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Abstract

CRYSTAL is an ab initio electronic structure and materials properties
code, in which the electron density is represented as a linear combination
of Bloch functions constructed from localised Gaussian type atomic or-
bitals. This dCSE project introduces a new algorithm, the divide and
conquer algorithm for computing the electronic structure that scales lin-
early with system size. This report outlines the algorithm used and shows
that it produces similar results to the conventional CRYSTAL algorithms
for a weakly interacting system. Continuations of this work are identified
and outlined, these are necessary for its more general application.
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1 Introduction

1.1 CRYSTAL Materials Modelling Code

The CRYSTAL materials modelling code [1–3] is a program developed by the
Computational Science and Engineering Department at STFC, and the theo-
retical chemistry group at Turin University (Italy). Its function is to compute,
ab initio, the electronic structure of a material and from this many material
properties. The one electron wavefunctions in CRYSTAL are stored as a linear
combination of localised Gaussian functions, which enables CRYSTAL to evalu-
ate the electronic structure for aperiodic systems, and systems that are periodic
in one, two or three dimensions efficiently. The most popular alternative, using
a plane wave basis set, requires a vacuum gap between periodic images which is
computationally wasteful for systems that are not periodic in three dimensions.

A significant advantage of using a local basis set, is that it enables relatively
inexpensive use of the Hartree-Fock (HF) method and hybrid density functional
theory (DFT) which incorporates a fraction of the “exact” HF exchange. These
hybrid density functionals are becoming increasingly widely used, as their ability
to more accurately model material properties that are poorly represented by
either HF or local and semi-local DFT functionals is repeatedly reported [4–6].
The other significant advantage of using a local basis set, is that all electron
calculations can be performed routinely. Pseudopotentials to represent core
electrons are not required as is almost always the case when using a plane wave
basis set.

The CRYSTAL code is widely used internationally by quantum chemists,
solid state physicists and materials scientists, and has been for many years. It
is particularly important for UK materials chemists. The functionality and per-
formance of CRYSTAL continues to be improved. As the size and complexity
of the systems of interest increase, it is necessary to continue to develop CRYS-
TAL to make best use of high performance computing (HPC) resources, such
as HECToR.

Currently CRYSTAL can be run in parallel using either a replicated data
strategy using the program called PCRYSTAL, or alternatively using a dis-
tributed data strategy for large (O

(
N2
)

or greater) objects, using the program
called MPP CRYSTAL, developed by Dr. I. J. Bush [2]. The systems for which
the divide and conquer algorithm is most appropriate are large, therefore the
memory requirement means that a replicated data strategy cannot be used. As
such, the work described in this report is an extension to MPP CRYSTAL.

1.2 Linear Scaling in DFT

The most commonly used algorithms to self-consistently find the electron density
of a material, including the standard algorithms in the CRYSTAL code, scale
as the third power of the system size, i.e. O

(
N3
)
. In CRYSTAL, for large

systems, the bottle neck is the explicit diagonalisation of the Hamiltonian (Fock
or Kohn-Sham) matrix, an O

(
N3
)

operation. For codes that do not diagonalise
the Hamiltonian, the cubic scaling occurs because N states need to be found
which are O

(
N
)

size and also must be orthogonal to the other N states. This
unfavourable scaling limits traditional DFT computations to systems with a
maximum size of a few thousand of atoms. Computations for systems larger
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than a few hundred atoms are uncommon.
To enable the study of large systems, the O

(
N3
)

scaling must be reduced.
Fortunately, the interaction between electrons in a many electron system is
almost always short ranged as the density matrix decays exponentially with
distance [7]. There have been several strategies developed to exploit this near-
sightedness” of electrons in a variety of codes including ONETEP [8], CON-
QUEST [9] and SIESTA [10]. The divide and conquer algorithm chosen for this
project is described later in Section 2.

1.3 Original dCSE Application Milestones

The aim of this dCSE project is to implement an O
(
N
)

divide and conquer
algorithm for use within the CRYSTAL code. The details of this algorithm are
given in Section 2. The major milestones outlined in the dCSE proposal are as
follows:

1. Validation of MPP code working within a task farming harness.

2. Automatic decomposition of a system into subsystems and distribution
of work so that subsystems are run independently within taskfarmed in-
stances of MPPCRYSTAL.

