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Abstract

This report presents the results of a dCSE project to improve the scal-
ability of turbulence applications (principally EBL) from what is currently
hundreds of cores to thousands of cores. This is necessary in order to ex-
ploit HECToR properly and to allow advances in the scientific investiga-
tions that use these applications. An existing code has been re-engineered.
For a problem size that previously would have used a maximum of 365
cores, very good scaling has been demonstrated up to 11,000 cores and
good scaling up to 14,000 cores. Furthermore, because of memory limi-
tations, this size of problem was beyond the scope of the original code.
These improvements in scalability have been achieved by implementing a
two-dimensional domain decomposition (a.k.a. pencil decomposition).
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1 Introduction

This is the final report for a dCSE project that ran from 1st April 2009 to 31st
March 2010.

Spectral codes that perform a one dimensional decomposition of problems set
in three spatial dimensions do not scale well on today’s large computers which
contain thousands of cores. This is because they are limited in the number of
cores they can exploit by the the smallest of the number of collocation points
(or some factor in the order of one thereof) taken over the three dimensions.
Even when using the maximum number of cores allowed by the decomposition
for a given size of problem domain, the load on a core (in terms of both the
amount of computation and storage required) increases with something like the
square of the a typical linear dimension characterizing the size of the problem.

By employing a two dimensional decomposition the limit on the number of
cores that can be used can be raised and the growth in the load on a core can be
reduced to something like a linear dependence on a typical dimension describing
the problem. This happy state of affairs is, of course, limited by the maximum
number of cores that are available to a job and by the increasing need to move
data between cores.

The goal of this project was to demonstrate that, by employing two dimen-
sional decompositions of the problem domain and despite the increased commu-
nication overhead, three dimensional spectral codes can be made to scale from
the current hundreds of cores to thousands of cores. The spectral codes to be
considered were EBL, SWT and SS3F. EBL was to be tackled first with SWT
and SS3F being considered as time allowed. In the event SWT and SS3F have
not been tackled as EBL took up all of the alloted time, however the results
for EBL are very good and suggest that SWT and SS3F would benefit from a
similar treatment.

The work reported here differs from previous work in a number of respects:

1. The code under consideration is used by engineers in their research and
not merely a demonstration code.

2. The domain is a cuboid, not a cube.
3. The number of lattice points in each dimension is not a power of 2.

4. The code employs both Fourier and Jacobi transformations.

1.1 Overview of EBL

EBL (named after the Ekman Boundary Layer) is used to investigate pres-
sure driven flow over a single surface, located in the x-z plane. For this prob-
lem trigonometric functions form a good spectral basis with respect to the x
and z direction which have periodic boundary conditions imposed on them.
The y direction is normal to the fixed surface and Jacobi polynomials offer a
good spectral basis with respect to the boundary conditions imposed in that



direction. The application calculates the forcing terms in position space and
performs the Runge-Kutta steps for the time evolution in the spectral space.
As a consequence frequent transformations between position space and spec-
tral space are required. EBL and results obtained using it are discussed in
[Coleman et al. 1999, Spalart et al. 2008, Spalart et al. 2009]

The first version of the code was written in the mid 1980s at NASA Ames Re-
search Center by Dr Philippe Spalart, using the algorithm described in
[Spalart et al. 1991]. Development and maintenance by Dr Gary Coleman fol-
lowed in the 1990s. In 2002-2003, it was converted from Vectoral to Fortran,
and parallelised using MPI, by Drs Mike Ashworth and Roderick Johnstone of
Daresbury Laboratory, in support of the UK Turbulence Consortium. This code
was used on HPCx, and relies on either the IBM ESSL or the FFTW3 libraries
to perform Fourier transforms. It also requires BLAS and LAPACK.

The Reynolds number of a flow determines the size of the smallest domain
that may be used to study it. This means that when the EBL3 code is run
there is a minimum size of lattice that may be used and that the lattice whilst
cuboidal is not a cube.

1.2 HECToR
This dCSE project was carried out on HECToR, the UK National Supercomput-
ing service. Full details of the system are available on its website

http://www.hector.ac.uk.

