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Abstract 
COSA is a novel CFD system based on the compressible Navier-Stokes model for 

unsteady aerodynamics and aeroelasticity of fixed structures, rotary wings and 

turbomachinery blades.  It includes a steady, time domain, and harmonic balance flow 

solver. All three solvers use a finite volume scheme with structured multi-block grids. 

All solvers can also use Low-Speed Preconditioning, which enables their use also for 

low-speed flows, such as those associated with horizontal axis wind turbines. 

Turbulence effects are incorporated by using the two-equation K-ω shear stress 

transport turbulence model of Menter. 

 

COSA has primarily been parallelised using MPI, but there is also a hybrid 

parallelisation that adds OpenMP functionality to the MPI parallelisation to enable 

larger numbers of cores to be utilised for a given simulation as the MPI parallelisation 

is limited to the number of geometric partitions (or blocks) in the simulation. This 

project worked to optimise these two parallelisation strategies, improving the 

efficiency of both and therefore reducing the computational time required to compute 

simulations. 

 

Through a combination of different MPI optimisations we have managed to halve the 

runtime of the MPI based parallelisation when comparing to the original code for a 

representative use case.  Furthermore, we have optimised the hybrid code so that it is 

close to 90% efficient when going beyond the number of cores that the MPI can 

exploit. 
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1 Introduction 
This report documents the work performed during the dCSE project titled 

“OPTIMISING THE PARALLELISATION OF A HARMONIC BALANCE 

NAVIER-STOKES SOLVER FOR THE ULTRA-RAPID ANALYSIS OF WIND 

TURBINE, TURBOMACHINERY AND AIRCRAFT WING PERIODIC FLOWS”.  

The project, undertaken at EPCC, The University of Edinburgh, in conjunction with 

Dr M. Sergio Campobasso from the Systems, Power and Energy Research Division of 

Glasgow University, aimed to improve the overall performance of the COSA 

simulation code, thereby reducing the computational resources required to undertake 

scientific simulations, enabling more efficient use of the resources provided by the 

HECToR service (and other HPC systems), and reducing the runtime required to 

undertake simulations for large scale problems. 

1.1 COSA 

COSA is a novel CFD system based on the compressible Navier-Stokes (NS) model 

for unsteady aerodynamics and aeroelasticity of fixed structures, rotary wings and 

turbomachinery blades. The COSA code is written in FORTRAN, and it includes a 

steady, a time domain (TD) [1-3] and a harmonic balance (HB) [2] flow solver. All 

three solvers use a finite volume scheme with structured multi-block grids. The 

integration of the steady and HB equations is based on an explicit multigrid algorithm 

using a multi-stage Runge-Kutta (RK) smoother. Solution of unsteady problems in the 

TD is obtained by using Jameson’s dual-time stepping. Turbulent flow effects are 

modelled by means of the two-equation K-ω Shear Stress Transport (SST) turbulence 

model of Menter [1]. 

 

The COSA suite also uses Low-Speed Preconditioning [2,3], which enables its use 

also for low-speed flows, such as those associated with horizontal axis wind turbines 

(HAWT’s).  All 3 COSA solvers (steady, TD, and HB) have been parallelised, since 

their execution requires large amounts of computational resources.  There are three 

different parallelisations of the current code[5,6]: 

• OpenMP 

• MPI 

• Hybrid (mixed OpenMP and MPI) 

 

The OpenMP parallelisation can work for all three solvers, with different 

parallelisations available over the blocks in the multi-block grids, over the harmonics 

for the HB solver, and over the grid points for those problems that use low numbers of 

blocks or harmonics (for instance a single block, TD, simulation). 

 

The MPI parallelisation distributes the blocks of the multi-block grid over the 

available MPI processes to distribute the work of the simulation. Communication is 

required between the blocks where data on the edge of blocks (called cuts in COSA) 

needs to be communicated to neighbouring blocks (halo communications).  The 

maximum number of processes that the MPI parallelisation can use is limited by the 

number of geometric partitions (grid blocks) in the simulation. 
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The hybrid parallelisation combines the MPI code with either the harmonic OpenMP 

parallelisation or the grid point OpenMP parallelisation, depending on the simulation 

being performed. 

1.2 HECToR 

HECToR, a Cray XE6 computer, is the UK National Supercomputing Service.  This 

project utilised the Phase 3 incarnation of the system.   Phase 3 of HECToR consists 

of 2816 nodes, each containing two 16-core 2.3 GHz ’Interlagos’ AMD Opteron 

processors per node, giving a total of 32 cores per node, with 1 GB of memory per 

core. This configuration provides a machine with 90,112 cores in total, 90TB of main 

memory, and a peak performance of over 800 TFlop/s. 

