
dCSE Fluidity-ICOM: High Performance

Computing Driven Software Development for

Next-Generation Modelling of the Worlds

Oceans

Xiaohu Guo a, Mike Ashworth a, Gerard Gorman b,
Stephan Kramer b, Matthew Piggott b

aAdvance Research Computing Group,
Computational Science & Engineering Department,

Science and Technology Facilities Council,
Daresbury Laboratory, Warrington WA4 4AD UK

bApplied Modelling and Computation Group,
Department of Earth Science and Engineering,

Imperial College London, London, SW7 2AZ, UK

Summary of the Project Progress

During the course of this project dCSE Fluidity-ICOM has been transformed from a
code that was primarily used on institution level clusters with typically 64 tasks used
per simulation into a highly performing scalable code which can be run efficiently on
4096 cores of the current HECToR hardware (Cray XT4 Phase2a). Fluidity-ICOM
has been parallelised with MPI and optimised for HECToR alongside continual
in-depth performance analysis.

The following list highlights the major developments:

• The matrix assembly code has been optimised, including blocking. Fluidity-ICOM
now supports block-CSR for the assembly and solves of vector fields and DG fields.

• Interleaved I/O has been implemented to the vtu output. The performance anal-
ysis has been done with gyre test case, so far no performance improvement has
been observed. The parallel I/O strategy has not yet been applied to the mesh
file output as the final file format has still not been decided yet.

• An optimal renumbering method for parallel linear solver performance has been
implemented (provided via the PETSc interface). In general, it is recommended
to use Reverse Cuthill-McKee to get best performance.

• Fluidity-ICOM has relatively complex dependencies on third party software, sev-
eral modules were made for HECToR users to easily set software environment
and install Fluidity-ICOM on HECToR.

Final Report for DCSE ICOM

• The differentially heated rotating annulus benchmark was used to evaluate the
scalability of mesh adaptivity. A scalability analysis of both the parallel mesh
optimisation algorithm and of the complete GFD model was performed. This
allows the performance of the parallel mesh optimisation method to be evaluated
in the context of a ”real” application.

Extensive profiling has been performed with several benchmark test cases using
CrayPAT and VampirTrace:

• Auto profiling is proved not very useful for large test cases but MPI statistics of
auto profiling are still very useful for large test cases, which also helped to identify
the problems with surface labelling which cause large overhead for CrayPAT.
There are still on going issues of PETSc instrumentation.

• VampirTrace GNU version are proved to be useful for mesh adaptivity part trac-
ing, several interesting results have been made.

• Profiling the real world applications has proved to be a big challenge. It required
a considerable understanding of profiling tools and extensive knowledge of the
software itself. The introduction of manual instrumentation was required in order
to focus on specific sections of the code. Determining a suitable way to reduce the
profiling data size without losing the fine grain details was critical for successfully
profiling. Inevitably this procedure involved much experimentation requiring large
numbers of profiling runs.

Key words: Fluidity-ICOM; Unstructured Mesh; Adaptivity; Profiling; Mesh
Optimisation; Parallel I/O

1 The Fluidity-ICOM dCSE project

The Fluidity-ICOM (Imperial College Ocean Model 1) dCSE project com-
menced on 1st July 2009 and is scheduled to end on the 31st May 2010.
The principal investigator on the grant was Mike Ashworth from the Advance
Research Computing Group (ARC), Science and Technology Facilities Coun-
cil (STFC). This highly collaborative project also involved Gerard Gorman,
Matthew Piggott Stephan Kramer from Applied Modelling and Computation
Group (AMCG), Imperial College London.

The Fluidity-ICOM dCSE project comprised of three work packages (referred
to as WP1, WP2 and WP3), WP1 concerned with profiling and optimisation,
WP2 concerned with scalability of mesh adaptivity and WP3 concerned with

1 Fluidity-ICOM is open source and available for download by svn:
http://amcg.ese.imperial.ac.uk/svn/fluidity/trunk

2

parallel I/O. The overall aim of this work is to develop Fluidity-ICOM from
being a state-of-art workstation and cluster based code to become a model
able to run efficiently on the largest supercomputing platforms, which will
also help Fluidity-ICOM make the transition from local research software to
being high quality community software.

Fluidity-ICOM is build on top of Fluidity, an adaptive unstructured finite ele-
ment code for computational fluid dynamics. It consists of a three-dimensional
non-hydrostatic parallel multiscale ocean model, which implements various fi-
nite element and finite volume discretisation methods on unstructured anisotropic
adaptive meshes so that a very wide range of coupled solution structures may
be accurately and efficiently represented in a single numerical simulation with-
out the need for nested grids (Ford et al., 2004; Pain et al., 2005; Gorman et al.,
2006).

Developing an unstructured mesh ocean model is significantly more complex
than traditional finite difference models. Apart from the numerical core of the
model, significant effort is also required to develop pre- and post-processing
tools as there are no standards yet established within the community. For
example, initial mesh generation must confirm to complex bathymetry and
coastlines, which exerts a critical influence over the dynamics of the ocean. In
practice, there is a trade-off between how close the discretised domain is to
reality, and how appropriate it is for numerical simulation with limited compu-
tational resource. To achieve this, specialised mesh generators such as Terreno
(Gorman et al., 2008) have been developed as the geometries do not lend them-
selves to standard packages which use CAD models. A typical bathymetry
conforming unstructured mesh is presented in Figure 1.

Fluidity-ICOM can also optimise the numerical mesh to control modelling er-
ror estimates using anisotropic mesh adaptivity. Large load imbalances are to
be expected following the mesh adaptivity, therefore dynamic load-balancing
is required. When re-balancing the mesh a combination of diffusion reparti-
tioning, and clean parallel repartitioning with domain remapping, is used to
minimise data migration. While this is currently done using a combination of
ParMETIS and a bespoke code for data migration (see (Gorman et al., 2009)),
work is being done on integrating Zoltan 2 instead.

Solving sparse linear equations is one of the most time consuming parts in
Fluidity-ICOM. For systems of equations with low/moderate condition num-
ber, Fluidity-ICOM uses standard preconditioners and solvers from PETSc 3 .
When the condition number is high Fluidity-ICOM use an AMG precondi-
tioner designed specifically for ocean problems which outperforms all conven-
tional preconditioners and black box AMG preconditions tested (e.g. Prometheus

2 Zoltan: http://www.cs.sandia.gov/Zoltan/
3 PETSc: http://www-unix.mcs.anl.gov/petsc/petsc-2/index.html

3

Fig. 1. Unstructured meshes are an ideal choice for representing complex problem
domains.

and HYPRE/BoomerAMG). However, attention must always be paid to the
scaling as the coarsening typical process of AMG makes scaling more difficult.

Fluidity-ICOM uses state-of-the-art and standardised 3rd party software com-
ponents whenever possible. For example, PETSc is used for solving sparse lin-
ear systems while Zoltan is used for many critical parallel data-management
services both of which have compatible open source licenses. Python is widely
used within Fluidity-ICOM at run time for user-defined functions and for di-
agnostic tools and problem setup. It requires in total about 17 other third
party software packages and use three languages (Fortran, C++, Python).