The work reported here was carried out whilst HECToR was in its 'Phase 2a’
configuration which includes a scalar MPP XT4 system, a vector system, and
storage systems. The XT4 comprises 1416 compute blades, each of which has
4 quad-core processor sockets. Each quad-core socket shares 8 GB of memory.
In addition there are 24 service blades, each with 2 dual-core processor sockets.
They act as login nodes and controllers for I/O and for the network. The vector
system includes 28 vector compute nodes.

The results were obtained by running EBL on the XT4. The vector system
was not used.

2 The Current EBL3 Code

To perform a spectral transformation of all three dimensions a sequence of one
dimensional transforms is performed. For each of these one dimensional trans-
formatations EBL3 uses a ‘plane’ (a.k.a. ‘slice’ or ‘slab’) decomposition of the
domain. That is one of the dimensions, Y say, is divided up as evenly as pos-
sible for distribution across the allocated number of cores. For each Y index
allocated to a given core! all of the indices in the remaining two dimensions, Z
and X in this case, are allocated to that same core. On each core a loop over
the allocated Y values is performed. Inside the loop a transform is performed
on one of the other dimensions, Z say. Once the loop is completed the data is

LA single MPI process is executed on each core.



transposed so that it is easy to transform the second complete dimension, X in
this case. This transpose is local to the core.

Currently results are slowly being generated for Re = 2828 on a 1344 x 273
x 4032 (N, x N, x N.) lattice, but this version of the code has reached the
end of its life as, whilst it can be run on HECToR, it cannot be used to study
higher Reynolds numbers than those already studied because of the limitations
on the memory available to it and the time it would take to run.

A brief description of the working of this code follows. This description
focuses on the movement of data between processors and on the spectral trans-
formations that occur.

After some initialisation the master processor reads in some data and broad-
casts it to the rest of the processors. Then the following sequence is executed
beginning at Step 6b.

1. The master MPI process calculates four mean values.

2. The data is redistributed amongst the MPI processes so the Y dimension
is distributed whilst the corresponding X and Z values are concentrated
(the partitioning of the data changes from that shown on the r.h.s. of
Figure 1 to that shown on the Lh.s). In the process the Z index is brought
to the front of the array of data to be transformed. This is achieved by a
call to MPI ALLTOALLV. The four mean values calculated in Step 1 are
included in this exchange of data to produce the effect of an MPI BCAST
from the master process to all of the other MPI processes.

3. In each process a loop over the Y values assigned to that process (core) is
executed inside which the follow steps are performed.

(a) If this is the very first time this step has been executed four sets of
FFTs are planned, otherwise this is a NOOP.

(b) A set of inverse Fourier transforms are performed along the Z dimen-
sion corresponding to different values of X.

(¢) The data is reordered in order to bring the X index to the front.
This involves a matrix transposition. No data exchange is required
amongst the processes as the Y values remain distributed and the X
and Z dimensions remain concentrated.

(d) A set of inverse Fourier transforms are performed along the X di-
mension corresponding to different values of Z. The description of
the problem is now entirely in real space.

(e) After some further computations a set of Fourier transforms are per-
formed along the X dimension corresponding to different values of
Z.

(f) The data is reordered in order to bring the Z index to the front.
This involves a matrix transposition. No data exchange is required
amongst the processes as the Y values remain distributed and the X
and Z dimensions remain concentrated.



(g) A set of Fourier transforms are performed along the Z dimension
corresponding to different values of X.

4. A maximum value is calculated via a call to MPI ALLREDUCE.

5. The data is redistributed amongst the MPI processes so that Z is dis-
tributed whilst the corresponding X and Y values are concentrated (the
partitioning of the data changes from that shown on the Lh.s. of Figure 1
to that shown on the r.h.s). In the process the Y index is brought to the
front of the array of data to be transformed. This is achieved by calls to
MPI IRECV, MPI ISEND and MPI WAITANY. This is functionally
equivalent to an MPI ALLTOALLV.

6. Inside a loop over Z

(a) A Jacobi transformation is performed along the Y dimension. The
description of the problem is now entirely in “wave” space.