3. Implement the communication of eigenvectors and eigenvalues to deter-
mine a global Fermi energy and from this reconstruct a global density
matrix.

4. Decompose the density matrix as a multipole expansion and embed the
subsystems within this multipole expansion in order to include long range
electrostatics.

The original dCSE application was for two man years of effort on this project.
The project was awarded 18 man months of effort of which 15 man months have
been used.

2 Divide and Conquer Algorithm

The divide and conquer algorithm (D&C), is a relatively old idea [11] that is ide-
ally suited to current HPC resources as there is significantly more computation
than communication. Conceptually, it is a relatively simple scheme, using the
“near-sightedness” of electrons, one can separate a system into subsystems com-
prising a core region and a halo region, as shown in Figure 1. The subsystems
are decoupled, and the electronic structure of each subsystem is determined in-
dependently. The systems are then reconnected by identifying a common Fermi
energy and a new global density matrix, from which the system’s total energy
can be easily computed, is constructed by adding the contributions from the
core regions. The electronic structure of the halo is discarded. The presence of
the halo region is just to ensure the electronic structure of the core region is as
close as possible to that of the reconstructed system.

More formally, a computation to calculate the single point energy of a system
Ω, whose single particle wavefunctions are written as a linear combination of a
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Figure 1: The system is partitioned into a set of subsystems, {α}, each subsys-
tem contains a core region Ω0α and a halo region Γ2α and, optionally, a region
which contributes partially, Γ1α. The electronic structure of the subsystems
is determined independently and from these computations the global electronic
structure is reconstructed. Figure from ref. [12].

localised basis set, {i}, can be approximately solved by dividing Ω into a set of
subsystems, {α}, and defining a partition matrix

Pij =
∑
α

Pαij = 1. (1)

Once the electronic structure of the independent subsystems has been deter-
mined, using a traditional DFT or HF algorithm, a global Fermi energy must
be identified that returns the (known) correct number of electrons, Nel. In the
case of a non-magnetic system, where all electrons are paired,

Nel =
∑
ij

ρijSij =
∑
ij

(
2
∑
α

Pαij
∑
m

fβ (εF − εm)Cα
imCα†

jm

)
Sij , (2)

where ρij is the (global) density matrix, Sij = 〈i|j〉 is the overlap matrix,
fβ is the Fermi function at an arbitrary electronic temperature β and Cα

im is
the matrix representation of the eigenfunctions of subsystem α. The Fermi
energy εF that satisfies (2) is found iteratively. Once the Fermi energy has been
identified, the density matrix for the system can be computed by summing the
contributions from the subsystems, {α},

ρij = 2
∑
α

Pαij
∑
m

fβ (εF − εm)Cα
imCα†

jm. (3)

The accuracy of the electronic structure computed using this method varies
depending on the partitioning of the system into subsystems. During this dCSE
project, two methods for partitioning the system have been implemented. The
simplest, most conservative method is for each subsystem to contain a single core
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atom. This method has been implemented in SIESTA [10] and is equivalent to
a Mulliken population analysis. This method has a single parameter, the radius
of the halo around the core atom. The appropriate size for the halo depends on
the material being studied and can be defined in the CRYSTAL input file. The
partition matrix for the system is defined as follows:

Pαij =


1, if i ∈ Ωα ∧ j ∈ Ωα

0.5, if (i ∈ Ωα ∧ j 3 Ωα) ∨ (i 3 Ωα ∧ j ∈ Ωα)

0, if i 3 Ωα ∧ j 3 Ωα,

(4)

where Ωα is the set of basis functions centred on the core atom. This very
simple partitioning of the system is likely to be quite inefficient, it is simple
to improve performance by including several atoms in the core region of each
subsystem. However, it has been noted that having multiple core atoms per
subsystem may increase the likelihood of having discontinuities in the potential
energy surface [10]. One core atom per subsystem is the safest default option.