2 Fluidity-ICOM compiling and installation on HECToR

Fluidity-ICOM has a relatively complex set of dependencies. In order to aid
developers and users that want to build the code on HECToR environment

4

modules have been created to set up both production builds of the code to-
gether with more specialised ones for profiling with CrayPAT and Vampir.
Details can be found on AMCG wiki page 4 .

There are two main software environment for which modules are developed
on HECToR software for Fluidity-ICOM: GNU and PGI. Several software
environment issues were encountered during the course of the project (see
Appendix A.A).

3 WP1: Profiling and optimisation

3.1 Selection of benchmark test cases

As part of the dCSE Fluidity-ICOM project, a set of HPC benchmarks has
been set up which well characterise the performance of the code for a wide
number of applications. This allows us to:

• Create consistent profiles and analyse Fluidity-ICOMs performance, across
a number of platforms.
• Identify performance and scaling bottlenecks.
• Evaluate the impact of optimisations.

This standardised set of benchmarks is also used by other HPC collabora-
tive projects which ran concurrently to this work, namely those with Fujitsu
and the NAG group. One is also funded through distributed Computational
Science and Engineering (dCSE) Support awards from HECToR (High-End
Computing Terascale Resource), the UK national supercomputing service .
This helped enhance the level of collaboration across the different projects.

The benchmark configurations were created by running the model for an initial
spin up time, in order to allow transient dynamics associated with initialisation
to die down, and then checkpointed. The benchmark then consists of running
the problem, restarting from the checkpoint, only for a few time steps. The
rationale behind this approach is to ensure the time steps performed during
the benchmark are representative of the overall run; time steps in the initial
period can behave very differently due to the model having to adjust to physics
imposed and spurious dynamics having to die out first.When configured in this
way benchmarks only need to be run for a few number of time steps before
reliable profiling results are generated.

4 http://amcg.ese.ic.ac.uk/index.php?title=Local:Using_HECToR

5

For some benchmarks, the initial spin up time can be quite long, for example
1 year of simulation time for the gyre. The spin up runs are therefore run on
a moderate number of processes, typically 64. Because each process reads and
writes its own partition, the resulting checkpoint will already be decomposed
into 64 subdomains. The program flredecomp, from the Fluidity-ICOM tool
kit, can then be used to repartition the problem into different number of
subdomains, so that strong scaling analysis can be performed. As per usual
in strong scaling analysis, the range of partitions numbers is restricted by
the overall problem size. Too many processors for a given problem leads to
excessive communication costs relative to computation costs due to the size of
the mesh halo approaching the size of the subdomain. With a small number of
processes the problem might become too big to fit in memory. For this reason
some of the benchmarks are provided in different resolutions, giving a different
total number of degrees of freedom, and scaling is measured relative to the
lowest number of processes that the problem could be run on.

Available configurations are:

• Backward facing step: This benchmark is available in two different reso-
lutions. The low resolution benchmark has an adapted mesh of 250k nodes
at the time of the checkpoint. The high resolution benchmark starts from
a 4M nodes adapted mesh. For both configurations an adaptive and a non-
adaptive version are made available. The lower resolution benchmark was
run on local resources at Imperial College (IC) and Fujitsu Laboratories
of Europe Ltd (FLE). The higher resolution benchmarks were run on the
RCUK’s national high end computing resource, HECToR (Cray XT5).
• Open ocean deep convection (OODC): The adapted mesh of the spun

up OODC benchmark has 360k nodes. Again both an adaptive and non-
adaptive version are available.
• Rotating annulus: This is a relatively small benchmark of 65k nodes which

is available with an adaptive and a non-adaptive options file.
• Wind-driven baroclinic gyre: The gyre benchmark is available as a

checkpoint decomposed to run on 64 processors with a mesh of 214k nodes.
The actual number of degrees of freedom during the run will be a lot larger
though, because this configuration uses the new P1DG-P2 element pair.
This means there will be roughly 5M velocity nodes. An 10 million vertices
mesh, resulting in 200 million degrees of freedom for velocity, has been used
for the scalability analysis on large number of cores. Input files for up to
4096 processes has been generated, An adaptive version of this benchmark
will not be available as the adaptive gyre is still ongoing research.

For each of the benchmarks a report has been written, giving a more detailed
description of both the physical setup and the numerical configuration. The
results of the profiling analysis described below is analysed in greater detail
for each of the benchmarks in these reports.

6

3.2 Solver comparisons

The wind-driven baroclinic gyre benchmark is used for the solver comparisons
and scalability analysis. A gyre in oceanography is a large system of rotating
ocean currents, particularly those involved with large wind movements. The
flow is dominated by a balance in the horizontal between the Coriolis force and
the free surface gradient. In a baroclinic gyre a density stratification, typical
for the ocean domain, is taken into account. The equations used by Fluidity-
ICOM to model this configuration are the 3D non-hydrostatic Boussinesq
equations. In a domain V ⊂ R3 these take the form:

Du

Dt
+ 2Ω× u−∇· (ν · ∇u) + (1a)

+∇p = fwind + ρgk, (1b)

∇ · u = 0, (1c)

DT

Dt
−∇ · (κT∇T) = 0, (1d)

ρ ≡ ρ(T), (1e)

where D/Dt = ∂/∂t +uuu ·∇∇∇ is the total derivative, p is the perturbation pres-
sure, g is the acceleration due to gravity, ρ is the perturbation density and
fwind is the wind forcing term. Rotation of the earth is taken into account via
the vector Ω = (0, 0, f)T , where f = f0 + βy, the so called beta-plane ap-
proximation. T is the temperature, but additional scalar fields such as salinity
and tracers can be dealt with analogously, in which case they may be included
in the equation of state (1d). A diagonal viscosity tensor ν is used to rep-
resent (effective) stresses in the model. κT is the thermal diffusivity tensor,
also assumed to be diagonal. No turbulence models have been applied in this
benchmark.

A linear stratification has been used as an initial condition for the temperature:

T = Tsurface +
z∆T

H
, (2)

with a surface temperature of Tsurface = 20 and a temperature difference
∆T = 10. The vertical coordinate z is chosen such that z = 0 at the surface
and z = −H = −2000 m at the bottom. A simple linearised equation of state
is used:

ρ(T) = ρ0 (1− α(T − T0)) , (3)

where α = 2.0× 10−4 K−1 is the thermal expansion coefficient, and T0 = 10.

The wind forcing, fwind, is applied as a stress integrated over the surface, given

7

as the analytical function:

τwind = −τ0/ρ0 cos(2πy/Ly). (4)

The domain extends from x = 0 to x = Lx = 1000 km and y = 0 to y =
Ly = 1000 km. This simulates a mid-latitude double gyre, with easterly winds
in the north and south, and westerly wind in the middle of the domain. The
amplitude of the wind stress is τ0 = 0.1 Nm−2.

The Boussinesq equations (1a) and (1b) are discretised via a finite element in-
tegration using a P1DG−P2 velocity, pressure element pair. This element pair
has a number of advantageous properties for ocean simulations, a.o. its bene-
ficial balance properties (Cotter et al., 2009). The incompressibility constraint
(1b) is enforced through a pressure correction approach. The non-linearity in
the advection terms, and the coupling of the heat equation and the buoyancy
term are dealt with in a Picard iteration. The free surface is solved in conjunc-
tion with the pressure equation. Finally the heat advection diffusion equation
is solved with a standard P1 SUPG discretisation (Gresho and Sani, 1998).

