
Distributed CSE Support for
HECToR-enabled Step Change in Turbulent

Multiphase Combustion Simulation

Lucian Anton
Numerical Algorithms Group Ltd,

Wilkinson House, Jordan Hill Road,
Oxford, OX2 8DR, UK

September 14, 2011

Abstract

DSTAR simulates multiphase reactive flows in which complex in-
teractions exist among vortex dynamics, entrainment, mixing, turbu-
lence, combustion and evaporating droplets. The macroscopic tur-
bulent behaviour and thermodynamical properties are obtained us-
ing direct numerical simulation from the original governing equations.
The work done in this dCSE project will enable DSTAR to simu-
late new physical regimes over larger domains and longer times scales
by increasing parallel scalability, serial performance and efficient in-
put/output operations for large data sets.

1

Contents

1 Introduction 2
1.1 Project summary . 2
1.2 Work summary . 3

2 Background and pre-dCSE code overview 4

3 2D domain decomposition 5

4 Optimisation of Input/Output operations 9

5 Source code improvements 10

6 Conclusion and future work 11

1 Introduction

1.1 Project summary

The following work packages and objectives were proposed for this six
month dCSE project with the aim to increase DSTAR scalability and
usability:

WP1: Implementation of a 2D domain decomposition algorithm

(a) To convert the base data structures for the new domain
decomposition.

(b) To update the core fluid solver and run a basic validation
test.

(c) To update the remaining multi-physics modules.
(d) To benchmark the new DSTAR code.

Objective: DSTAR should scale to at least 10,000 cores with
80% scaling efficiency.

WP2: Improved I/O for capability size data sets

(a) To refactor the checkpoint procedures and statistics proce-
dures for handling large data sets

(b) using MPI-IO type of parallel I/O solution.
(c) To re-engineer the logging procedures.
(d) To port some of the common I/O routines back to the

2DECOMP&FFT library. But only if this is worthwhile.

Objective: DSTAR should be able to efficiently handle datasets
for cubic grids of at least size 500.

2

WP3: Code refactoring. Most of this will be done along with the code
update in WP1. The remaining routines, in particular ‘user rou-
tines’ will be modernised using Fortran 95 as these are regularly
updated by scientists who use DSTAR. Some legacy library rou-
tines may be kept in F77 form unless any significant performance
issue is identified.
Objective: All user routines of DSTAR should be modernised.

WP4: Dissemination
Objective: All user routines of DSTAR should be modernised
and a brief user document provided for future DSTAR users.

1.2 Work summary

From the perspective of simulating new physical regimes with DSTAR
the main task of this project was to implement a two dimensional do-
main decomposition with the help of the 2DECOMP library described
in Ref [2]. The bulk of the work for this task was to adapt the local
arrays which are used to store the local grid data, and a number of
subroutines to the 2D domain decomposition. More details are pre-
sented in Sections 3, 5.
The new code was then tested with up to 18, 432 MPI tasks and shows
good scaling efficiency (approximately 50%), although the 80% effi-
ciency target in WP1 was not reached. The original target was set
from using scalability data for other fluid dynamics codes. However,
when this target was set, the fact that DSTAR has a multicomponent
nature was overlooked. The multicomponent aspect results in a very
large amount of data communication in the two dimensional decompo-
sition, hence the loss in efficiency with respect to other fluid dynamics
models.
We have also pursued this matter further because at large MPI task
counts the code spends approximately 50% of the run time doing com-
munication. We have found that a significantly better scalability can
be achieved with an algorithm that overlaps communication with com-
putation using a Mixed Mode programming model (see Section 3, Ref
[3]) but this is at the cost of a rather more complex source code.
The input/output (IO) operations were changed from a multiple file
access to a single file access pattern. This replaces the original output
mechanism which used a large number of small files on the HECToR
parallel file system and was therefore very inefficient. In the new
version, the restart file (of binary data) can be accessed with MPI-IO
although we have found that good tuning of Fortran binary IO is also
efficient as well, see Section 4. In addition to restart data, there is
also separate IO for monitoring points regarding physical quantities.