The alternative solution implemented in CRYSTAL (during this dCSE pro-
ject) is to leave the definition to the user and explicitly define each subsystem
by selecting a set of atoms (or ghost atoms) and defining the partition matrix in
atom-by-atom terms by hand. The way it has been implemented, Pαij must be
identical for all basis functions localised on the same atom. This allows users to
have the flexibility to use the D&C algorithm in the way that is most suited to
their problem. The code which partitions the systems into subsystems has been
designed so that new heuristics for defining the partition matrix can be added at
a later date without altering the structure of the code. The newly implemented
D&C algorithm simply needs a mapping array, which associates atoms in the
subsystems with atoms in the reconstructed system, and a partition matrix for
each subsystem. The Pαij matrices defined must satisfy Equation (1).

In the time available, point 4 on the list of milestones has not yet been
addressed. The long range electrostatics of the system have been discarded,
for systems that are largely non-polar, this should make no difference and the
electrostatics included by the interaction of the core with the halo region should
be sufficient, as will be shown in the next section.

3 Proof of Principle Example

3.1 Liquid Neon

To initially test that the D&C algorithm returns an acceptable approximation
of the density matrix, a simple test case was used. The D&C algorithm is most
appropriate for weakly interacting systems. Long range Coulombic interactions
are not yet included in the CRYSTAL implementation and periodic covalently
bonded systems cause inconsistencies in the subsystems’ electronic structure, see
Section 6. A 10 Å3 box of neon atoms created using a short classical molecular
dynamics simulation1 was used as a test case, see Figure 2.

The system was partitioned into subsystems using one core-atom subsystems,
and a set of partition matrices as defined in Equation (4). The convergence of

1Molecular dynamics simulation was run using the Tinker molecular modelling package [13]
with the MM3 forcefield using an NVT ensemble at 50K for 50 ps
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Figure 2: The system used to test that the density matrix partitioning and re-
construction functioned correctly. 10 Å3 of neon atoms in positions determined
by a short classical molecular dynamics computation.

the system energy as a function of halo radius is reported in Table 1. It can
be seen that as the size of the halo is increased the energy converges on the re-
sult of the traditional Hamiltonian diagonalisation used in standard CRYSTAL
calculations. This is unsurprising considering the weak interatomic interactions
in this system, but indicates that the divide and conquer implementation cor-
rectly partitions the system and reconstructs the density matrix based on the
subsystem computations.

4 Performance Tests

To measure the performance of the D&C algorithm with increasing system size,
the density matrix was computed for various supercells of crystalline neon with

Table 1: Convergence on the DFT energy for the D&C algorithm as the radius
of the halo increases. ED&C is the energy computed using the D&C algorithm,
Etrad is the energy computed using Hamiltonian Matrix diagonalisation — the
standard CRYSTAL algorithm.

Radius of Halo / Å ED&C − Etrad /
millihartree cell−1

0.1 17.3
3.0 5.1
4.5 2.6
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Figure 3: The time taken to compute the density matrix using the divide and
conquer algorithm as a function of system size. The algorithm displays near
linear scaling.

a face centred cubic crystal structure (from the Inorganic Crystal Structure
Database [14]). The time taken to compute the density matrix with varying
systems size is shown in Figure 3. The scaling is nearly linear. The non-linear
part of the scaling comes from computing the Fermi energy for the system.
Figure 4 shows the time taken to set up and compute the electronic structure
of the subsystems. This shows almost perfect linear scaling, and also shows
that a substantial part of the run time is spent computing the Fermi energy.
Improvements to the algorithm to compute the Fermi energy should be a priority
in the continuation of this work.

5 Additional Useful Outcomes from this dCSE
Project

5.1 Task Level Parallelism

Taskfarming was introduced to the CRYSTAL code as part of this dCSE project.
This functionality is essential for the use of the D&C algorithm. Finding the
electronic structure of subsystems sequentially is comparatively highly ineffi-
cient. There are several other problems that will benefit from taskfarming being
available in CRYSTAL. Notably, CRYSTAL computes the second derivative of
the potential energy surface with respect to atomic positions using numerical
finite differences in order to compute vibrational frequencies and phonon disper-
sion. This task is ideally suited to a taskfarming strategy to achieve maximal
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Figure 4: The CPU time taken to converge the SCF for all subsystems using the
D&C algorithm. This shows near perfect linear scaling. Further investigation is
needed to reduce the time taken to calculate the Fermi energy for the system.

speed up on HPC resources. The utilisation of the taskfarming code introduced
as part of this dCSE project is being investigated by Matteo Ferabone at Torino
University, Italy.