The mesh used in the baroclinic gyre benchmark test case has 10 million
vertices; resulting in 200 million degrees of freedom for velocity due to the use
of DG.

Fluidity-ICOM uses the PETSc library for the solution of the sparse linear
systems arising from the numerical discretisation. A wrapper petsc solve takes
in the CSR matrix, and constructs a PETSc matrix data type, sets the solver
and preconditioner options, and then passes the system to PETSc to solve.
This wrapper offers full access to several classic algorithms contained in PETSc
and also get the extra benefits with new added algorithms without extra work.

For the gyre test case, the pressure matrix has a very high condition number,
making it very difficult to solve using conventional preconditioners and solvers.
Here we use an AMG preconditioner which is the best choice for large systems
(because of their better scaling properties), and ill-conditioned systems, such
as those in large aspect ratio problems, or more generally problems in which
there is a large variety in length scales. An algebraic multigrid method targeted
specifically at large aspect ratio ocean problems is developed for the Fluidity-
ICOM model (Kramer et al., 2010). This multigrid method is applied as a
preconditioner within a Conjugate Gradient iterative method.

PETSc also provides an interface to other AMG methods such as BoomerAMG
in HYPRE 5 . The parallel efficiency for the pressure solver using Fluidity-
ICOM MG and BoomerAMG preconditioners are in Figure 2. We can see
Fluidity-ICOM MG has better scalability than BoomerAMG.

5 HYPRE:http://www.llnl.gov/CASC/linear solvers/

8

Fig. 2. Comparison of pressure solver efficiency using algebraic multigrid method
from Fluidity-ICOM MG and HYPRE BoomerAMG.

3.3 Optimisation of matrix assembly code including blocking

There were several major updates for matrix assembly, Fluidity-ICOM now
supports block-CSR for the assembly and solves of vector fields and DG fields.

• For further optimisation of direct assembly in PETSc and a step towards
using PETSc block structure, momentum dg the sparsity of big m is no
longer assembled and stored in state. Instead we only work out the number
of non-zeros per row the memory allocated for values inside PETSc will drop
significantly as we no longer have to assume the same sparsity pattern for
coupling between components. Thus reducing P1DG with compact viscosity
and Coriolis in 3 dimension from 60 non-zeros to 28 non-zeros per row
(r10606 6).
• Assemble the big m momentum matrix directly into a PETSc matrix. This

should get rid of the memory spike directly before the momentum solve and
save us some time by not doing the matrix insertions twice (r10596).
• introduced a new variant of the diagonal block matrix (a block matrix with

only the diagonal blocks allocated). This variant also only has diagonal

6 r 10606 means revision 10606, which is the Fluidity subversion revision number

9

blocks, but all blocks are pointing at the same memory (r10494).
· The (consistent) mass matrix is therefore now also a proper block csr matrix.

This avoids ugly hacks at the interface of petsc solve full projection, where
sometimes the mass matrix and other times big m has to be supplied. The
mass matrix can now also include strong Dirichlet boundary conditions
and pressure corrected absorption terms.
· Instead of assembling the lumped mass as a vector field (again components

may be different), we now assemble the inverse of the lumped mass. This
avoids having to insert infinities, that only end up as zeros in the inverse
mass.
· Similarly for DG, for the inverse mass matrix we no longer insert in-

finities, but the Dirichlet boundary conditions are applied afterwards by
zeroing out the rows and columns. This has the added advantage that we
no longer have to compute the proper mass matrix (recomputing trans-
form to physicals and inverses), but simply do it once, then copy to other
components and then apply boundary conditions.
· The assembly of the inverse mass matrix has been merged with con-

struct momentum dg to save another round of unnecessary transform to physicals
in each element.
· All assembly of the (inverse/lumped) mass matrices now happens inside

construct momentum cg or construct momentum dg, including application
of Dirichlet boundary conditions, lumping on submeshes, etc. .

• Reorganisation of boundary condition code, improve the readability of the
assembly of the boundary conditions, avoiding complicated constructs (r10331).

3.4 Renumbering mesh nodes

Applied sparse matrix reordering schemes for generating narrow-banded (or
clustered) nonzero patterns via the PETSc interface.

• Apply the new numbering for the momentum equation in parallel. This
means the ordering is now changed from having all components of a single
node numbered contiguously, to each component on all nodes on a pro-
cess being numbered contiguously. This is the same numbering that is al-
ready used in serial. This is achieved by calling the new multi-component
get universal numbering in the setup of the PETSc numbering. For CG
nothing else needed to be changed. For DG and the case of rotated bound-
ary conditions, where petsc csr matrices are used, the order of the supplied
nnz needs to match the new ordering (r11522).
• Experimented with a number of renumbering methods provided via the

PETSc interface. Using Reverse Cuthill-McKee tends to get better perfor-
mance. More analysis is necessary to establish why performance gains have
not been more significant using renumbering.

10

3.5 Fluidity-ICOM Profiling and scalability analysis

Users should not spend time optimising a code until after having determined
where it spends the bulk of its time on realistically sized problems. Profiling
is the best way to address both the serial execution of the code(such as cache
usage, vectorisation) and parallel aspects, such as parallel efficiency, load bal-
ancing and communications overheads. Profiling using CrayPAT and Vampir
on HECToR has been performed on the gyre benchmark test case which is of
particular relevance to GFD applications. CrayPAT and Vampir are the two
main tools being used for Fluidity-ICOM profiling.

In theory, the process for using profiling tools like CrayPAT and Vampir would
consist of firstly running a representative benchmark test case with tracing en-
abled to produce trace files, then viewing the tracing data using specialised
tools. However, in the case of large benchmark test cases this may not be
possible. Even for a relatively small Fluidity-ICOM dataset of 0.21 million
nodes, with CrayPAT suggested automatic profiling options, trace files can
be hundreds of GBytes which makes analysis impossible. The size of the
trace file data depends on the nature and intensity of the profiling experi-
ment and the duration of the program run. Using runtime variables such as
PAT RT SUMMARY in CrayPAT could make a big reduction of data size
but at the cost of fine-grain details. Specifically, when running tracing exper-
iments, the formal parameter values, function return values, and call stack
information are not saved. Determining a way to control profiling data size
whilst at the same time gathering in-depth and informative data is key for un-
derstanding the performance bottlenecks in large realistically sized problems.
Under such circumstances, a starting point is to use simple timing hooks in
the code to get a coarse grain profile of code performance, then to use these
results as a basis for more fine grain profiling with the CrayPAT/Vampir API
in the identified areas of interest.

3.5.1 Basic timings

Following the above procedure, a timing module for coarse level profiling of the
code was added (r12743), The target of this work is to analyse Fluidity-ICOM
on a large number of processes (cores) with the gyre test case. The number
of processes ranges from 1024 to 4096. In order to identify the issues for this
scale of processes, the 10 million node mesh has been generated. During the
profiling, several major issues were resolved:

• The commit (r12824) significantly reduces the peak memory footprint of
fldecomp. This is done by adding code directly into fldecomp for reading
triangle files. In a 10m node mesh example this reduced the peak memory

11

at read time from 9.8GB to 2.2GB. The heart of the problem was that
when the triangle files were read in the usual way, all the adjacency lists
were also being created; resulting in a high memory footprint. Writing files
in the usual ways through state is fine as the partitions are small enough.
This resolved the issue of decomposition for 4096 processes and reduced the
total wall time from more than 12 hours to 4 hours 3 minutes 15 seconds.
• An analysis of the scaling between 1024-4096 cores revealed that a signifi-

cant fraction of compute time was scaling poorly. The root of the problem
was discovered to be the initialisation of the R-tree in the spatialindex library
used by Fluidity-ICOM. It transpired that the library was using temporary
files which only became a problem for high process count. It was found
however that this issue was already resolved in the spatialindex subversion
repository; therefore the library source was simply updated from the sub-
version repository of the project. This reduces the computational cost of
initialising RTree from nearly 10 mins down to 0.03 seconds when running
the gyre benchmark with 10m mesh vertices on 1024 processes (r12957,
r12990).