(b) After some computations the Y dimension is transformed from “wave”
to real space via an inverse Jacobi transformation.

(¢) Two mean values are calculated and accumulated in the loop.

(d) Partial sums of the kinetic energy in the turbulence are performed
and accumulated in the loop.

7. The total KE in the turbulence is calculated from the partial sums by a
call to MPI _ALLREDUCE.

8. The master process sends the mean values calculated in Step 6¢ to the
other MPI processes via two calls to MPI BCAST.

9. The program returns to Step 1 or exits if the required number of iterations
have been performed.

The Fourier transforms in Step 3b and Step 3d are inside a loop which runs
from 1 to 6 whilst the Fourier transforms in Step 3e and Step 3g are inside a
loop which runs from 4 to 6. This is mentioned here as it is no longer the case
in the new code described below.
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3 The New EBL Code

A short description of the new version of the EBL code follows. The description
focuses on the movement of data between MPI processes (which correspond to
cores) and on the spectral transformations that occur.

After some initialisation the master process reads in some data and broad-
casts it to the rest of the MPI processes. Then a cartesian communicator,
cart__comm, is created corresponding to a two dimensional grid of processes.
Sub-communicators corresponding to the two dimensions are created - comml1
and comm?2 respectively. The simulation starts off in entirely in wave space.
Data for different values of Z are distributed along the first dimension of the
process grid whilst data for different values of X are distributed along the second
dimension of the process grid. For given values of Z and X the data correspond-
ing to all values of Y are held (concentrated) in a single MPI process.

Four sets of Fourier transformations are planned. These are similar to the
plans generated in the current EBL3 code but the number of transforms that
are carried out by the plans is different. This is because in the case of a Fourier
transform of the Z direction the X direction has been distributed across the
second dimension of the process grid whilst in the case of a Fourier transform of
the X direction the Z direction has been distributed across the second dimension
of the process grid. Furthermore, the loops enclosing the FFTs mentioned at
the end of the preceding section have been incorporated into the plans. After
the FFTs have been planned the following sequence begins at Step 7b.

1. The master process calculates four mean values and sends them to the
other MPI processes via a call to MPI BCAST which involves cart _comm.

2. The data is redistributed amongst the processes so that Y and X are
distributed along dimensions 1 and 2 of the process grid whilst the corre-
sponding Z values are concentrated (the partitioning of the data changes



from that shown in Figure 4 to that shown in Figure 2). In the process
the Z index is brought to the front of the array of data to be transformed.
This is achieved by a call to MPI ALLTOALLV involving comml. No
data exchange is required along the other dimension of the process grid as
the X values remain distributed along the second dimension.

3. On each MPI process a loop over the Y values assigned to that process is
executed inside which a partial sum is performed by a number of calls to
MPI ALLREDUCE involving comm?2.

4. On each MPI process a loop over the Y values assigned that process is
executed inside which the follow steps are performed.

(a) A set of inverse Fourier transforms are performed along the Z dimen-
sion corresponding to different values of X.

(b) The data is reordered in order to bring the X index to the front. In
order to effect this the data is redistributed amongst the MPI pro-
cesses so that Y and Z are distributed along dimensions 1 and 2 of the
process grid whilst the corresponding X values are concentrated (the
partitioning of the data changes from that shown in Figure 2 to that
shown in Figure 3). This is achieved by a call to MPI ALLTOALLV
involving comm2. No data exchange is required along the other di-
mension of the process grid as the Y values remain distributed along
the first dimension.

(c) A set of inverse Fourier transforms are performed along the X di-
mension corresponding to different values of Z. The description of
the problem is now entirely in real space.

(d) After some further computations a set of Fourier transforms are per-
formed along the X dimension corresponding to different values of
Z.

(e) The data is redistributed amongst the MPI processes so that Y and
X are distributed along dimensions 1 and 2 of the process grid whilst
the corresponding Z values are concentrated (the partitioning of the
data changes from that shown in Figure 3 to that shown in Figure 2).
In the process the Z index is brought to the front of the array of data
to be transformed. This is achieved by a call to MPI ALLTOALLV
involving comm2. No data exchange is required along the other di-
mension of the process grid as the Y values remain distributed along
the first dimension.

