages, and the directives based approach is a great way to express paral-
lelism in a portable manner. It offers potential capabilities to use the same
code base to explore accelerated and non-accelerator enabled systems because
OpenMP is expanding its scope to embedded systems and accelerators.

Therefore, there is strong motivation to further develop OpenMP parallelism
in Fluidity-ICOM to exploit the current and future architectures.

However, writing a truly efficient OpenMP/MPI scalable OpenMP program is

3

entirely non-trivial, despite the apparent simplicity of the incremental palatal-
isation approach. This paper will demonstrate how we tackle the race condi-
tions and performance pitfalls during OpenMP palatalisation.

The Fluidity-ICOM dCSE project mainly comprised of three work packages
(referred to as WP1, WP2, WP3), WP1 MPI/OpenMP mixed-mode paral-
lelisation of the Finite Element Assembly Stage in Fluidity. WP2 Optimizing
HYPRE Library usage for Linear Preconditioners/Solver for large core counts.
WP3 Final benchmarking including using threaded PETSc branch

The remaining part of this report is organised as follows: In the next section we
describe the Fluidity-ICOM matrix assembly and greedy colouring method in
detail. Section 2.2 will address thread safe issues during OpenMP palatalisa-
tion and performance gained by solving these issues. Section 2.5 discusses how
we optimise memory bandwidth which is particularly important for OpenMP
performance. The last section 2.5 contains a conclusion, a discussion about
further work

With these developments, Fluidity/ICOM is now able to exploit HECToR to
its full capacity, and assist in the enabling of our leading-edge technology to
tackle grand-challenge science applications

2 WP1: MPI/OpenMP mixed-mode parallelisation of the Finite
Element Assembly Stage in Fluidity

Previous performance analysis (2) has already shown that the two dominant
simulation costs are sparse matrix assembly (30%-40% of total computation),
and solving the sparse linear systems defined by these equations. The Hypre li-
brarys hybrid sparse linear system solvers/preconditioners, which can be used
by Fluidity-ICOM through the PETSc interface, are competitive with the
pure MPI implementation. Therefore, in order to run a complete simulation
using OpenMP parallelism, the sparse matrix assembly kernel is now the most
important component remaining to be parallelised using OpenMP. The finite
element matrix assembly kernel is expensive for a number of reasons includ-
ing: significant loop nesting, where the innermost loop increases in size with
increasing quadrature; many matrices have to be assembled, e.g. coupled mo-
mentum, pressure, free-surface and one of each advected quantity; indirect
addressing (a known disadvantage of finite element codes compared to finite
difference codes); and cache re-use (a particularly severe challenge for un-
structured mesh methods). The cost of matrix assembly increases with higher
order, and discontinuous Galerkin (DG) discretisations are used.

For a given simulation, a number of different matrices need to be assembled,

4

Algorithm 1. Generic matrix assembly loop
global matrix← 0
for e = 1→ number of elements do

local matrix = assemble element(e)
global matrix+ = local matrix

end for

e.g. continuous and discontinuous finite element formulations for velocity, pres-
sure and tracer fields for the Navier-Stokes equations and Stokes flow. Each
of these have to be individually parallelised using OpenMP. The global ma-
trix to be solved is formed by looping over all the elements of the mesh (or
sub-domain if this is using a domain decomposition method) and adding the
contributions from that element into the global matrix. Sparse matrices are
stored in PETSc’s (Compressed sparse row) CSR containers (these includes
block-CSR for use with velocity vectors, for example, and DG). The element
contributions are added into a sparse matrix which is stored in CSR format.
A simple illustration of this loop is given in algorithm 1.

2.1 Greedy colouring method

In order to thread the assembly loop illustrated in algorithm 1, it is clear that
both the operation assembles an element into a local matrix, and the addition
of that local matrix into the global matrix must be thread safe.

This can be realised through well-established graph colouring techniques (3).
This is implemented by first forming a graph, where the nodes of the graph
correspond to mesh elements, and the edges of the graph define data depen-
dencies arising from the matrix assembly between elements. Each colour then
defines an independent set of elements whose term can be added to the global
matrix concurrently. This approach removes data contention, so called critical
sections in OpenMP, allowing very efficient parallelisation.