1.3 Test Cases 

Three different test cases have been used for understanding the performance and 

runtime characteristics of COSA, the details of these are provided next.  

1.3.1 Test Case 1 

This test case is a HB analysis of a heaving and pitching wing designed to extract 

energy from an oncoming air stream. The 512-block grid has 262,144 cells, and 31 

real harmonics are used. This HB analysis has the same memory requirements of a 

steady flow analysis with more than 8 million cells.  Further details on the 

aerodynamics of this device and the analysis of its efficiency based on COSA time-

domain simulations are reported in the articles [1,3]. 

1.3.2 Test Case 2 

The test case is that associated with the HB flow analysis of the blade section at 90% 

span of a multi-megawatt horizontal axis wind turbine operating in yawed wind. The 

analysis has been performed using both a coarse and a fine grid, both consisting of 32 

grid blocks. The coarse grid has 73728 cells, whereas the fine grid has 654336 cells. 

Further details on the time-domain and HB COSA analyses of this problem are 

reported in the article [2]. 

1.3.3 Test Case 3 

Test case 3 is a finer grid version of test case 2. In TC3, the computational grid has 

2048 blocks, and the grid has 4,194,304 cells. In the simulations we have used 17 real 

harmonics. 

1.4 Problem to be tackled 

Whilst the different parallelisations of COSA enable large simulations to be 

performed correctly, and in a much shorter time than the serial code, the efficiency of 

the different parallel implementations is not optimal.  The OpenMP parallelisation 

allows simulations to be run on local computers such as desktop machines, and small 

shared-memory clusters, however it cannot be used on large scale resources.  

Furthermore, the OpenMP parallelisation did not scale well even on small numbers of 

cores.  The MPI code is generally efficient, although there are some areas that can be 

improved, but can only utilise a maximum number of cores equal to the maximum 

number of grid blocks in the simulation.  The hybrid code was developed to address 

this restriction, enabling parallelisation that use more cores than the number of blocks 
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in the simulation, however it was less efficient than the pure MPI parallelisation as it 

used the inefficient OpenMP functionality as well as the reasonably efficient MPI 

functionality.   

Therefore, this dCSE project aimed to improve COSA in the following two areas to 

enable it to efficiently be used on HECToR: 

1. Optimise MPI communications of the COSA HB solver  

2. Optimise the OpenMP and hybrid parallelisation of the COSA HB solver  

 

For the remainder of this report we will outline the current performance of the 

existing COSA parallelisation in Section 2, discuss the optimisation performed on the 

MPI code in Section 3, outline the initial optimisation work undertaken on the hybrid 

code in Section 4, and further advanced hybrid optimisation undertaken in Section 5.  

We will finish with summary of the work undertaken and the overall performance 

benefits in the final section, Section 6. 

 

2 Initial Performance 
The efficiency of the existing harmonic OpenMP parallelisation has been assessed 

using test case 1.  Figure 1 shows the runtime of the OpenMP parallelisation on a 32-

core node of HECToR, and it highlights a poor performance of the OpenMP 

parallelisation.  

 
Figure 1:Runtime for the OpenMP code for test case 1 

 

The speedup of the MPI parallelisation of the code on the same test case as the one 

used for the OpenMP parallel scaling study is shown in Figure 2. The MPI code has 

much better scaling than the equivalent OpenMP functionality, but it is still not 

optimal, particularly at larger process counts.  The MPI code was designed to provide 

a one-to-one correspondence to the functionality of the serial code and it sends the 

dataset of one halo cell at a time rather than the dataset of all halo cells associated 

with a particular grid cut (boundary between adjacent blocks) at once. Although 
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important in establishing correctness and confidence in the parallelisation, this 

simplistic approach is inefficient. In an efficiently implemented MPI code, increasing 

the size of the grid blocks without altering the overall number of blocks should have a 

negligible impact on the MPI efficiency, because the overall number of MPI 

communications does not vary significantly, and the ratio between the time spent for 

actual computing and communications remains about constant (this is because both 

the size of the MPI messages and the number of operations of each block increases).  

 

Conversely, in the MPI code, increasing the size of each block reduces the MPI 

efficiency, because this operation results in a larger number of small MPI messages.  

However, in the code with an ideal parallelisation there would be a constant number 

of messages, the size of which depends on the block size, rather than an increase in 

the number of messages sent. An example is provided by the table below, which 

reports the results of a scaling test of the existing MPI COSA HB solver on HECToR 

Phase 2b.  Test case 2 was used for these benchmarking runs.  As expected, the MPI 

efficiency is higher for the coarse grid, as a consequence of the substantially larger 

number of (small) MPI messages present in the fine grid case. 