We focus on the solution of the momentum equation (1a) in combination with
the incompressibility constraint given by the continuity equation (1b), as this is
by far the main cost of the simulation, and dominates the overall scaling of the
simulation. The solution process consists of the assembly of the linear systems
representing the discretised momentum equation and the pressure equation,
and the solution of those. Thus the scaling analysis of the momentum equa-
tion is naturally broken down into 4 parts: assembly of the pressure matrix,
linear solve for the pressure equation, assembly of the discretised momentum
(velocity) equation, and linear solve of the momentum (velocity) equation.

From Figure 3, we can see that matrix assembly for pressure and velocity can
take more than 30% of the total simulation time with 1024 cores, where the
pressure solver occupies nearly 53.9% of the total simulation time. The matrix
assembly phase is expensive for a number of reasons, including: significant loop
nesting, where the innermost loop increases in size with increasing quadrature;
indirect addressing (due to unstructured meshes) and cache re-use.

Comparing with 1024 cores, Figure 4 and Figure 5 show the speedup and
efficiency of momentum solver and each of its components. As we can see
from the graphs, the scaling is very respectable. Velocity is being solved using
a discontinuous Galerkin method (DG). This is showing very good scaling
characteristics.

The pressure assembly is showing less parallel efficiency than the velocity
assembly. It is to be noted that this assembly only occurs once in an entire
model run, so is expected to take only a small fraction of runtime in a normal
run with significantly more time steps. Due to non-linearities, the momentum

12

Fig. 3. Wall time for the assembly and solve of the momentum and pressure equa-
tion.

equation does have to be re-assembled every non-linear iteration within a time
step.

3.5.2 Communication overhead and load balance analysis

Using CrayPAT, we obtained the statistics of three groups of functions, namely
MPI functions, USER functions and MPI SYNC functions. MPI SYNC is
used in the trace wrapper for each collective subroutine to measure the time
spent waiting at the barrier call before entering the subroutine. Therefore,
MPI SYNC statistics can be a good indication of load imbalance. The time
percentage of each group is shown in the Figure 6.

With core counts from 1024 to 4096, we can see that the time percentage spent
in MPI increases from 28.7% to 33.1% while USER functions drop from 45.5%
to 24.9%, and time percentage of MPI SYNC increase from 25.7% to 42.0%.
This lead us to identify the top time consuming functions in each group along
with their calling hierarchy.

13

Fig. 4. Speedup of the assembly and solve of the momentum and pressure equation.

3.5.3 Top time consuming functions in each group

Figures 7-9 give the top time consuming functions in each group. In Figure
7, the speed up of the linear solver KSPSolve is about 3.5 with 4096 cores
comparing with 1024 cores according to the CrayPAT tracing results. The
function main represents the functions that have not been traced in the code.
These functions are outside of momentum solver. Future work will focus on
these functions with poor scaling behaviour.

The most time consuming of the MPI groups is MPI Allreduce. It is expected
that this collective operation does not scale well. However on the XT4 the
scaling is relatively good from 2048 to 4096 cores in Figure 8. From the call
tree generated by CrayPAT, it becomes clear that this function is called from
PetscMaxSum within PETSc. MPI Waitany is indicative of the quality of the
load balancing. Given that this amount does not increase significantly between
runs on 1024 to 4096 cores in Figure 9, it does not appear that load-balancing
is worsening noticeably as the core count increases.

In Figure 9, MPI Allreduce accounts the most part of waiting time spent in the
barrier, it is worth to check if it is possible to combine several MPI Allreduces
together. MPI Bcast and MPI SCAN are becoming more significant on 4096
cores, compared to runs on 1024 and 2048 cores.

14

Fig. 5. Efficiency for the assembly and solve of the momentum and pressure equa-
tion.

3.5.4 Some guidelines for Fluidity-ICOM supporting third party libraries trac-
ing

As Fluidity-ICOM makes extensive use of third party software, it is also im-
portant to obtain insight in performance issues from these other software pack-
ages.

Profilers like CrayPAT and Vampir normally require direct access to the source
file or the object file, which are typically not available for third party package
software installed on a given system. This will limit the view on the overall
performance of applications widely using such software packages. For instance,
Fluidity-ICOM uses PETSc as the sparse linear system solver. With nearly
70% time spent inside PETSc, it is necessary to understand the performance
profile within PETSc as this generally dominates the overall performance of
Fluidity-ICOM. However without direct access to the source and object file, it
is very hard to trace the specific functions in PETSc. One possible solution is
to rebuild and install PETSc in the user home directory. In this case CrayPAT
can profile PETSc as normal USER functions.

A problem will then be how to properly reduce the profiling data from PETSc
as there are very many different PETSc functions, called from various places.
This will generate a large amount of profiling data. Using the API functions

15

Fig. 6. Profile by function group.

of profiling tools may be a solution but it will require recompiling PETSc each
time a different grouping is chosen. Another choice is to generate a specific
function list which is a subset of PETSc functions. Directly instrumenting the
subset of PETSc functions can also help to reduce the amount of profiling
data and obtain useful statistics.

4 WP2: Scalability of Mesh Adaptivity

Adaptive mesh methods aim to produce a mesh which achieves a user specified
error among the computational domain; often with user specified constraints
on mesh edge lengths, problem size, geometry and mesh gradation. This ap-
proach to error control can also be viewed as optimising the computational
efficiency of a simulation; reducing time to solution and even resolving solu-
tion features that might have otherwise been impractical to compute using a
static mesh on a given computer.

Adaptive methods must be coupled with parallel methods for many problems
of practical interest. The mesh optimisation method is described in detail
by (Pain et al., 2001). The main challenges associated with parallel mesh
optimisation, include:

16

Fig. 7. Top time consuming user functions got from CrayPAT.

• Adapting regions of the mesh shared between sub-domains.
• Maintaining the load-balance for the solver as the mesh resolution varies.
• Minimising mesh migration between processes.

Generally, an adaptation involves a change in the local mesh configuration. If
any mesh entity is to be adapted then all domains that contain information
specific to that entity must also be updated. Unlike hierarchical mesh refine-
ment methods (e.g. Jimack (1998)), the very nature of the mesh optimisation
method used precludes the independent prediction on different processes of
the local connectivity of the final mesh.