Generally, we try to colour as many vertices as possible with the first colour,
then as many as possible of the uncoloured vertices with the second colour,
and so on. To colour vertices with a new colour, we perform the following
steps.

(1) Select some uncoloured vertex and colour it with the new colour.
(2) Scan the list of uncoloured vertices. For each uncoloured vertex, deter-

mine whether it has an edge to any vertex already coloured with the new
colour. If there is no such edge, colour the present vertex with the new
colour.

This approach is called ”greedy” because it colours a vertex whenever it can,

5

Algorithm 2. Threaded matrix assembly loop
graph← create graph(mesh, discretisation)
colour ← calculate colouring(graph)
k colouring = max(colour)
global matrix← 0
for k = 1→ k colouring do

independent elements = {e|colour[e] ≡ k}
for all e ∈ independent elements do

local matrix = assemble element(e)
global matrix+ = local matrix

end for
end for

without considering the potential drawbacks inherent in making such a move.
There are situations where we could colour more vertices with one colour if
we were less ”greedy” and skipped some vertex we could legally colour.

To parallelise matrix assembly(1) using colouring, a loop over colours is first
added around the main assembly loop. The main assembly loop over elements
will be parallelised using the OpenMP parallel directives with a static schedule.
This will divide the loop into chunks of size ceiling (number of elements/number of threads)
and assign a thread to each separate chunk. Within this loop an element is
only assembled into the matrix if it has the same colour as the colour iteration.

The threaded assembly loop is summarised in algorithm 2.

Generally, the above colouring method tries to colour as many vertices as
possible with the first colour, then as many as possible of the uncoloured
vertices with the second colour, and so on. Therefore the number of elements
is not balanced between each colour group. For OpenMP, its not a problem as
long as each thread has enough work load. The performance is not sensitive
to the total number of colour groups

2.2 Performance Improvement and Analysis for matrix assembly kernels

All performance benchmarks were carried out on the HECToR Cray XE6-
Magny Cours (phase2b) and Cray XE6-interlagos (phase3). The benchmark
test case used here is wind-driven baroclinic gyre. The mesh used in the baro-
clinic gyre benchmark test case has up to 10 million vertices; resulting in
200 million degrees of freedom for velocity due to the use of DG. The basic
configuration is set-up to run for 4 time steps without mesh adaptivity. It
hence considers primarily the matrix assembly and linear solver stages of a
model run. The details of solving equations and configuration can be found in
reference (2).

6

Fig. 1. Wall-time for non-local and local assembly are compared. Compute nodes
are 24 core Opterons (HECToR supercomputer), therefore multiply by 24 to get the
number of cores).

The momentum equation assembly kernel uses Discontinuous Galerkin meth-
ods (DG) and Continuous Galerkin method (CG) has been parallelised with
the above-mentioned procedures. Several thread safe issues have been solved
which result of a performance gain.

2.3 Local assembly v.s. non-local assembly

In PETSc, when adding elements to a matrix, a stash is used. For parallel
matrix formats this provides one particularly important benefit, namely that
elements can be added in one process that are to be stored as part of the local
matrix in a different process. During the assembly phase the stashed values
are moved to the correct processor. We name it as non-local assembly, which
causes thread safe issues within the momentum dg assembly loop.

Luckily, when the parameter MAT IGNORE OFF PROC ENTRIES is set,
any MatSetValues accesses to rows that are off-process will be discarded, and
the needed value will be computed locally, namely by local assembly. Figures
1 and 2 show the benchmark results comparing local and non-local assem-
bly for the oceanic gyre test case which uses DG for momentum and CG for
advection/diffusion. For low core counts the difference is negligible. This high-
lights the fact that the redundant calculations are not significantly impacting
performance when local assembly is used. However, at higher core counts the
scaling is significantly better. On 768 cores, the local assembly code is 40%
faster, effectively increasing the scaling regime by a factor of two.