 

Cores 1 2 4 8 16 32 

Coarse grid speed-up 1.00 1.82 3.21 5.56 11.30 21.01 

Fine grid speed-up 1.00 1.80 2.96 4.55 9.34 17.47 
Table 1: Scaling of the original MPI code using test case 2 with different mesh sizes 

 

Aside from this issue, the existing MPI HB code has an acceptable performance, also 

for larger problems, as demonstrated in Error! Reference source not found., where 

the speed-up of the MPI code is plotted against the number of processes used.   
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Figure 2: Parallel speedup of MPI code for test case 1 
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We also looked in detail at the performance of the MPI code, profiling it with the 

Craypat performance analysis tool available on HECToR.  We obtained the following 

profiling data using 512 MPI processes on test case 1. 

 
Samp%     |   Samp  |  Imb.  |  Imb.  |Group  

          |         |  Samp  | Samp%  | Function  

          |         |        |        |  PE=HIDE  

        

 100.0%   | 63045.9 |     -- |     -- |Total 

|------------------------------------------------ 

|  78.8%  | 49694.5 |     -- |     -- |USER 

||----------------------------------------------- 

||  17.3% | 10911.0 |  596.0 |   5.2% |blsp_ 

||  14.9% |  9415.1 |  630.9 |   6.3% |proflux_b_ 

||   6.6% |  4143.6 |  393.4 |   8.7% |vflux_b_ 

||   4.7% |  2933.7 |  739.3 |  20.1% |src_bhb_ 

||   4.1% |  2554.6 |  289.4 |  10.2% |tridi_ 

||   2.7% |  1709.7 |  368.3 |  17.7% |muscl_bi_ 

||   2.7% |  1698.2 |  183.8 |   9.8% |cirs_b_ 

||   2.7% |  1686.2 |  155.8 |   8.5% |bresid_ 

||   2.6% |  1660.3 |  213.7 |  11.4% |muscl_bj_ 

||   1.6% |  1020.4 |  128.6 |  11.2% |eig_ns_p_ 

||   1.6% |  1011.3 |  190.7 |  15.9% |prec_bres_ 

||   1.5% |   936.2 |  198.8 |  17.5% |lm_bviscoff_ 

||   1.5% |   922.2 |  179.8 |  16.3% |bq_der_i_ 

||   1.2% |   785.1 |  103.9 |  11.7% |bdeltat_ 

||   1.2% |   782.9 |  210.1 |  21.2% |bq_der_j_ 

||   1.2% |   727.7 |  101.3 |  12.2% |limit_j_ 

||   1.1% |   708.3 |  212.7 |  23.1% |limit_i_ 

||   1.1% |   698.0 |  124.0 |  15.1% |b_rtst_ 

||   1.0% |   633.1 |  107.9 |  14.6% |cut_q_ 

||=============================================== 

|  14.7% |  9292.6 |     -- |     -- |MPI 

||----------------------------------------------- 

||  10.2% |  6412.1 | 3715.9 |  36.7% |MPI_WAITANY 

||   2.7% |  1704.2 |  170.8 |   9.1% |MPI_ISEND 

||=============================================== 

|   6.4% |  4058.8 |     -- |     -- |ETC 

||----------------------------------------------- 

||   1.4% |   886.5 |  127.5 |  12.6% |__c_mzero8 

||   1.2% |   731.8 |  251.2 |  25.6% |_int_malloc 

|================================================ 

 

We can see that the majority of the runtime of COSA (around 80%) for this testcase is 

spent in user routines (i.e. the subroutines in the COSA project), with around 15% of 

the runtime in MPI communications.  Furthermore, we can see that there are 10 

subroutines that take up around 60% of the overall runtime of the code.   Therefore, 

we can identify those routines that are critical for optimising the OpenMP 

performance (and therefore ensuring that the hybrid code has good performance), and 

also which parts of the communication functionality are dominating the MPI 

performance enabling us to effectively target our work on the MPI optimisation.  It 
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should be noted that the above profiling data was collected with the I/O in COSA 

turned off, so I/O costs have not been profiled. 

3 Optimised MPI Parallelisation 
The primary focus for this work was to optimise the inefficient MPI communications 

in COSA.  The existing code utilises non-blocking MPI communications, but for a 

large simulation there can be as many as 5,000 messages sent between 

communicating processes at each Runge-Kutta step.  Optimising this was one of the 

first steps in the dCSE.  However, there were a number of other areas that were also 

identified for optimisation in this work.  A number of places in the COSA code use 

hand coded linear algebra functionality, it was decided to replace this with the same 

functionality implemented in a linear algebra library.  Furthermore, for large 

simulations the I/O was seen to take up a large portion of the runtime so we also 

looked at optimising that.  The following subsections will go into these optimisations 

in more detail. 