3

This data is now collected in one ASCII text file and handled by a
designated MPI process. An auxiliary program has been written to
sort out the data from the monitoring points into individual files for
the required visualisation. The log mechanism was updated to the
same IO model. Details of this work are presented in Sections 4, 5.
Code modernisation was pursued in two main directions: i) replac-
ing static arrays with allocatable ones, this allows one to use larger
grids sizes and to use one executable for arbitrary grid sizes; ii) group
Fortran 77 subroutines in modules according to their functionality.
This transformation has made the source code structure clearer. It
also helps error location and offers the possibility to write more sim-
ple code for the top level subroutines. For better control over data
structures implicit data types were replaced with explicit declarations
within most of the source files. Optimisation work was also done on
some subroutines for the fluid solver which brought approximately a
20% speedup for the core solver, more details are presented in Section
5.

2 Background and pre-dCSE code overview

For the last 20 years, DSTAR has been used, in original and modified
versions, by a number of researchers who have worked closely with
Prof. Kai Luo on turbulence and combustion simulations with the
direct numerical simulation method. These include: Prof. Neil Sand-
ham and Dr. Zhiwei Hu (University of Southampton), Prof. Xi Jiang
(University of Lancaster), Dr. Eldad Avital (Queen Mary, University
of London), Dr. Yongman Chung (University of Warwick) and Dr.
Jun Xia (Brunel University).
The system of partial differential equations that sets the mathemat-
ical frame for DSTAR and the numerical algorithms for their solu-
tion are described in detail in Ref [1]. In short, implicit compact
finite difference schemes are employed for spatial discretisation with
sixth-, fourth- and third-order schemes for internal, near-boundary
and boundary points, respectively. A fourth-order Lagrangian inter-
polation scheme is utilised to obtain gas properties at droplet loca-
tions. A third-order explicit Runge–Kutta scheme is used for tempo-
ral advancement of the flow variables, while a semi-analytical scheme
is employed for droplet marching, with the consideration of numerical
accuracy, stability and efficiency.
In the pre-dCSE version of DSTAR the parallel computation utilised a
primary Cartesian grid, which was partitioned uniformly over the MPI
ranks along y axis (1D decomposition). Because the spatial derivatives
are computed with an implicit rule, each MPI rank also needs a local

4

grid which spans the whole domain along the y axis, hence a secondary
partition along z axis is also needed. Data between the two partitions
are exchanged by transpose operations among all the MPI ranks, see
Figure1 a).
The numerically intensive work which is done in DSTAR takes more
than 90% of the run time for a typical run. This is concentrated within
the subroutine which computes the right hand side terms (RHS) for
the set of differential equations in time. These equations describe the
evolution of the flow variables after spatial discretisation of the con-
tinuum field equations. The RHS set of subroutines contains mainly
loops that perform updates to the flow variables, together with some
derived quantities inside the domain and at the boundaries. Addition-
ally, calls to subroutines that compute the spatial derivatives and calls
to communication subroutines for the transpose operations described
earlier are also included.
This section of the code has a large degree of parallelism due to locality
of the update rule and the multicomponent nature of the discretised
flow variables. On the other hand, for a global grid with dimensions
Nx, Nz, Ny the number of processors that can be used in 1D do-
main partition is limited by min(Ny, Nz), which could be significantly
smaller than the number of processing elements available on today’s
top supercomputers.
The input, output operations for the monitoring and the checkpoint
data files were done with Fortran IO in multiple files, the monitoring
data was collected in (ASCII) text files, one per observation point, the
restart data was collected in binary files associated with subgroups of
MPI tasks.
The source code files included a significant proportion of Fortran 77
files, many of them using implicit data declarations. The grid dimen-
sion and the number of MPI ranks were hard wired in an include file,
thus making it necessary to recompile the source code if any of these
parameters was changed.

3 2D domain decomposition

Fig 1 shows the schematic difference between a one dimensional de-
composition and a two dimensional decomposition of the global grid.
The 2D decomposition increases the number of MPI tasks with a factor
equal to the number of rows used, but because the spatial derivatives
are computed with an implicit rule, one more transpose operation
along the x axis is needed in the case of a 2D decomposition. Never-
theless for large grids and a high speed communications network, this
procedure is scalable.

5

x z

ya)

b)

Figure 1: Schematic representation of the domain decompositions required
by DSTAR: a) 1D case with 3 MPI ranks along the z and y directions,
b) 2D case with 3 × 2 MPI ranks along the z, y and x directions; in this
case a transpose along the x axis is also needed. Data exchange between
decompositions require all to all type of communication.