This makes assembly an inherently local process, therefore we can focus on

7

Fig. 2. Speedup comparison between matrix local assembly and non-local assembly

Fig. 3. Comparison between using critical directive and without critical directive

optimising local (on the compute node) performance.

2.4 Thread Safe Issues of Memory Reference Counting

For any defined type objects in Fluidity-ICOM being allocated or deallocated,
the reference count will be plus one or minus one. If the objects counter equals
zero, the objects should then be deallocated. In general, the element-wise
physical quantities should not perform allocation or deallocation in the ele-
ment loop, but this is not the case in the kernels. The solution could be to
either add critical directives around reference counter or move allocation or
deallocation outside of element loop. We have implemented both solutions
and performance comparison has been made in Figure 3. We have compared
different OpenMP and MPI combinations within node. Using critical direc-

8

tives, pure MPI outperformed other combinations. Without using critical di-
rectives, the performance have been improved by more than 50% for 12 and 24
threads. Therefore, the mutual synchronisation directives (eg. critical) should
be avoided. Moving allocation or deallocation outside of element loop has also
improved the pure MPI versions performance (see 24M1T in Figure 3).

2.5 Optimisation of memory bandwidth

One of the key performance considerations for achieving performance on cc-
NUMA nodes is memory bandwidth. In order to optimise memory bandwidth,
the following methods have been employed to ensure good performance:

• First-touch initialisation ensures that page faults are satised by the memory
bank directly connected to the CPU that raises the page fault;
• Thread pinning to ensure that individual threads are bound to the same

core throughout the computation.

Thread pinning has been used through Cray aprun with all benchmark tests.
After applying the first touch policy, compared with the 12-thread runs, the
wall time has been reduced from 45.127 seconds to 38.303 seconds using 12
threads on Cray XE-Magny Cours. From Figure 5 and Figure 6, the speedup
has been improved up to 12 threads compared between using and without
using first touch. But even after applying the first-touch policy, there is still
a sharp performance drop from 12 threads to 24 threads.

This problem has been investigated by profiling with CrayPAT. From Figure
2.5, we can see the top costs in the Momentum DG are dominated by memory
allocation. As we have moved all explicit memory allocation outside of element
loop, the culprit appears to be the use of FORTRAN automatic arrays in the
Momentum DG assembly kernel for support of p-adaptivity. There are a lot
of such arrays in the kernel. Since the compiler can’t predict its length, it
allocates the automatic arrays on the heap.

The heap memory manager must keep trace which parts of memory have been
allocated and which parts of memory are free. In a multi-threaded environ-
ment, this task has been further complicated by multiple threads request to
allocate or deallocate memory from the heap memory manager. In order to
keep memory allocation thread safe, the typical solution to this is to apply
the mutual synchronisation methods, eg: a single lock. In the multiple threads
environments, memory allocation by all threads will be effectively serialised
by waiting on the same lock.

9

Fig. 4. CrayPAT Sample Profiling Statistic of Momentum DG with 24 threads
Samp% | Samp | Imb. | Imb. |Group