3.1 Rationalise MPI Communications 

As mentioned in the introduction to this section the current MPI parallelisation can 

require a large number of messages to be send and received to communicate “halo” or 

cut data to neighbouring processes.  This is because the existing code sends small 

parts of the boundary data to neighbouring processes at a time, with an example of 

this shown in the following pseudo code: 

 
      do i = 0,boundary length 

         if(myblock1 .and. myblock2) then 

            do n = 0, 2*nharms 

               do ipde = 1, npde 

       copy 1st part of q2 to q1 

      copy 2nd part of q2 to q1 

               end do 

            end do 

         else if(myblock1) then 

            receive 1st part of q1 from remote process 

            receive 2nd part of q1 from remote process 

         else if(myblock2) then 

    send 1st part of q2 to remote process 

    send 2nd part of q2 to remote process 

         end if 

      end do 

 

Note that in the above pseudo code we can see that the MPI communications have 

already been partially optimised, as they don’t send a message for each element of the 

n and ipde loops, they aggregate the data to be sent or received into an array and 

then send that array, as shown in the following code (which implements one of the 

send steps in the pseudo code above): 

 
  datasize = npde*((2*nharms)+1) 

  tempindex = 1 

  do n = 0, 2*nharms 

    do ipde = 1, npde 



10 

 

      sendarray(tempindex,localsendnum) =  

&                 q2(in1,jn1,ipde,n) 

      tempindex = tempindex + 1 

    end do 

  end do 

  call sendblockdata(sendarray(1,localsendnum),iblk1, 

&            iblk2,datasize,sendrequests(localsendnum)) 

 

However, as the send and receive functionality is within a loop, and for that loop the 

send and receive processes do not change (the same sender and receiver are involved 

in all the communications for a given invocation of the loop) it is possible to reduce 

all these send and receives down to one send and one receive by further aggregating 

the data into a single send array and using a single receive array. 

 

We implemented such a scheme, which aggregated together communications, at the 

expense of extra data storage (required to store the aggregated data), and tested it with 

test case 1.  All the communication functionality is contained in routines named 

cutman_ in COSA. The results for HECToR are shown in Figure 3. 

 

 
Figure 3: Runtime for the new MPI code vs the old MPI code on HECToR using test case 1 

 

We can see from Figure 3 that the optimised MPI communication strategy has not 

improved the performance of the code; indeed the original MPI code is slightly faster 

at 256 and 512 cores whereas the new MPI code is slight faster at lower core counts.  

This is contrary to what we expected so we investigate what was happening in the 

code in more detail using the Scalasca[4] profiling tool. 

 

We ran performance profiling using the test data outlined in the previous Figures and 

discovered that the new MPI code does indeed dramatically reduce the number of 

MPI messages sent by the cutman_ routines.  Figure 4 and 5 show examples of the 

output of the Scalasca tool showing message counts and data transfer sizes for the old 

and new codes. 
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Figure 4: Communications profile, old MPI code using test case 1 
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Figure 5: Communications profile, new MPI code using test case 1 

 

We can see from these Figures that the total amount of data sent using both versions 

of the code is exactly the same (see the left hand column, under the “Bytes 

transferred” heading).  However, if we look at the “Communications” metric which 

outlines how many messages are sent, we can see that the new code sends two orders 

of magnitude fewer messages than the old code (1.39 x 10
9
 vs 2.47 x 10

7
 for the sends 

and receives). 
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Figure 6: Timings profile, old MPI code using test case 1 
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Figure 7: Timings profile, new MPI code using test case 1 

  

Figures 6 and 7 present profile information from the same runs as Figures 4 and 5, 

however Figures 6 and 7 now focus on the runtime information (how much time is 

spent in routines) rather than how often routines are called.  From these we can see 

that the new code does reduce the overall time spent in the messages sent for the halo 

exchange (the point-to-point message times are 6.19 x 10
4
 vs 5.45 x 10

4
) however, 

compared to the overall runtime (approximately 5.2 x 10
5
) this is not a large saving.  

Furthermore, the saving in the point-to-point time is balanced by an increase in the 

time for the collective communications (from around 1 x 10
4 

for the old code to 1.57 x 

10
4
 for the new code). 

 



15 

 

We can see that optimising the point-to-point communications when there are 

collective communications occurring every timestep is simply moving the place 

where the synchronisation (and therefore loss of performance) occurs from the halo 

communication exchange to the collective (global) communications.  Furthermore, 

the new MPI code uses a different approach to the original code.  In the original code 

the halo data associated with each cut owned by a process is sent as the cut is 

computed.  This means that large numbers of messages are sent, however it does have 

the benefit that the communications associated with sending the cut data are spread 

out through the cut calculations/computations.  The new code collects all the data 

associated with all the cuts a process has to communicate and then sends them all at 

once after all the cuts have been processed.  This concentrates the communication into 

a much smaller section of the code and may cause contention for the communication 

network by (as a consequence of the approach taken) meaning processes tend to all 

communicate at the same time rather than the communications being spread out. 