Many scientific problems are studied by finding and comparing the electronic
structure of many similar arrangements of atoms. For example, collaborators
at Imperial College London have produced phase diagrams for chalcopyrites
as the chemical potential of the constituent elements is varied. This sort of
computation, where many similar but independent computations need to be
performed may benefit from the task level parallelism introduced as part of this
dCSE project.

5.2 Improved Initial Guess of the Density Matrix

One of the challenges associated with using a Gaussian basis set electronic struc-
ture code is that the convergence of the SCF depends on the quality of the initial
guess. During this project, code has been written which allows the density ma-
trix to be constructed based on smaller (usually simpler and less expensive)
computations. There are several instances where this code may be useful, for
example:

• Molecular crystals — the initial guess electron density can be constructed
based on the converged electronic structure of the constituent molecules.

• Macromolecules, e.g. DNA, proteins, polymers — the initial guess elec-
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tron density can be constructed from converged electronic structure of
monomer units.

• Supercells, e.g. for studying defect science — while this is a more complex
use of the code requiring a little more thought, the bulk electron den-
sity can be used to construct the guess for the “bulk like” region of the
supercell.

6 Limitations

The taskfarming in CRYSTAL, as implemented as part of this dCSE project,
requires the number of taskfarms to be an exact divisor of the number of proces-
sors. That is, an equal number of processors are used for each task. It is possible
a more sophisticated division of the processors may be desirable. In addition,
the round robin implementation may need to be improved if load balancing for
the taskfarms proves to be a bottleneck.

The current implementation of D&C in CRYSTAL does not include long
range Coulombic interactions. This could be corrected by performing a multi-
pole expansion of the charge distribution and embedding the cluster subsystems
in a field created by static multipoles. An Ewald summation could be used to
correctly represent the long range electrostatic potential of the periodic sys-
tem. The machinery for much of this work exists in the CRYSTAL code base,
time constraints meant that it was not possible to apply these to this algorithm
during this project.

For periodic covalently bonded systems, e.g. silicon, the D&C algorithm
requires modification to prevent the division of the system into subsystems
causing undercoordinated terminal atoms. Simply terminating the subsystem
at a defined halo radius leads to unphysical “dangling bonds.” which cause the
subsystem’s electronic structure to differ significantly from the global system,
the subsystems are unphysically spin polarised. The “dangling bonds” can
be capped, usually with hydrogen, however a method to add these hydrogen
atoms automatically has not been implemented yet. It is also unknown how the
presence of capping hydrogen affects the convergence of the D&C algorithm with
respect to the size of the halo region. This procedure, of predicting the location
of hydrogen atoms in covalent systems, is similar to problems encountered when
determining the crystal structure of biological systems by X-ray crystallography.
It may be possible to apply similar heuristic approaches to locating hydrogen
atoms to cap the clusters used in the D&C algorithm.

Further work is required to make the D&C algorithm generally useful, cur-
rently only weakly interacting systems such as molecular crystals can be studied
using this method. However, there are several examples of ab initio studies of
molecular crystals in the literature, e.g. [15, 16]. So even with these limitations
this algorithm may be a useful alternative to the traditional Hamiltonian matrix
diagonalisation approach for certain systems.

7 Conclusions

A divide and conquer algorithm to compute the energy of a system using density
functional theory has been implemented in the CRYSTAL code. While more
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work is required to apply this algorithm to extended covalent networks and ionic
systems, the method developed can be used for the ab initio study of weakly
interacting systems. As a result of this project task farming has been added to
the CRYSTAL code and a method to improve the initial guess of the density
matrix has been developed. Once methods for dealing with covalent systems
and long range electrostatics have been added, optimisations for the memory
requirements of this algorithm may be needed. Unfortunately, there has not
been time to address this during this dCSE project.
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