(f) A set of Fourier transforms are performed along the Z dimension
corresponding to different values of X.

5. A maximum value is calculated via a call to MPI ALLREDUCE which
uses cart _comm.
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The data is redistributed amongst the MPI processes so that Z and X are
distributed along dimensions 1 and 2 of the process grid whilst the corre-
sponding Y values are concentrated (the partitioning of the data changes
from that shown in Figure 2 to that shown in Figure 4). In the process
the Y index is brought to the front of the array of data to be transformed.
This is achieved by a call to MPI _ALLTOALLV involving comml1. No
data exchange is required along the other dimension of the process grid as
the X values remain distributed along the second dimension.

Inside a loop over Z

(a) A Jacobi transformation is performed along the Y dimension. The
description of the problem is now entirely in “wave” space.

(b) After some computations the Y dimension is transformed from “wave”
to real space via an inverse Jacobi transformation.

(¢) Two mean values are calculated on the each MPI process in the first
column of the process grid.

(d) Partial sums of the kinetic energy in the turbulence are performed
which involved calls to MPI ALLREDUCE. These calls make use of
comm?2.

The total KE in the turbulence is calculated from the partial sums by a
call to MPI ALLREDUCE which makes use of comm]l.

The first process in each column of the process grid sends the mean values
calculated in Step 2 to the other MPI processes in its row via two calls to
MPI BCAST which use comm2.

The program returns to Step 1 or exits if the required number of iterations
have been performed.

Note that

if the X dimension is distributed it is distributed along the second dimen-
sion of the process grid,

if the Y dimension is distributed it is distributed along the first dimension
of the process grid,

if the Z dimension is distributed it is sometimes distributed along the first
dimension of the process grid and other times distributed along the second
dimension. Owing to anti-aliasing the number of indices to be distributed
also changes.
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Figure 4

4 Results

The Fortran compiler used was pgi 9.0.4. It was used with the flag -O3. The
flag -fast was tried but dropped as the program did not work correctly when
compiled with this flag.

Plans were generated by FFTW3 with the MEASURE algorithm. PA-
TIENT and EXHAUSTIVE were tried but dropped because of the length of
time they took to produce plans for large domain sizes. All three planning al-
gorithms (MEASURE, PATIENT and EXHAUSTIVE) were tried out on one
of the smaller domains. Using PATIENT and EXHAUSTIVE did not produce
a significant increase in performance over using MEASURE. Only those results
produced using MEASURE are reported below.

4.1 Comparison with the Current EBL3 Code

The new code distributes the computation across an nprocl x nproc2 grid of
MPI processes. If nproc2 is set to 1 the code behaves in a similar fashion to the
current EBL3 code. The new code does not treat nproc=1 in any special way:
it still makes its usual MPI calls even if they are unnecessary.

Because of the amount of memory available at each node the largest domain
that can be studied with the current EBL code whilst employing all of the cores
on a node is 1344 x 273 x 4032. The second largest size of interest that can
be studied with the current code is 768 x 204 x 2304. For these domain sizes
the performance of the current code was compared with that of the new code.
Two measures were used in in the comparison: the average time for one of 30
Runge-Kutta steps and the minimum time for the same 30 Runge-Kutta steps.
The results were as follows.

’ cores = 204 H Original \ New \ Change ‘
Average 3.10 + 0.04 | 3.14 + 0.04 1%
Minimum 2.84 2.97 5%

’ cores = 273 H Original New \ Change ‘
Average 9.89 + 0.16 | 10.24 + 0.14 4%
Minimum 8.97 9.61 ™%

In these cases the performance of the new code is worse than that of the
current code and the difference is greater for the larger domain size, however the
effect is not great and as we shall see it does not prevent either an improvement
in performance for currently tractable domain sizes (by employing more cores)
or the investigation of larger domain sizes.
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4.2 Scaling Behaviour of the New EBL Code

The scaling behaviour of the new code has been investigated for Re = 4000
(Nyx N, x N, = 2432 x 365 x 7232). The largest number of cores that the
current code could (in principle) exploit is 365, however this cannot be done
in practice on HECToR because of the length of time the code would take to
execute and the memory that would be required per core. In order, therefore, to
provide a standard against which the performance of the code may be measured
the performance for the new code running on a 365 x 8 grid of MPI processes
has been extrapolated according to perfect scaling.