The implementation of the 2D domain decomposition is straightfor-
ward with the help of the 2DECOMP library [2]. The calls to subrou-
tines used for the y ↔ z transposed provided in the original code were
replaced with calls to the corresponding transpose y z subroutines
of the 2DECOMP library. In the case of the x derivative, which needs
a y ↔ x transpose the subroutine that computes the derivative was
extended to perform the transpose operation if needed (this is deter-
mined from the analysis of the local grid dimensions). The possibility
to use a 1D decomposition is preserved, in this case the code skips
any y ↔ x transpose operation thus preserving the performance of
the initial version.
The scalability of the 2D decomposition algorithm was tested on two
cubic grids with linear sizes 768 and 1536 using up to 18432 MPI tasks.
The number of processor rows used in the processor grid was set to
24 or 48 in order to keep the data movement for the y ↔ x transpose
inside a node or only between two nodes.
Figure 2 shows the computation time per grid point (normalised to
the size of 7683 grid) of the core solver subroutine (RHS) which in for
a typical production run will consume more than 90% of the compu-
tation time. The plot shows that the 2D decomposition has a good
scaling up to 18432 MPI tasks with approximately a 50% efficiency for

6

 10

 100

 1000

76
8

15
36

23
04

30
72

46
08

61
44

92
16

12
28

8

18
43

2

ti
m

e
/N

g
*7

6
8

3

number of cores

2d 24xn 768
2d 48xn 768
2d 24xn 1536
2d 48xn 1536
MM 768
MM 1536
ideal

Figure 2: Performance of the core solver subroutine (RHS) versus total num-
ber of MPI ranks in the case 2D decomposition with 24 and 48 processor
rows for two cubic grids with linear size 768 and 1536. Note the crossover for
both grids as the total number of ranks increases. It is also shown that the
performance of the mixed mode code (MM) which uses a fixed 1D decom-
position with 768 and 1536 MPI tasks for each grid, respectively, but with
increasing number of OpenMP treads.

7

grid size MPI tasks code sections

RHS monitor restart

old new old new old new

232× 384× 768 192 13.3 10.8 0.22 0.12 4.3 23.1
7683 768 31.1 25.0 0.51 0.01 21.1 34.7
15363 18432 - 31.1 - 0.14 71.1 226.6

Table 1: Timings for the pre-dCSE version and the current one for three grid
sizes. Data are for the right hand side term computation (RHS) (seconds
per step), monitoring (seconds per operation) and one restart (read and
write). The first two models use a 1D decomposition, the last one uses a 2D
decomposition with 48 processor rows. The pre-dCSE code cannot run the
largest grid because of insufficient memory, the restart time was obtained on
the current version with the Fortran IO switched on. The restart files for the
MPI-IO version use 1, 32 and 64 stripes, respectively.

the grid size 1536 using 48 rows for the MPI task grid. An interesting
crossover phenomenon is worth mentioning here. The performance of
the 2D decomposition with 24 processor rows is better at small core
counts: (3072 MPI tasks for the 7683 grid and 4608 MPI tasks for
15363 grid) but the decomposition that uses 48 processor rows has
better performance at larger numbers of MPI tasks for both grid sizes
(other tested values for the number of rows show a significantly lower
performance).
It has not escaped our notice that on a parallel computer with largely
multicore nodes, an alternative algorithm can be used to increase scal-
ability: one can keep the original 1D decomposition of the simulation
grid, thus saving a significant amount of communication, and increase
the speed of computation with the help of OpenMP threads in each
local grid.
A prototype implementation of this algorithm was implemented, to-
gether with a thorough study of scalability. This work was presented
at the Cray user Group conference 2011 [3]. The main conclusion of
this study is that a mixed mode 1D decomposition is at least 20%
faster than a 2D decomposition at a cost of more complicated code,
see Fig 2, even better results area achievable if overlapping between
communication and computation is done with the help of OpenMP
threads1.