| | Samp | Samp% | Function

| | | | PE=HIDE

100.0% | 75471 | -- | -- |Total

|---

| 95.8% | 72324 | -- | -- |ETC

||--

|| 14.6% | 11002 | 0.00 | 0.0% |_int_malloc

|| 13.8% | 10417 | 0.00 | 0.0% |__lll_unlock_wake_private

|| 9.7% | 7284 | 0.00 | 0.0% |free

|| 9.5% | 7172 | 0.00 | 0.0% |__lll_lock_wait_private

|| 6.4% | 4862 | 0.00 | 0.0% |malloc

|| 6.2% | 4674 | 0.00 | 0.0% |__momentum_dg_MOD_construct_momentum_element_dg

|| 4.0% | 3046 | 0.00 | 0.0% |_int_free

|| 3.2% | 2439 | 0.00 | 0.0% |__momentum_dg_MOD_construct_momentum_interface_dg

|| 3.0% | 2272 | 0.00 | 0.0% |_gfortran_matmul_r8

|| 3.0% | 2251 | 0.00 | 0.0% |__sparse_tools_MOD_block_csr_blocks_addto

|| 2.8% | 2090 | 0.00 | 0.0% |malloc_consolidate

|| 2.1% | 1574 | 0.00 | 0.0% |__fetools_MOD_shape_shape

Fig. 5. Momentum DG Performance Comparison on HECToR XE6-Magny Cours

Thread-Caching malloc(TCMalloc) 3 resolve this problem by using a lock-free
approach. It allocates and deallocates memory (at least in some cases) without
using locks for synchronization. This makes a significant performance boost
for pure OpenMP version which is now better than pure MPI version within
a compute node. Figure 5 shows that the speedup of 24 threads on Cray XE6-

3 http://goog-perftools.sourceforge.net/doc/tcmalloc.html

10

Fig. 6. Advection Diffusion CG Performance Comparison on HECToR XE6-Magny
Cours

Fig. 7. Momentum DG Performance Comparison on HECToR XE6-Interlagos

Magny Cours is 18.46 compared with using 1 thread for the Momentum DG
kernel. On the Cray XE6-Interlagos(Figure 7), the pure OpenMP still performs
better than pure MPI, though the speed up of 24 threads on Cray XE6-
Interlagos drop to 14.42 due to Interlagos’s memory bandwidth being much
smaller than Magny Cours.

We have also compared the different combination of number of MPI tasks and
OpenMP threads within Cray XE6-Interlagos compute node. From the Figure
8, we can see that 1 MPI tasks 32 OpenMP threads is competitive with 2 MPI
tasks 16 Threads and 4 MPI tasks 8 OpenMP threads.

11

Fig. 8. Node Performance Comparison on HECToR XE6-Interlagos

3 WP2: Optimizing HYPRE Library usage for Linear Precondi-
tioners/Solver for large core counts

Fluidity-ICOM use PETSc for solving sparse linear systems. Many other
scalable preconditioner/solvers can be called through PETSc interface, eg:
HYPRE. Previous studies (2) have already shown that Fluidity-ICOM spend
the majority of it’s run time in sparse iterative linear solvers. This work-
package mainly investigate BoomerAMG from HYPRE as preconditioner as
it has been fully threaded.

BoomerAMG has two phases: setup and solve. The primary computational
kernels in the setup phase are the selection of the coarse grids, creation of the
interpolation op- erators, and the representation of the ne grid matrix operator
on each coarse grid. The primary computational kernels in the solve phase are
a matrix-vector multiply (MatVec) and the smoothing operator, which may
closely resemble a MatVec.

For most basic matrix and vector operations, such as MatVec and dot product
has been implemented with OpenMP at the loop level. In the setup phase, only
the generation of the coarse grid operator (a triple matrix product) has been
threaded. Both coarsening and interpolation do not contain any OpenMP
statements. The solve phase(MatVec and the smoothing operator) has been
completely threaded (9).

3.1 HYPRE installation on HECToR

We have experimented several versions of HYPRE. Only HYPRE-2.9.1a is
working with Fluidity without crash, which can be downloaded from PETSc

12

website 4 . Even with this version, we still need several fixes:

• Hack configure.in to not let HYPRE use it’s own SUPERLU, instead using
SUPERLU from TPSL.
• When linking with Fluidity, make sure not to use libHYPRE gnu from

TPSL.
• The current Fluidity default GNU compiler(gcc 4.6.1) doesn’t work with

HYPRE, replace with gcc 4.6.3

HYPRE BoomerAMG is now a optional preconditioner can be setup with
diamond by Fluidity users, the details can be found in the latest manual (10).

3.2 PETSc OpenMP branches

We have proposed to do benchmarking and performance analysis of Fluidity
with the new mixed-mode mesh adaptivity library in our original work plan.
However, due to the mesh adaptivity library not being ready for production
usage we changed our plan to benchmarking with PETSc OpenMP branches
instead since the majority of Fluidity-ICOM run time is spent in the sparse
solvers.