The principal investigation involved keeping the size of the first dimension of
the MPI process grid fixed at 365 and increasing the size of the second dimension.
The values of this second dimension for which results were obtained are: 8, 16,
24, 32, 40 and 44. The number of cores employed by the code were: 2920, 5840,
8760, 11680, 14600 and 16060 respectively, the last being the largest number of
cores that could be used in this progression. Two measures of performance were
used: the maximum number of Runge-Kutta steps per minute and the average
number of Runge-Kutta steps per minute. Qualitatively the results are very
similar.

Scaling Behaviour for Re=4000,
nprocl=365: Peak Performance
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Figure 5
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Scaling Behaviour for Re=4000,
nprocl=365: Average Performance
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Scaling factors can be calculated from both sets of measurements and agree
to two significant figures (except for when the number of cores is 16,060 when
the two methods give 0.69 and 0.70 respectively). Here are the figures:

Cores ‘ Scaling Factor ‘

2,920 1
5,840 0.92
8,760 0.87
11,680 0.85
14,600 0.81
16,060 0.69

Examination of these graphs shows that the code scales very well up to
11,000 cores and the scaling is still good at 14,000 cores. After that, however
the performance degrades and for 16,000 cores the performance is worse than
that for 14,000 cores. Presumably this is because of the increased cost of the
communications between the MPI processes.

The next value of physical interest is Re = 5656 (which corresponds to N, x
N, x N, =468 x 515 x 14400). This could, perhaps, have been run on HECToR
on a 515 x 31 (= 15,965) process grid but this has not been attempted.

13



4.3 A Differently Shaped Process Grid

For Re = 4000 an MPI process grid with nprocl # 365 was tried to see how
it affected the performance of the code. The results given below were obtained
using an executable instrumented with CrayPat and each has been calculated
from 183 values. For each process grid the average time for a Runge-Kutta step
has been given as well as the minimum time.

’ Grid \ Average \ Minimum ‘
365 x 24 | 1.90s 1.76 s
73 x 120 | 2.52s 2.26 s

It can be concluded that the change in geometry has degraded performance.
The reason for this is discussed below.

In production runs the code will be run for tens of thousands of time steps
so the time required to initiate a run is of little interest, and this is also the case
for finalisation. For each process grid two runs were performed with different
numbers of simulation steps (3 and 63 to be precise) in order to be able to
subtract the effect of initialisation and finalisation. For 60 time steps in the
middle of a run the following results were obtained from CrayPat.

’ Grid \ MPI \ Etc \User \ Total ‘

365 x 24 | 7327 | 6567 | 5711 | 19605
73 x 120 | 11664 | 7690 | 5561 | 24915

’ Grid \ MPI \ Etc \ User ‘
365 x 24 | 37% | 33% | 29%
73 x 120 | 47% | 31% | 22%

The amount (and proportion) of time spent in MPI calls is increased by the
change in geometry. The reason for this can be seen by examining Step 4 of the
algorithm set out in Section 3: the loop over Y values has only one iteration
for the first grid but has five for the second grid, and this loop contains two
ALLTOALLVs.

5 Conclusion
In the case of EBL, a 3 dimensional spectral code, it has been shown that the
introduction of a two dimensional decomposition has enabled good scaling of the

code to be extended from a few hundred cores to a many thousands of cores.
A result of this is that the study of a higher Reynolds number has become
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practicable. There are other codes, SWT and SS3F, that could well benefit
from a similar treatment but time did not allow this to be investigated.

The new version of the code has been run on HECToR XT6 during its early
access period when it was located in the USA and there are plans to use it
in further studies of the Ekman boundary layer. Now that this system has
been transported to the UK the code has been installed on the new Phase 2b
HECTOoR system and is available as the module “ebl”.
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