A reasonable estimate of the relative computational load per process can be
obtained from the number of mesh vertices assigned to the partition on that
process, as that defines the size of the linear systems to be assembled and
solved. At the outset of the parallel simulation, graph partitioning is used to
define a domain decomposition that balances the number of nodes per pro-
cess and thus provides an even distribution of work throughout the processes.
However, mesh optimisation operations such as edge-collapsing (node dele-
tion) and edge-splitting (node insertion) disrupt this balance. The induced
load-imbalance can range from just a few percent to many orders of magni-
tude in difference. Because of this, graph repartitioning and data migration
(e.g. the redistribution of mesh entities across processes in order to satisfy a

17

Fig. 8. Top time consuming MPI functions.

new graph partitioning) are key components for parallel mesh optimisation.
This operation adds further computational and communication overheads to
mesh adaptivity.

A description of the algorithm, illustrated in figure 10, is now summarised.
Firstly, the serial mesh optimisation method is applied to each sub-domain
independently with the constraint that no mesh elements on a partition may
modified. Once the adaptive algorithm terminates, load-imbalances will in
general have arisen due to the local refinement and coarsening of the mesh.
This motivates a re-partitioning of the domain. The error metric field can be
used to predict the local density of elements after optimisation (Pain et al.,
2001). This allows us to define suitable node-weights for the graph partition-
ing method to be used in calculating a well-balanced partition. After applying
mesh adaptivity this should be close to unity everywhere except at domain par-
titions where mesh adaption was explicitly disabled. In addition, edge-weights
are defined which are proportional to the error metric. High weights corre-
spond to elements whose error metric indicate that they will be targeted by
the adaptive mesh algorithm; mesh regions through which we wish to strongly
discourage a mesh partition. This choice of edge weight, when used with diffu-
sive repartitioning methods, has the effect of perturbing partitions away from
elements that require further optimisation while still balancing the load. Mesh
adaptivity is then reapplied to the mesh to address any sub-optimal elements.

18

Fig. 9. Top time consuming MPI SYNC functions.

Fig. 10. Work-flow of parallel mesh optimisation.

The procedure is then repeated if necessary. It is clear that repartitioning is
required to address the load-imbalance caused by mesh adaptivity; the com-
putational cost of this load-balancing step overlaps with the usual parallel
overhead associated with optimising the mesh in parallel.

19

Fig. 11. 2D mesh example where the graph partition is indicated by the broken wavy
line: (right) sub-optimal restricted elements (hatched) forms a polyline; (centre)
after repartitioning only isolated elements remain locked; (left) all elements have
been visited.

4.1 Optimisation of mesh adaptivity code

4.1.1 Smart graph re-partitioning

Figure 11 illustrates a section of a mesh whose nodes have been partitioned in
three different ways. As outlined in the previous section, the parallel strategy
is to lock elements cut by the graph partition while the remaining parts of the
mesh in each domain are adapted. Clearly, this does not require interprocess
communication.

Because halo elements were locked in place during the adaptive process there
will in general exist elements, among and near previously locked elements,
which are relatively suboptimal from an error control perspective. In addi-
tion, the mesh adaptivity will generally introduce a load-imbalance due to
the addition and removal of mesh resolution. Both of these issues may be
addressed simultaneously by repartitioning in such a way as to perturb the
partition away from regions of the mesh which require further optimisation,
while at the same time seeking to balance the final number of nodes per par-
tition. This is accomplished through the application of suitable edge-weights
and node-weights in the graph repartitioning calculation.

4.1.2 K-Way multilevel graph partitioning

The graph partitioning problem involves the division of a graph, G = (V, E),
into N partitions, G1, ..., GN , such that there are approximately the same
number of vertices, |Vp|, per partition and the number of graph edges, |Ecut|,
cut by the partitioning is minimised. For the work presented here, the pub-
licly available graph partitioner ParMETIS 7 was used. This uses a fast k-

7 ParMETIS: http://glaros.dtc.umn.edu/gkhome/views/metis/parmetis/

20

way, multilevel based method which provides a selection of graph-partitioning
strategies while allowing the application of weights on both the edges and ver-
tices of the graph. The three principal parallel repartitioning methods relevant
to the discussion here are scratch, scratch-remapping and diffusion methods
(Schloegel et al., 1997). In the first approach, a new partitioning is calculated
in parallel from scratch using multilevel graph partitioning methods. The re-
sulting graph partition has little dependence on the initial graph partitioning.
While this approach gives good quality load-balance and edge-cut it generally
leads to significant data migration. Scratch-remapping curtails this problem by
remapping the partitioning obtained from scratch onto the original, maximis-
ing overlap between partitions and thus minimising the data migration. The
amount of data migration can be further reduced using the diffusion method,
which takes an existing graph partition and only modifies it sufficiently to re-
balance the partitioning. While this method is fast and results in the least data
migration, the method tends to give a higher edge-cut. Indeed, it was observed
that the partitions can become fragmented after repeated repartitioning using
the diffusion method. The strategy is to apply diffusion by default to min-
imise data migration and to apply scratch-remap periodically to remove any
islands that might occur. In this work a scratch-remap partitioning is always
computed at the last adapt iteration because of the relatively low computa-
tional cost, and the importance of a good quality partitioning for the rest of
the computation

4.1.3 Edge and node weights

A suitable perturbation of the graph partition is achieved through the appli-
cation of edge weights to the graph when repartitioning. Simply applying high
edge weights to regions which were previously locked (because of a graph par-
tition) can encourage unnecessary mesh migration between processes as not
all regions which were previously locked are in need of optimisation. The edge
weights are derived by first defining the function Fl in terms of the worst of
the elements sharing it:

Fl = max
{e|l∈e}

Fe, (5)

where Fe ∈ R > 0 is the element functional used by the serial mesh optimi-
sation algorithm (Pain et al., 2001). As high values of Fl identify regions of
poor mesh quality, high edge weight values are applied to discourage the graph
partition from cutting these edges. When the graph partitioning calculates the
edge cut (one of the metrics to be minimised by the graph partition) of a graph
partition it sums the edge weights rather than counting the number of edges
cut by the partition. Due to the nature of the Kernighan-Lin type refinement
algorithm (Kernighgan and Lin, 1970) used within ParMETIS and other k-way
multilevel graph-partitioners, (e.g. Hendrickson and Leland (1995); Karypis
and Kumar (1998); Walshaw et al. (1997)), edge weights are required to be

21

integer. For this reason Fl need to be remapped to Wl ∈ Z+, and must be suit-
ably distributed so as to ensure that poor elements are effectively impenetrable
by the new partitioning. In this work we define the mapping as:

Wl =

max(1, bFl/Fc + 1
2
c),

∞ if Wl > W90%,
(6)

where Fc is the objective function tolerance value under which the element
is deemed acceptable by the mesh optimisation, b.c truncates real number
to an integer and W90% is the 90the edge weight percentile (i.e. 90% of the
edge weights fall below this value). This function has the effect of setting
edge weights to be multiples of Fc. As a precaution the top 10% worst edges
are given an infinite weighting thereby making them unpartitionable; in this
context the total number of edges in the mesh suffices as a value for infin-
ity. Successive application of the diffusive repartitioning method eventually
leads to a poor partitioning, sometimes in the form of sub-domain fragmenta-
tion. For this reason the scratch-remap repartitioning method is periodically
required.