 

However, the performance data we collected was contrary to what we expected and 

had experienced on previous versions of HECToR (when COSA was run on phase2b 

of HECToR the MPI communications were seen to be more dominant), therefore we 

ran the same scaling tests as outlined in Figure 3 on a different machine (a large Bull 

supercomputer with 2 x 8 core Intel Xeon processors per node and an Infiniband QDR 

interconnect) and collected the performance data shown in Figure 8. 

 
Figure 8: Runtime for the new MPI code vs the old MPI code on Bull supercomputer using test 

case 1 

 

We can see from Figure 8 that the performance profile is significantly different to that 

of HECToR.  Here, combining the MPI messages has significantly improved the 

overall performance at all core counts (it should be noted that we could not complete 

the 16 core original MPI job in the time limit for jobs on this machine so it is not 

included in the Original MPI line), with the optimised code runtime being around two 

orders of magnitude quicker than the original code. 

 

We can, therefore, conclude that the network on HECToR is very good at performing 

lots of small messages, so much so that the aggregation we performed did not 
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significantly improve performance on HECToR.  However, for other systems, and 

even potentially for ARCHER (depending on what hardware is chosen for that 

machine), HECToR’s replacement, this is a very beneficial change. 

 

3.2 Collective Optimisations 

Following on from the MPI optimisation we documented in the previous section we 

looked at the collective communications used within COSA.  The main routine that 

uses MPI collective communication functions in COSA is combineforces, the 

body of which is outlined below: 

 
      do i=1,nbody 

         temparray(1) = cl(n,i) 

         temparray(2) = cd(n,i) 

         datalength = 2 

         if(functag.eq.3) then 

            temparray(3) = cm(n,i) 

            datalength = 3 

         end if 

         call realsumallreduce(temparray,datalength) 

         cl(n,i) = temparray(1) 

         cd(n,i) = temparray(2) 

         if(functag.eq.3) then 

            cm(n,i) = temparray(3) 

         end if 

      end do 

 

Studying this code it is evident that the code is potentially undertaking more all 

reduce operations than is necessary, especially if nbody is large.  Furthermore 

combineforces is called from within a loop that iterates over the number of 

harmonics (this sets the n variable in the code above), meaning that the all reduce is 

called nbody*((2*nharms)+1)times. 

 

By moving where combineforces is called from and aggregating the data to be 

communicated in the all reduce operations it is straight forward to combine these all 

reduce calls into a single all reduce for each call of the combineforces routine, as 

shown below: 

 
      j = 1 

      do k = 0,2*nharms 

         do i=1,nbody 

            temparray(j) = cl(k,i) 

            j = j +1 

            temparray(j) = cd(k,i) 

            j = j + 1 

            temparray(j) = cm(k,i) 

            j = j + 1 

         end do 

      end do 

      call realsumallreduce(temparray,j-1) 
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      j =  1 

      do k = 0,2*nharms 

         do i=1,nbody 

            cl(k,i) = temparray(j) 

            j = j +1 

            cd(k,i) = temparray(j) 

            j = j + 1 

            cm(k,i) = temparray(j) 

            j = j + 1 

         end do 

      end do 

 

As with the previous communication aggregation we have performed this at the 

expense of extra memory requirements for the combineforces routine, however 

these are not significant so do not adversely impact the overall memory footprint of 

the code, even for high nbody and harmonic sizes. 

 

We profiled the new code using scalasca as before, and the results are shown in 

Figures 9 and 10 
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Figure 9: Collective communication profile for the original MPI code using test case 1 
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Figure 10: Collective communication profile for the new MPI code using test case 1 

We can see from comparing the number of collective communications performed in 

Figures 9 and 10 that the number has reduced by an order of magnitude, from 1.37 x 

10
6 

in Figure 9 to 1.73 x 10
5
 in Figure 10, whilst the amount of data transferred 

(shown under the bytes transferred section) has stayed the same. 

3.3 Rationalise MPI I/O 

All the profiling, performance analysis, and optimisation work we have outlined in the 

previous sections has been focussing on the main computational and communication 

parts of COSA.  Particularly, we have been using COSA with the data output turned 

off.  However, for any real user of the code this is not an option, the data that is 
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written into the output files records the simulation undertaken by the code and enables 

analysis and understanding of those simulations.   

 

COSA produces a number of different output files, but for optimisation there are two 

types of file that are important, as they are the largest and require the most time to 

write; the flowtec files and the restart file.  COSA produces a single restart file at the 

end of the simulation (or more frequently if requested by the user) which can be used 

to restart the simulation from the point the restart file was written.   It also produces 

one flowtec file per real harmonic at the end of the simulation. The flowtec files 

contain the solution in a format suitable for use with the commercial CFD 

postprocessor and flow visualisation software TECPLOT. 