1This is required because the current MPI implementations do not provide
computation-communication overlap for non-blocking send receive operations

8

4 Optimisation of Input/Output op-

erations

DSTAR uses IO for two main tasks: i) collection of physical quantities
from a selected set of monitoring points inside the simulation domain
and ii) checkpoint data needed to restart the computation.
In the pre-dCSE version of the code, the monitoring data was collected
in ASCII text files with one per observation point. This could lead to
hundreds or thousands of individual files being access over the parallel
file system.
The restart data was written in binary format by a subgroup of MPI
tasks that collect the data from associated ranks and then write them
to the disk in a serial manner, that is, data is written to the file
immediately after is received from one of the associated ranks. This
approach saves buffer memory but blocks the progress of the other
associated ranks. The data layout depends upon ranks used in the
computation, which in turn made the computation reconfiguration
rather inflexible.
In other applications it was found that when IO is performed in this
manner and especially for ASCII text files, the method loses scalability
as the number of MPI ranks reaches the 1000− 10000 range. In order
to ensure scalable IO when using more than 1000 MPI ranks, the
original IO operations were modified as follow:

• Data from monitoring points will now be collected by a desig-
nated rank and then written as one text file. A post-processing
utility program was written to split this file into separate files for
the format used by the visualisation application. For the sake of
portability (i.e. post-processing can be done on a local machine)
the ASCII text format was preserved as the write time is not
a large for the current runs, but it can be easily switched to a
binary format if the writing time needs to be reduced.

• The IO operations for the restart file will now be done with MPI-
IO in a single file. The main advantage of this is that the data
is stored using the global grid order, thus allowing runs with a
different grid decomposition to use the same restart file.

Also related to IO operations we mention that the logging mechanism
was changed in order to avoid a multiple file access pattern. In the new
version log messages are written to a single file by all MPI tasks using
the shared file pointer provided by MPI-IO. For debugging purposes
a subroutine that will dump the contents of the global arrays has also
been provided along with a post-processing program for inspecting or
comparing sections of dumped arrays.

9

The IO benchmark was carried out for three grid sizes, see Table 1,
columns 4−8. One can see that the write time of the monitoring data
by using a single file is significantly improved, but it came as a bit of
surprise that IO for the restart file is fastest when using Fortran IO
with one writer per node, even for runs that used 18, 432 MPI ranks
and approximately 217GB of checkpoint data. This result suggests
that the best strategy for the restart operation is to use MPI-IO for
the fine tuning of the run parameters (e.g. when searching for the
best 2D MPI rank decomposition) and to switch to Fortran IO for the
production runs, if this is faster.

5 Source code improvements

The modernisation of the legacy Fortan 77 source code to Fortran 95
was carried out following the standard steps described in literature
[4]. The work carried out in this area included: replacing all common
blocks with module variables, changing the include statement with
the use statement, eliminating implicit typing and implicit interfaces
and replacing the static arrays with allocatable versions.
Fortran 77 subroutines were wrapped in Fortran 95 modules, with one
per file, according to their functionality. A brief description of the new
modules is as follows:

• constant and kinds.f90: contains basic mathematical and code
constants, data kind definitions for Fortran and MPI,

• global data.f90: contains global data used across the source code,
the needed entities are selected via the construct use, global data,
only : ...,

• commonvdrop.f90: stores data for the initial perturbation,

• basic functions.f90 : mathematical functions used to compute
physical properties across the other modules,

• plume.f90: contains the driver subroutine of the simulation, i.e.
it controls the main time loop and associated procedures,

• pade data.f90 : contains parameters used in the computation of
the space derivatives,

• deriv3d v601.f90 : contains subroutines that compute the deriva-
tives in the x,y,z directions for the flow variables,

• main.f90: initialises MPI, reads the input file, calls the initialisa-
tion subroutines from modules that need data allocation/initialisation,
calls the driver subroutine and finalisation operations,

10

• rhs3d.f90 : contains the subroutines that compute the flow vari-
ables and their derivatives at each grid point, boundary condi-
tions and thermodynamical functions necessary for time integra-
tion,

• record3d.f90 : contains the subroutines that collect observation
data during computation,

• restart.f90: contains the former common blocks used in restart
subroutines and the interfaces for the implementation of MPI
and Fortran IO restart algorithms,

• debug tools.f90: contain subroutines that can be used to log
warning or error messages to an unique file using a shared file
pointer provided in MPI-IO.