As mesh optimisation may be incomplete when the graph-partitioning is first
performed it is important to be able to estimate the post-adaptation node
density. The formulation of the mesh optimisation method makes it straight-
forward to estimate the local increase or decrease in element density. However,
the predicted number of nodes after optimisation is not as readily available.
This issue can be resolved by first realizing that what is important for load-
balancing is the relative weight of nodes with respect to each other. Secondly,
a linear relationship between the local number of elements and the number of
nodes in the vicinity of a vertex can be assumed. The fractional increase in
number of elements, αe, for a given element e, can be approximated by:

αe = Ṽe/γ,

where Ṽe is the volume of the element in metric space and γ is the volume
of an ideal element in metric space (i.e. the volume of a tetrahedron with
unit edge lengths). Assuming that the number of nodes varies linearly with
the number of elements in a mesh, the fractional increase in the number of
nodes, ηn ∈ R, can be approximated by:

ηn = σ
∑

e|n∈e

αe,

where σ is a proportionality constant, and n ∈ e states that node n is contained
in element e. As was the case with edge weights, ηn must be remapped to

22

wn ∈ Z+ ≥ 1, for example:

wn = max

{
1,

⌊
100

ηn

‖ηηη‖∞

⌋}
,

where ‖ηηη‖∞ is the maximum value of ηn for all nodes. This nodal weighting
is then assigned to the computational mesh so that a graph partitioner can
compute a partition balancing the predicted number of nodes rather than the
current number of nodes per partition.

4.1.4 Data migration

After a new repartitioning is calculated, it is necessary to migrate appropriate
subsections between processes to achieve this repartitioning. Data migration
(or data remapping) is required to satisfy a graph repartitioning calculated
in response to a load-imbalance across processes. The graph repartitioning is
expressed as a redistribution of mesh nodes, DDD = (dn), n = 1, ..., N , where
dn = p specifies the new process, p, that node n is assigned to.

It is worth noting that the data structures associated with the mesh in mesh
optimisation methods is in general much less complex than those associated
with hierarchical based mesh refinement methods due to the fact that there is
no mesh hierarchy (e.g. Ozturan (1995); Jimack (1998); Selwood and Berzins
(1999)). This means that the cost of data remapping can potentially be much
less than in hierarchical refinement methods.

4.1.5 Collating existing partitioning with new partitioning

Given the new graph partition, DDD, the first step is to determine the minimum
set of data that needs to be communicated in order to satisfy the new mapping.
By doing this, inter-process communication is minimised and there is no need
to check for the duplication of mesh objects. Each element, e, in a partition
is considered in turn. Two logical arrays, AAA and BBB, of length P (number of
partitions) are defined as:

Ap =

 true if ∃ n ∈ e where n is owned by p,

false otherwise,

Bp =

 true if ∃ n ∈ e where Dn ≡ p,

false otherwise.

To facilitate the discussion here, a node is said to be owned by a process if it
is contained in the graph partition assigned to the process in question. The

23

Algorithm 1. find entities to send(mesh)
Initialise nodes to processnodes to processnodes to process
Initialise elements to processelements to processelements to process
for e = 1 to |elements| do
{Create lists of nodes and elements to send to each process.}
for p ∈ {p|e ∈M∗

p} do
if (n ∈Ml′)&(n ∈M∗

p)&(n 6∈ Mp) then
nodes to processp ← n

end if
end for
if (get owner(e) ≡ pl)&(e ∈ G∗

p)&(e 6∈ Gp) then
elements to processp ← e

end if
end for
return nodes to process, elements to process

element is flagged if it is required on this process under the new partitioning
(i.e. if Bp). Next, the owner of element e can be uniquely defined as the
minimum-node-owner of e — that is to say the minimum rank of the owners
on the nodes defining the element. If the current process is the owner of e,
then e is listed to be sent to each process where (¬Ap) ∧ Bp. Next the nodes
on the element are checked. If element e has been flagged as a future element
(i.e. an element required under the new partitioning) then each node in e is
flagged as a future node, thus new halo nodes as well as new owned nodes are
flagged to be kept. For a node in e to be listed to be sent to a process p it
first must be owned by the current process and secondly (¬Ap) ∧Bp must be
true. It should be apparent that each node will be considered multiple times
as it is referenced by different elements.

Define a meshM which has been divided into P sub-domains such thatM =
M1 ∪M2 ∪ ...MP . In the context of repartitioning this can be rewritten as
M = M∗

1 ∪ M∗
2 ∪ ...M∗

P where M∗
p denotes the new sub-domain assigned

to process p. In both of these cases the sub-domain includes the nodes and
elements in the halo region. The notation Mp′ will be used to indicate the
sub-domain Mp excluding the halo elements and those nodes not owned by
process p. In addition p = l denotes the local process/domain. Using these
definitions, the list of nodes and elements a process must send to each other
process can be determined using Algorithm 1. At this point the minimum
amount of information which must be sent by each process to each other
process, to satisfy the new graph-partitioning, has been determined.

24

Algorithm 2. AllSendRecv(packed data)
for p = 1 to P do

MPI ISend(data=packed data p, destination=p)
end for
for p = 1 to P do

MPI Probe(MPI ANY SOURCE,MPI ANY TAG)
source← find source()
data size← find data size()
receive buffersource ← allocate receive buffer(data size)
MPI IRecv(data = receive buffersource, source = source)

end for
MPI Waitall()
return

4.1.6 Optimisation of communication

After the information which is to be migrated has been identified, it is seri-
alised (i.e. copied into a continuous buffer) and communicated. Node numbers
must be specified in terms of their global node numbering rather than the node
numbering local to a partition. An important outcome is that all data which
needs to be migrated between two processes is performed in a single commu-
nication. The communication is efficiently implemented using non-blocking
sends and receives with a preceding blocking probe, see Algorithm 2. Firstly,
all the non-blocking sends are set up, including those whose message length is
zero. Messages of zero length and the probe are unavoidable as a process has
no prior knowledge of what information it should receive from other processes.
Next the number of processes −1 is looped over, each time executing a block-
ing probe for a communication from any process (i.e. MPI ANY SOURCE).
On a successful probe the sending process is identified and the size of the mes-
sage being received from the process is read. If the message size is non-zero
then a receive buffer is allocated and a non-blocking receive initialised. Af-
ter all the receives have been set up, the algorithm waits for all non-blocking
communications to complete.

4.1.7 Partition reconstruction

After a process has received all its messages, it has enough data to construct
its new partition complete with its halo information. Using global node num-
bering, the new halos are easily constructed without further communication.
For each element shared we loop though each node, n, in that element. If that
node is owned by the current process then every other node in the element
owned by process p, where p is not the current process, is inserted into the
send list for p, SSSp. On the other hand, if that node is owned by process p,
where p is not the current process, then it is inserted into the receive list for p,

25

RRRp. The send and receive lists are then sorted using the global node numbering
resulting in the ith node being sent from process p to process q referencing the
same node as the ith node being received from process p by q.

After data migration, mesh adaptivity is reapplied if necessary. As suboptimal
elements are only at or near previously locked elements, subsequent mesh
adaptivity iterations are computationally inexpensive.

4.2 Evaluate optimal repartition/remapping methods

A scalability analysis of both the parallel mesh optimisation algorithm and of
the complete CFD model was performed. This allows the performance of the
parallel mesh optimisation method to be evaluated in the context of a ”real”
application. In this work we focus on the strong scaling.