 

When large simulations are executed the output can be extremely large, with the 

restart file being many gigabytes (GB) in size and each flowtec file being close to a 

GB in size.  We have noticed when undertaking large simulation with the I/O 

functioning that writing these files was taking a significant fraction of the total 

runtime. 

 

Therefore, we worked on optimising the I/O used for writing the main output files to 

ensure that the I/O is being performed efficiently.   The existing code does use parallel 

I/O functionality, calling MPI I/O routines to perform the output from all processes at 

once.  However, the I/O is performed, as shown in the example below, through 

individual writes of data elements to the file one at a time: 

 
call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n), 4*doublesize,1, 

           MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize  

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION) 

call mpi_file_write(fid(n),x(i,j,n),1, 

     &     MPI_DOUBLE_PRECISION,MPI_STATUS_IGNORE, ierr) 

disp = disp + doublesize 

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION) 

call mpi_file_write(fid(n),y(i,j,n),1, 

     &     MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr) 

disp = disp + doublesize 

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION) 

call mpi_file_write(fid(n),rho,1, 

     &     MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr) 

disp = disp + doublesize 

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION) 

call mpi_file_write(fid(n),ux,1, 

     &     MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr) 

disp = disp + doublesize 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n), 4*doublesize,1, 

     &     MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

 

Where the setupfile subroutine invokes the MPI_FILE_SEEK function. 
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This use of MPI I/O is not optimal; generally MPI I/O gives the best performance 

when large amounts of data are written in a single call to the file.  However, the way 

the data is structured in COSA, and the format of the output files, prohibits doing this.   

 

It is important to the developers and users of COSA that the output files of the serial 

and parallel version of the code are the same so in the scope of this project we did not 

have the effort to change the way it currently writes the data.  However, we can 

optimise the current functionality, aggregating the data to be written into arrays and 

then writing that data all at once.  An example of this optimisation of the I/O code 

outlined above is provided below: 
 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n), 4*doublesize,1, 

     &   MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize  

tempdata(tempindex) = x(i,j,n) 

tempindex = tempindex + 1 

tempdata(tempindex) = y(i,j,n) 

tempindex = tempindex + 1 

tempdata(tempindex) = rho 

tempindex = tempindex + 1 

tempdata(tempindex) = ux 

tempindex = tempindex + 1 

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION) 

call mpi_file_write(fid(n),tempdata(1),tempindex-1, 

     &   MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr) 

disp = disp + doublesize*(tempindex-1) 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n), 4*(tempindex-1),1, 

     &   MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

 

 

Testing the new I/O functionality using test case 1 we collected the following data: 

 Runtime (seconds)  

Original MPI Code (No I/O) 421 

Original MPI Code 701 

New MPI Code 547 

Table 2: I/O functionality runtime using test case 1 

 

We can see that for the simulation performed (using 512 processes and running for 

250 iterations of the simulation) that the original I/O functionality imposed a 

significant overhead on the overall simulation time, increasing the runtime by around 

60%.  The optimised I/O functionality reduces this overhead to around 30%, more 

than halving the time required to output data to disk.   For this simulation the amount 

of data outputted is not very large, the restart file is around 350 MB and there are 31 

flowtec files of 20 MB each (so overall just less than 1 GB is written to disk). 

 

However, if we consider a larger simulation then the savings are even more 

significant.  The previous simulation (test case 1) had a 512-block grid with 262,144 
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cells, and 31 real harmonics, but the simulations currently being studied using COSA 

typically have a million or more cells.  We benchmarked the new MPI functionality 

using test case 3 (which produces a restart file of around 2.6 GB and 15 flowtec files 

each 281 MB in size), only undertaking a single iteration of the simulation.  The 

resultant runtimes on 512 and 2048 cores are shown in the following table. 

 Original I/O Code (seconds) New I/O Code (seconds) 

512 processes 1444 904 

2048 processes 1147 801 

Table 3: Performance of the new I/O functionality using test case 3 

 

We also discovered a bug in the parallel I/O code when undertaking this work.  When 

writing very large restart files (above ~4 GB) the original code did not work.  It was 

ascertained that the code that calculated the locations in the file for each MPI process 

to write data to using a FORTRAN integer datatype.  However, on HECToR (and 

many other machines) this defaults to a 4-byte integer datatype, and therefore cannot 

be used to calculate address bigger than 2
32 

bytes of memory (around 4 GB).  We 

fixed this by specifying these offset addresses as 8-byte integers in the code, enabling 

COSA to deal with larger simulations properly. 