PETSc consists of a series of libraries that implement the high-level com-
ponents required for linear algebra in separate classes: Index Sets, Vectors
and Matrices; Krylov Subspace Methods and Pre-conditioners; and Non-linear
Solvers and Time Steppers. The Vector and Matrix classes represent the lowest
level of abstraction and are the core building blocks of most of the function-
alities.

In the PETSc OpenMP branches, the Vector and Matrix class are threaded.
The Krylov subspace methods and the pre-conditioners are implemented in
the KSP and PC classes. They have not been threaded explicitly since the
basic algorithms, like CG and GMRES and SOR preconditioners, are based
on functionality from the Mat and Vec classes, which have been threaded.
Other frequently used preconditioners, such as Symmetric Over-Relaxation
(SOR) or Incomplete LU-decomposition (ILU), have not been threaded yet
due to their complex data dependencies. These may require a redesign of the
algorithms to improve parallel efficiency (11).

We have compared BoomerAMG preconditioner with Fluidity’s own Multigrid
preconditioner for the pressure Poisson solver of the lock exchange test case.
Figure 9 shows that BoomerAMG outperforms Fluidity’s own multigrid pre-
condioner. Therefore, in the final benchmarking we always use BoomerAMG

4 http://ftp.mcs.anl.gov/pub/petsc/externalpackages/hypre-2.9.1a.tar.gz

13

Fig. 9. Performance Comparison for Pressure Poisson solver using Hypre Boomer-
AMG preconditoner and Fluidity Own Multigrid preconditioner on HECToR
XE6-Interlagos

for Pressure Poisson solver. But for those problems in which there is a large
variety in length scales, Fluidity’s own Multigrid may still be the only choice.
Further investigations are required here.

3.3 WP3: Final Benchmarking and Performance Analysis

The lock exchange test case has been used here. The lock exchange is clas-
sic CFD test problem. A lock separates two fluids of different densities (e.g.
hot and cold) inside a tank; when the lock is removed, two gravity currents
propagate along the tank. An 3.4 million vertices mesh, resulting in 82 mil-
lion degrees of freedom for velocity, has been used for the scalability analysis
on large number of cores. The benchmark starts with 2 HECToR Interlargos
nodes and scales up to 1024 nodes (32768 cores). The speedup are obtained
with the following formula:

Sp = T2/Tp (1)

Where T2 is the wall time with 2 nodes, each node comprises 32 AMD Inter-
lagos cores, Tp is the wall time with p nodes(P ≥ 2).

Figure 10 shows that matrix assembly scales well up to 32K cores. The speedup
of mixed mode is 107.1 compare with 99.3 of pure MPI by using 256 nodes.
This id due to the use of local assembly which make this part of the code
essentially a local process. Hybrid mode performs slightly better than pure
MPI, which can scale well up to 32K cores.

14

Fig. 10. Matrix Assembly Performance Comparison on HECToR XE6-Interlagos

Fig. 11. Pressure Solver Performance Comparison on HECToR XE6-Interlagos

Figure 11 describes speedup of solving pressure Poisson equation using pre-
conditioner HYPRE BoomerAMG and solver Conjugate gradient. It indicates
that pure MPI performance starts to degrade from 64 HECoR nodes (2048
cores) onwards where the hybrid mode begin to outperform pure MPI.

Figure 12 shows the speedup of solving momentum equation using DG with
preconditioner HYPRE BoomerAMG and solver GMRES. The performance
of mixed mode are comparable with pure MPI version, but pure MPI performs
better than mixed mode for up to 8K cores. This is due to number of degree of
freedom for velocity are 24 times bigger than pressure, there are enough work
for up to 8K cores. The PETSc task based OpenMP(12) branch performs
better than vector based OpenMP(11) branch.