During benchmarking and profiling it was noticed that a couple of sub-
routines of the core solver had a very poor cache memory utilisation.
This problem was corrected by reordering some of the nested loops
and by evicting IF blocks from some of the other loops. As a result
the code performance in the RHS sector increased by approximately
20%, see Table 1.
Some other source code upgrades and reorganisations are listed below:

• Quasi-identical versions of some derivative subroutines were re-
duced to one version using an optional argument feature for mod-
ule subroutines.

• The directory containing the source code was split into three
directories; src for the source code, utils for post-processing
programs and decomp 2d for the 2DECOMP library source.

• The Makefile was updated to allow compilation with different
compilers, optimisation or in debug mode, and a full list of de-
pendencies was created.

• User documentation for the changes has been provided in a
README file.

The new code was compiled with PGI, GNU and Cray compilers using
debug and optimised flags, all executables have been tested on several
MPI processor topologies and grids with different aspect ratios.

6 Conclusion and future work

The upgraded version of DSTAR can use approximately 50 times more
MPI tasks and grid points than the pre-dCSE version with good effi-
ciency (in fact we have not touched the limit of scalability as of yet,
due to practicalities of running very large jobs on HECToR). The

11

serial performance was improved significantly (approximately 20%),
the parallel efficiency of the 2D decomposition has been improved by
approximately 50%.
Both aspects (large scale parallelism and serial speed) are very impor-
tant for the exploration of new physical regimes with DSTAR because
the integration time step is controled by the micorscopical (chemi-
cal) time scale while the flow characteristics are determined by the
macroscopic geometry and a much larger time scale.
The monitor data and debug or log messages are written to single
files, a MPI-IO version for read/write of restart file has been provided
which allows for flexibility, while the faster Fortran binary version was
preserved.
The source code was reoganized into Fotran 90 modules, this makes
the overall code structure clearer. In turn this helps to solve program-
ing errors faster and offers the possibility to write simpler code from
the top level subroutines. As an example of enhanced usability, we
mention the case for the introduction of dynamical memory allocation
for the data arrays which permits one to use the same executables for
different grid sizes.
While working on the DSTAR code, it became apparent that even
more could be done to improve DSTAR performance and usability.
As it was mentioned before, communication within the 2D domain
decomposition consumes approximately 50% of the run time. A pre-
liminary study shows that this can be decreased significantly by the
introduction of a computation-communication overlap algorithm with
the help of mixed mode programing. This concept could also be ex-
tended to the IO operations by creating a subset of IO nodes that
execute IO operations concurrently with computation reserved for the
other nodes.
From a usability perspective the following points will be considered
for a future project: i) a structured input file that should provide
information in three logical blocks: a) physical parameters, b) compu-
tational parameters and c) data collection parameters, ii) better user
documentation for the input parameters and data post-processing, iii)
an extended testing module, accessible as a Makefile task for validat-
ing new code developments and iv) an improved data collection with
the help of the IO function from the 2DECOMP library.

12

Acknowledgements

This project was funded under the HECToR Distributed Computa-
tional Science and Engineering (CSE) Service operated by NAG Ltd.
HECToR A Research Councils UK High End Computing Service -
is the UK’s national supercomputing service, managed by EPSRC on
behalf of the participating Research Councils. Its mission is to support
capability science and engineering in UK academia. The HECToR su-
percomputers are managed by UoE HPCx Ltd and the CSE Support
Service is provided by NAG Ltd. http://www.hector.ac.uk.

References

[1] J. Xia and K. H. Luo, Conditional statistics of inert droplet effects
on turbulent combustion in reacting mixing layers, Combustion
Theory and Modelling, 13:5, 901–920 (2009), and the references
therein.

[2] http://www.2decomp.org/, see also N. Li and S. Laizet,
2DECOMP&FFT – A highly scalable 2D decomposition library
and FFT interface, Cray User Group 2010 conference, Edin-
burgh, UK; http://www.hector.ac.uk/cse/distributedcse/
reports/incompact3d/incompact3d/index.html.

[3] L. Anton, N. Li and K. .H. Luo, A study of scalability performance
for hybrid mode computation and asynchronous MPI transpose
operation in DSTAR Cray User Group 2011 conference, Fair-
banks, USA.

[4] D. Rouson, J. Xia and X. Xu, Scientific Software Design: The
Object Oriented Way, Cambridge University Press, 2011.

13