The differentially heated rotating annulus benchmark was used to evaluate
the scalability of mesh adaptivity. A scalability analysis of both the parallel
mesh optimisation algorithm and of the complete GFD model was performed.
This allows the performance of the parallel mesh optimisation method to be
evaluated in the context of a ”real” application. In this work we focused on the
strong scaling. Two different problem sizes were considered for the experiments
here: 0.1 million node mesh was run on 1, 2, 4, 8, 16, 32, 64 and 128 processors
(see below left column); 2.0 million node mesh was run on 64, 128, 256, 512 and
1024 processors. In this experiment GMRES and EISENSTAT, implemented
within PETSc, were used as the solver and pre- conditioner pair for momentum
and temperature. Conjugate gradients and HYPRE’s BoomerAMG algebraic
multigrid pre-conditioner were used when solving for pressure.

In figure 4.2, the absolute wall clock times of the simulation are plotted along-
side mesh adaption on a log-log scale. In these experiments, mesh adaptivity
represents approximately 5% of the total execution time. However, in general
the proportion of the time spent adapting the mesh depends on many differ-
ent factors; these include the nature of the problem being simulated and the
frequency at which mesh adaptivity is applied. In all experiments a speedup
is observed with an increase in number of processes. The parallel efficiency,
E(N, P), for a problem of size N , running across P processes, is defined as:

E(N, P) =
Tseq(N)

PT (N, P)
,

where T (N, P) is the runtime of the parallel algorithm, and Tseq(N) is the
runtime of the sequential algorithm.

26

Fig. 12. Scaling results on left and right are of 0.1 million and 2.0 million node
problems respectively. Scaling results are calculated relative to: serial execution
time on right; execution time for 64 processes on the left. Simulation line shows
the overall scaling behaviour of Fluidity; includes time for matrix assembly, sparse
linear solvers and mesh adaptivity. Adapt line shows the behaviour of serial section
of the mesh adaptivity algorithm, while parallel adapt is the actual performance of
the parallel adaptivity algorithm.

The drop in overall parallel efficiency for increasing number of processes is con-
sistent with this being a fixed size problem where the computation/communication
ratio decreases as the number of processes increases; this is seen as the rela-
tive difference between the mean number of owned nodes, and total number
of nodes. For example, running the 100k node problem on 128 processes re-
sulted in approximately 800 owned nodes per partition with approximately

27

700 halo nodes; running the 2m node problem on 1024 processes resulted in
approximately 2000 owned nodes per partition with approximately 1400 halo
nodes. By plotting separately the parallel efficiency of the pure adaptive part
of the algorithm, along with the parallel efficiency of the parallel adaptive algo-
rithm, it is clear that drop in efficiency is due the data migration/re-balancing
overhead rather than imbalance in the serial mesh adaptivity operation. This
application may be seen as a limiting case in that the work mesh adaptiv-
ity performed was approximately equidistributed throughout the domain, and
therefore required the maximum amount of data migration.

The fine grained profiling with Vampir has also been done within the adaptiv-
ity part. This revealed multiple redundant zero size message communications
(using MPI Isend and MPI Ireceive) in ParMETIS (see Fig. 13). Since the cost
of data migration in adaptivity is very low, it is not deserved to do further
investigation at the moment.

5 WP3: Parallel I/O

Fluidity-ICOM output files containing simulation data are managed using the
Visualization Toolkit (VTK - please refer to the website http://www.vtk.

org/). VTK tools adopt the .vtu file format for unstructured grids: for each N
dump times, the simulationname N.vtu file is created, containing the output
data of the simulation. This file contains a snapshot of the run at the time
step immediately proceeding the dump time. For example, if the time step is
set to three seconds, and the dump period to 10 seconds, the first dump will
occur at 12 seconds.

When running a simulation in parallel, the data are stored both in both .vtu
and .pvtu files. The .vtu files contain each of the output data for each partition
of the parallelised mesh, with the file name simulationName P N.vtu where
P is the processor number and N is the dump number. The .pvtu files contain
the general output data for the whole mesh, again ordered by dump number.

The interleaved I/O is applied to vtu output. Suppose the total number of
cores is N used in Fluidity-ICOM applications. Each process of a parallel
application writes its data to several private files (mesh files, vtu file), This
files-per-process pattern creates 5N (for a 3D mesh) for an application run
of N processes. The performance of each processs file write is governed by
serial I/O. However, this pattern constitutes the simplest implementation of
parallel I/O, relying on some associated improvement in I/O performance
from a parallel file system such as Lustre. However, at large process counts
(large number of files) metadata operations may hinder overall performance.
Additionally, at large process counts (large number of files) OSS and OST

28

Fig. 13. MPI Message Length Statistics for OODC with Adaptivity.

29

Fig. 14. The diagram of Interleaved I/O.

contention will hinder overall performance.

The interleaved I/O use a subset of application processes to perform I/O at the
I/O stage. This action will limit the number of requests hitting the metadata
server during I/O stage, thereby improving performance. Careful tuning of
both the number of writers and rank order can also give better performance.
The total writers is int(

√
N + 0.5). See Figure (14). Here, the total of 12

cores has been divided into three groups, the processes in each group output
their own files following their rank order. At the end of the output operation
processors wait for all other processes to complete.

A performance analysis has been undertaken with gyre test case (around 10
million mesh vertices). The conclusions are as follows:

• With up to 4096 processes, the default I/O has somewhat better perfor-
mance than interleaved I/O.
• This I/O strategy is yet to be applied to the mesh file as the preferred choice

of file format is yet to be determined.
• Experimentations with file striping using lfs setstripinterleaved I/O for the

10 million node gyre test case yielded little improvements to I/O perfor-
mance . Based on suggestions from the UK Cray Centre of Excellence, the
files-per-process for the stripe count was set to 1. No noticeable performance

30

improvements were observed.

6 WP4: Code refactoring/re-engineering

This has been an ongoing process throughout the lifetime of the project. Sev-
eral ’code sprints’ have been undertaken where large sections of the code was
rewritten. Notably, one of the sprints generated a 200 page manual for the
code.

7 Conclusions

From a starting point where the code was only routinely run on 64 cores on a
local cluster, this Fluidity-ICOM dCSE project has significantly improved the
performance of the code to enable efficient usage of large high performance
computing systems such as the HECToR Cray XT4. Presently the code is now
scaling well up to 4096 cores on HECToR. Runs on even larger core counts
could be achieved if suitably partitioned datasets existed, these are currently
under construction. The current barrier to running larger problem sizes is the
memory footprint and computational cost of preprocessing tools - specifically
the initial domain decomposition which is essentially a serial bottle neck.

8 Future work

(1) Fluidity-ICOM currently supports GNU and Intel compilers. There are
still issues for the PGI compiler relating to identified bugs in the PGI
compilers Fortran 90 compiler.

(2) Fluidity-ICOM’s many third part dependencies continue to make it chal-
lenging to port to different platforms as all its dependencies must also be
ported.

(3) For 8092 processes and above, fldecomp needed more than 12 hours to
perform a domain decomposition. This was due to the overhead in or-
ganising the partitions after the graph partitioning has been calculated,
and writing those individual partitions to disk. This caused problems ex-
perimenting with scaling greater than the 4096 processes presented in
this work. Recently fldecomp has been parallelised using OpenMP giving
nearly perfect speedup; thereby paving the way for future scaling studies.

(4) Further optimisation of pressure assembly may be beneficial comparing
with the performance of velocity assembly part (see Fig. 4 and Fig. 5).