15

Fig. 12. Momentum Solver Performance Comparison on HECToR XE6-Interlagos

Fig. 13. IO Performance Comparison on HECToR XE6-Interlagos

We have switched off all writes, so the only I/O is reading input including
flml file and mesh files. From Figure 13, we can see that significant I/O effi-
ciency has been achieved by using mixed mode parallelism. For example, only
four process per node will be involved in I/O (with pure MPI potentially 32
processes per node are performing I/O under current Phase 3 of HECToR),
which reduces the number of metadata operations on large numbers of nodes,
which may otherwise hinder overall performance. In addition, the total size of
the mesh halo increases with number of partitions (i.e. number of processes).
For example, it can be shown empirically that the size of the vertex halo in
a linear tetrahedra mesh grows proportionally as O(Pexp(1.5)), where P is
the number of partitions. Therefore, the use of hybrid OpenMP/MPI will de-
crease the total memory footprint per compute node, the total volume of data
to write to disk, and the total number of metadata operations based on the

16

files-per-process I/O strategy.

4 Summary and Conclusions

We have focused on Fluidity-ICOM matrix assembly. Above performance re-
sults indicate that node optimisation can be done mostly using OpenMP with
efficient colouring method, which avoids the use of mutual synchronization di-
rectives: eg. Critical. Regarding Matrix stashing, it does not have any redun-
dant calculations. However, it does incur the cost of maintaining and commu-
nicating stashed rows, and this overhead will increase for higher MPI process
counts. A further complication of non-local assembly is that the stashing code
within PETSc is not thread safe.

Local assembly has the advantage of not requiring any MPI communications
as everything is performed locally, and the benchmark results also highlights
the fact that the redundant calculations are not significantly impacting per-
formance when local assembly is used. Furthermore, the scaling of local as-
sembly is significantly better than non-local assembly at higher core counts.
This makes assembly an inherently local process. Thus focus is on optimizing
local (to the compute node) performance. The matrix assembly kernels can
scale well up to 32K core counts with mixed mode.

As the current OpenMP standard (3.0), which has been implemented by most
popular compilers, doesn’t cover page placement at all, memory-bound appli-
cations, like Fluidity-ICOM, require explicit memory placement. Hereby it is
important to make sure that memory get’s mapped into the locality domains
of processors that actually accesses the data. This was achieved by implement-
ing a first touch policy to minimize NUMA traffic across the network. Using
thread pinning was then used to guarantee that threads are bound to physical
CPUs and maintain locality of data access.

For Fluidity-ICOM matrix assembly kernels, the performance bottle neck be-
comes memory allocation for automatic arrays. Using NUMA aware heap man-
agers TCMalloc, it makes pure OpenMP version outperform the pure MPI
version.

For high core counts simulation, the I/O becomes major bottleneck for pure
MPI version. Significant efficiency of I/O based on files-per-process strategy
has been achieved by using mixed mode parallelism.

17

5 Future work

During benchmarking, we found one of many difficulties coming from decom-
posing mesh for high core counts. Though mixed mode have reduce quite large
mount of time by reducing number of partitions. But even with 4K partitions,
the decomposition of a medium sized mesh are still requiring few hours to
finish. This majority time of fldecomp are spent in construction halos for each
partitions. A parallel halo constructor are required here.

We will spend more efforts on solvers, we will further investigate threading
preconditioner that can be called through PETsc. We currently have the ac-
cess to the ongoing project about hybridize PETSc with OpenMP. This work
offers potential capabilities to further increase parallel performance of Fluidity-
ICOM with mixed mode MPI/OpenMP.

After this, we will investigate the fully OpenMP parallelized Fluidity-ICOM on
Intel MIC and Cray XK6, which will further guide us the future development.

When the Parallel anisotRopic Adaptive Mesh ToolkIt 5 is ready for pro-
duction usage, we will benchmark and optimize this threaded adaptive mesh
library together with fluidity

Acknowledgements

This project was funded under the HECToR Distributed Computational Sci-
ence and Engineering (CSE) Service operated by NAG Ltd. HECToR 6 A
Research Councils UK High End Computing Service - is the UK’s national
supercomputing service, managed by EPSRC on behalf of the participating
Research Councils. Its mission is to support capability science and engineering
in UK academia. The HECToR supercomputers are managed by UoE HPCx
Ltd and the CSE Support Service is provided by NAG Ltd.