 

We evaluated the overall performance improvement from all the MPI optimisations 

we have detailed in this section comparing the performance of the original code with 

the latest MPI code, and plotting the results in Figure 11 below. 

 
Figure 11: Runtime of the original and optimised MPI codes using test case 1 

 

We have significantly improved the performance of the code at larger core counts, 

with the runtime of the optimised MPI code at 256 and 512 cores around half the time 

of the original MPI code. 
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3.4 Linear Algebra Routines 

During the performance evaluation of COSA for this project it was recognised that 

there were a number of subroutines in the code implementing standard linear algebra 

functionality, particularly: 

• Matrix inversion 

• Matrix-vector products 

 

The harmonic balance Navier-Stokes equations can be viewed as a set of 

(2*nharms)+1 steady problems, all coupled by a source terms depending on the 

same number of steady flow solutions, which represent (2*nharms)+1 equally-

spaced snapshots of the sought nonlinear periodic flow [2].  The multigrid HB solver 

of COSA can be operated in two modes, using either a fully explicit Runge-Kutta 

(FERK) smoother, or a Point-Implicit Runge-Kutta (PIRK) smoother.  In the PIRK 

integration, the HB source term is treated implicitly at each Runge-Kutta stage. This 

results in the entire solution update process requiring the solution of ncell linear 

systems, each of dimension (npde*((2*nharms)+1))at every Runge-Kutta 

stage.   However, the use of the PIRK HB integration allows the use of substantially 

larger pseudo-time steps for time-marching the solution with respect to the 

conventional FERK HB integration, without any loss of numerical stability. As a 

consequence, a given convergence level of the HB solution can be achieved using a 

substantially lower number of MG iterations using the PIRK rather than the FERK 

integration.  

 

The original COSA code solved these ncell systems using hand-written linear 

algebra routines.  These were replaced by the corresponding routines in the LAPACK 

and BLAS libraries to ensure that optimal code for these functions were being used.    

All test cases presented in this report used relatively small time-steps and therefore 

were run using the FERK HB integration.   However, the PIRK functionality is now 

routinely used in production runs of the COSA HB solver, since it significantly 

reduces runtimes due to the use of fewer MG cycles. In order to demonstrate the 

computational performance improvement achieved by using the LAPACK routines, 

test case 1 has been run on HECToR also using the PIRK HB integration.  It has 

emerged that, at 512 processes, the new version of the code (using LAPACK routines) 

runs in around half the time of the original code (~740 seconds vs ~1400 seconds) 

 

The FERK or PIRK integration are selecting by choosing the appropriate flag (rkex 

or rkim) in the input file of COSA. 

 

4 Optimised Hybrid Parallelisation 
Using the information obtained in the profiling of the original code we worked to 

optimise the OpenMP functionality in COSA.  The profiling data shown in Section 2 

highlighted the fact that only a small number of routines are heavily used for 

harmonic balance simulations. 

 

The original hybrid code, which used the original OpenMP parallelisation, could be 

built to parallelise over blocks, harmonics, or grid cells, depending on the type of 

simulation being performed.  However, as the key strength of COSA is its harmonic 
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balance functionality we decided to focus the hybrid optimisation on harmonic 

balance simulations. 

 

Removing the original OpenMP functionality and re-implementing OpenMP simply 

for the key routines we have identified enabled us to optimise the code by removing 

OpenMP parallel regions from parts of the code that are used in the harmonic balance 

simulations but do not consume much of the runtime (and therefore do not have 

enough work within them to justify the overheads imposed when using OpenMP 

parallelisations). 

 

The following table contains all the routines in COSA that had OpenMP added during 

this work.  In the table the subroutine column lists those routines that have OpenMP 

parallel regions in them.  The related subroutines column lists those routines that have 

orphaned OpenMP do directives in them which are called by the routines lists in the 

subroutine column. 

File Subroutine Related Subroutines 

cosa.f resid bresid 

cosa.f deltat bdeltat 

cosa.f cirs cirs_b 

cosa.f precres prec_bres 

cosa.f src_hb src_bhb 

flux.f roflux roflux_b 

flux.f proflux proflux_b 

flux.f vflux vflux_b 

flux.f muscl muscl_bi 

limit_i 

muscl_bj 

limit_j 

flux.f q_der bq_der_i 

bq_der_j 

flux.f rtst b_rtst 

losp.f lsp blsp 

losp.f lm_cutoff_pg lm_bcutoff_pg 

losp.f lm_viscoff lm_bviscoff 

 

However, we also recognised that the way the OpenMP code has been added to 

COSA also was not efficient.  In general the loops in the code that compute over the 

harmonics of the simulation are called within subroutines which are called for each 

block in the simulation, and in each subroutine there can be a number of separate 

loops over harmonics.  Simply parallelising each harmonic loop with an OpenMP 

parallel do directive meant that there were a lot of places that OpenMP parallel 

regions were started and finished in the code.  There is an overhead associated with 

starting and finishing a parallel region in OpenMP, therefore we re-engineered the 

OpenMP code we had added to reduce these overheads. 