31

(5) Up to 1024 processes adaptivity shows good scaling and the data migra-
tion costs are low. It is noted that while the number of mesh nodes is
well balanced by the graph partitioner, the number of elements is less
well balanced as partitions get smaller. Therefore a load imbalance can
be introduced in assembly. The same pattern is see in all strong scaling
analyses and is an issue which will need to be tackled in the future. It
has been suggested that using hypergraph partitioning might go some-
way in remedying this (private correspondence with Erik Boman, Sandia
National Laboratory).

(6) With the current I/O strategy too many files in one directory for higher
process counts; this even generates problems for standard UNIX tools
such as the command to list directory contents, ls. This also overlaps
with the wider issue of modernising Fluidity-ICOM file format to sup-
port random access and metadata for example. The current strategy for
dealing with this issue is to continue to collaborate with the UGRID
Interoperability project, funded by the NSF Ocean Observing Initiative
Cyber Infrastructure which is taking into account Fluidity-ICOM’s re-
quirements.

32

Appendices

A Supplementary issues encountered during the course of the project

Porting, developing and analysing the Fluidity-ICOM package revealed prob-
lems with the HECToR software development environment that were outside
our control. Many have been resolved after a series of queries were raised with
the NAG Support Team. However, several issues remain. In particular, the
outstanding queries on PGI compilers not accepting standard Fortran con-
structs, and problems with CrayPAT profiling.

Appendix A.A Computing environment

A.A.1 Setting up Python with the GNU environment (GCC 4.3.3)

Python 2.6.* is tested and widely used within Fluidity-ICOM for the user in-
terface, user-defined functions and for diagnostic tools and problem setup. The
python interface removes the need for recompiling the code (which takes more
than half hour) when input parameters change and problems are setup. It re-
quires setup tools for Fluidity-ICOM builds, Python-4suite and Python-XML
for options file parsing, and highly recommended extensions, such as scipy
and numpy, for custom function use within Fluidity-ICOM. There were sev-
eral Python modules missing on HECToR, several queries (Q44656, Q48686,
Q51892, Q52507, Q64917 (submitted by Jon Hill from AMCG)) have been
submitted, and Python-CNL module has been set up for all above queries by
NAG support team.

A.A.2 PGI Environment

Several PGI compilers bugs were triggered by Fluidity-ICOM. Testing from
pgi/8.0.1 to pgi/9.0.4 has been made. New bugs and compiling faults came
out with each round of testing. There have been bug reports raised for Fortran
pointer dereference and Fortran generic interfaces, which are widely used in
the code. Queries (Q43721, Q52502) have been submitted to the HECToR help
desk. To date these issues have not been resolved and temporary workarounds
in the Fortran source code have been applied.

33

Appendix A.B Profiling tools

• Using the automatic profiling features of CrayPAT / Vampir has been prob-
lematic for Fluidity-ICOM. Several queries (Q47211, submitted by Stephan
Kramer from AMCG; Q50942 Q48686) have been sent out to the HECToR
help desk. Some of these have not been resolved to-date.
• There are problems (query Q50942 with CrayPAT profiling of third-party

libraries such as PETSc. Cray identified these problems as a bug (Cray bug
753777)) which hopefully will be addressed in a new release of CrayPAT
(v5.1)
• In order to use Vampir GUI-based profiling, which offers many features,

such as MPI statistics, an attempt was made to profile Fluidity-ICOM with
VampirTrace (Q61722, Q72962) During instrumentation with the Vampir-
Trace wrapper, the linker has problems with resolving the static library
symbols (Q69672). It is not clear if this is a Vampir bug or a Cray compiler
wrapper bug. After some investigation we devised a solution, based on us-
ing ar to extract all objects out of the locally built libraries, applying some
renaming, and modifying the Makefile by adding lib*.o to include all the
extracted objects (the lib prefix is only part of the renaming). It then linked
successfully.

34

References

Cotter, C., Ham, D., Pain, C., 2009. A mixed discontinuous/continuous finite
element pair for shallow-water ocean modelling. Ocean Modelling 26, 86–90.

Ford, R., Pain, C., Piggott, M., Goddard, A., de Oliveira, C., Umpleby, A.,
2004. A Nonhydrostatic Finite-Element Model for Three-Dimensional Strat-
ified Oceanic Flows. Part I: Model Formulation. Monthly Weather Review
132 (12), 2816–2831.

Gorman, G., Pain, C., Piggott, M., Umpleby, A., Farrell, P., Maddison, J.,
2009. Interleaved parallel tetrahedral mesh optimisation and dynamic load-
balancing. Adaptive Modelling and Simulation 2009, 101–104.

Gorman, G., Piggott, M., Wells, M., et al, 2008. A systematic approach to
unstructured mesh generation for ocean modelling using GMT and Terreno.
Computers & Geosciences 34, 1721–1731.

Gorman, G. J., Piggott, M. D., Pain, C. C., de Oliveira, C. R. E., Umpleby,
A. P., Goddard, A. J. H., 2006. Optimisation based bathymetry approxi-
mation through constrained unstructured mesh adaptivity. Ocean Modelling
12(3-4), 436–452.

Gresho, P., Sani, R., 1998. Incompressible Flow and the Finite Element
Method.

Hendrickson, B., Leland, R., 1995. A multilevel algorithm for partitioning
graphs. In: Proc. Supercomputing ’95. Formerly, Technical Report SAND93-
1301 (1993).

Jimack, P. K., 1998. Techniques for parallel adaptivity. In: Topping, B. H. V.
(Ed.), Parallel and Distributed Processing for Computational Mechanics II.
Saxe-Coburg Publications.

Karypis, G., Kumar, V., 1998. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing 20 (1),
359–392.

Kernighgan, B. W., Lin, S., 1970. An efficient procedure for partitioning
graphs. Bell Systems Technical Journal 49.

Kramer, S., Cotter, C., Pain, C., 2010. Solving the Poisson equation on small
aspect ratio domains using unstructured meshes. Ocean Modelling, submit-
ted, arXiv:0912.2194.

Kramer, S., Pain, C., 2010. Modelling the free surface using fully unstructured
meshes. In preparation.

Ozturan, C., 1995. Distributed environment and load balancing for adaptive
unstructured meshes. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy,
New York.

Pain, C., Piggott, M., et al., 2005. Three-dimensional unstructured mesh ocean
modelling. Ocean Modelling 10, 5–33.

Pain, C., Umpleby, A., de Oliveira, C., Goddard, A., 2001. Tetrahedral mesh
optimisation and adaptivity for steady-state and transient finite element cal-
culations. Computational Methods in Applied Mechanics and Engineering
190, 3771–3796.

35

Schloegel, K., Karypis, G., Kumar, V., 1997. Multilevel diffusion schemes for
repartitioning of adaptive meshes. Journal of Parallel and Distributed Com-
puting 47 (2), 109–124.

Selwood, P. M., Berzins, M., 1999. Parallel unstructured tetrahedral mesh
adaptation: algorithms, implementation and scalability. Concurrency: Prac-
tice and Experience 11 (14), 863–884.

Walshaw, C., Cross, M., Everett, M., 1997. Parallel dynamic graph partition-
ing for adaptive unstructured meshes. Journal of Parallel and distributed
Computing 47, 102–108.

36