The authors would like to acknowledge the support of a HECToR distributed
Computational Science and Engineering award. The authors would also like
to thank the HECToR/NAG support team for their help throughout this
work. The author would also thanks Dr. Lawrence Mitchell and Dr. Michele
Weiland for their valuable contributions. The author would also like to thank
his colleagues, Dr. Stephen Pickles, Dr. Andrew Porter, for their valuable
suggestions and discussions.

5 https://launchpad.net/pragmatic
6 http://www.hector.ac.uk

18

References

[1] Xiaohu Guo, G. Gorman, M Ashworth, A. Sunderland, Developing hybrid
OpenMP/MPI parallelism for Fluidity-ICOM - next generation geophysi-
cal fluid modelling technology, Cray User Group 2012: Greengineering the
Future (CUG2012), Stuttgart, Germany, 29th April-3rd May 2012

[2] Xiaohu Guo, G. Gorman, M Ashworth, S. Kramer, M. Piggott, A. Sunder-
land, High performance computing driven software development for next-
generation modelling of the Worlds oceans, Cray User Group 2010: Simu-
lation Comes of Age (CUG2010), Edingburgh, UK, 24th-27th May 2010

[3] Welsh, D. J. A.; Powell, M. B., An upper bound for the chromatic number of
a graph and its application to timetabling problems, The Computer Journal,
10(1):8586, 1967 doi:10.1093/comjnl/10.1.85

[4] P. Berger, P. Brouaye, J.C. Syre, A mesh coloring method for efficient
MIMD processing in finite element problems, in: Proceedings of the Inter-
national Conference on Parallel Processing, ICPP’82, August 24-27, 1982,
Bellaire, Michigan, USA, IEEE Computer Society, 1982, pp. 41-46.

[5] T.J.R. Hughes, R.M. Ferencz, J.O. Hallquist, Large-scale vectorized im-
plicit calculations in solid mechanics on a Cray X-MP/48 utilizing EBE
preconditioned conjugate gradients, Comput. Methods Appl. Mech. Engrg.
61(2), (1987a), 215-248.

[6] C. Farhat, L. Crivelli, A general approach to nonlinear finite-element
computations on shared-memory multiprocessors, Comput. Methods Appl.
Mech. Engry. 72(2), (1989), 153-171.

[7] D. Komatitsch, D. Michaa, G. Erlebacher, Porting a high-order finite-
element earthquake modeling application to NVIDIA graphics cards using
CUDA, J. Parallel Distrib. Comput. 69, (2009), 451-460.

[8] C. Cecka, A.J. Lew, and E. Darve, Assembly of Finite Element Methods
on Graphics Processors, Int. J. Numer. Meth. Engng 2000, 1-6.

[9] A.H. Baker, M. Schulz and U. M. Yang, On the Performance of an Alge-
braic Multigrid Solver on Multicore Clusters, in VECPAR 2010, J.M.L.M.
Palma et al., eds., vol. 6449 of Lecture Notes in Computer Science,
Springer-Verlag (2011), pp. 102-115

[10] Fluidity Manual. Applied Modelling and Computation Group, Depart-
ment of Earth Science and Engineering, South Kensington Campus, Im-
perial College London, London, SW7 2AZ, UK, version 4.1 edn. (May
2012), available at https://launchpadlibrarian.net/99636503/fluidity-
manual-4.1.9.pdf

[11] M. Weiland, L. Mitchell, G. Gorman, S. Kramer, M. Parsons, and J.
Southern, Mixed-mode implementation of PETSc for scalable linear algebra
on multi-core processors, In Proceedings of CoRR. 2012.

[12] Michael Lange, Gerard Gorman, Michele Weiland, Lawrence Mitchell,
James Southern, Achieving efficient strong scaling with PETSc using Hy-
brid MPI/OpenMP optimisation, submitted to ISC’13, 2013

19