 

This reduction in overheads was achieved by hoisting (moving to a higher level in the 

program) the parallel regions from within the subroutines where the harmonic loops 

are, to the calling subroutine, as shown in the two code samples in Appendix A. 
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We also implemented “first touch” initialisation functionality to ensure that data is 

initialised on the cores that will be processing it.  The original code zeroed all the data 

arrays when they were allocated, and the allocation is done on the master thread.  We 

have altered the zeroing of the arrays so it is done in parallel, following the 

parallelisation pattern that is used in the rest of the code. 

 

Comparing the performance of the new OpenMP code with that of the original 

harmonic OpenMP parallelisation we obtained the scaling data shown in Figure 12.  It 

should be noted that this data was collected with I/O turned on, using test case 1, 

which is not an ideal test case for the OpenMP harmonic parallelisation. 

 
Figure 12: Runtime of the old and new OpenMP harmonic parallelisation using test case 1 

 

It should also be noted that due to the hardware used in HECToR, which is AMD 

Interlagos processors, it is difficult to compare the performance of 1 process using a 

single core on a processor to 2 processes using 2 cores on a processor as the processor 

is made up of 8 modules, each of which can run 2 processes (giving the 16 cores in a 

processor, and HECToR has 2 processor per node giving 32 cores per node), but they 

share the floating point unit and memory caches and bandwidth.  The cores can also 

change their computing frequency if not all the cores on the processor are being used.  

Therefore, the performance of the program using a single core on a processor (whilst 

the rest are idle) may be significantly higher than if 2 or more of the cores are being 

used as using a single core only potentially gives that process access to more floating 

point hardware and memory bandwidth than is available when 2 processes are running 

on a module.  This means that calculating the scaling of a parallel code based on the 

performance of the code on a single core may not be ideal. 

 

Using this optimised OpenMP implementation improves the performance of the 

hybrid code, as shown in the table next, which provides a comparison of the 

performance of the hybrid and MPI codes for the old OpenMP functionality and the 

optimised functionality (using test case 1). 

MPI Runtime Old Hybrid Runtime New Hybrid Runtime 

1693 2670.13 2215.69 
Table 4: Performance of the hybrid code using test case 1 on 512 cores 



26 

 

The data in the above table is collected using a simulation with 512 blocks so the MPI 

code is using 512 MPI tasks and the hybrid code is using 128 MPI tasks each with 4 

threads.  This means that each MPI task in the hybrid case has 4 blocks of the 

simulation, which is not ideal for the performance of the new hybrid code.  This 

hybrid code is designed to work best when the number of blocks per MPI task is 1, so 

we also ran the hybrid code using 512 MPI tasks each with 4 OpenMP threads (using 

a total of 2048 cores), the results of which are show in the following table (using test 

case 1). 

 MPI (512 cores) Old Hybrid  

(2048 cores) 

New Hybrid  

(2048 cores) 

Runtime (seconds) 1693 772.16 520 

Scaling (compared 

to the MPI code) 

N/A 2.19 3.26 

Table 5: Performance of the hybrid code using test case 1 on 2048 cores 

 

We can see that we have improved the performance of the hybrid code compared to 

the original hybrid code.  However, there is still a performance gap between the ideal 

scaling of the hybrid code and the currently scaling of the hybrid code.   Ideally, when 

using 4 times the number of cores (as is the case in the example above) the scaling 

would be 4 times the pure MPI code, whereas the new hybrid code has a scaling of 

3.26. 

5 Advanced Hybrid Functionality 
For the hybrid code we have parallelised the key computational routines using 

OpenMP, but as outlined in Section 4 the performance is still not ideal for the hybrid 

code.  However, there are two areas in the code that haven’t been parallelised with 

OpenMP: 

• I/O 

• MPI Communication 

 

The MPI communications are performed over a loop of the cut, or halo, data.  Each 

cut is independent so they can be performed by separate threads.  However, as they 

involve MPI communications then we need to ensure that we are using the threaded 

version of the MPI library using the function MPI_INIT_THREAD rather than the 

usual MPI_INIT function.  Furthermore, we need to ensure that the MPI library 

being used can support MPI_THREAD_MULTIPLE (individual OpenMP threads 

can perform MPI communications). 

 

The I/O undertaken through the MPI code used MPI I/O functionality.  In general the 

I/O operations are independent for each block and then each harmonic within the 

block.  However, there are a number of collective operations (operations that all 

processes must be involved in) in the I/O functionality, particularly opening and 

closing files.  To enable the OpenMP threads to be able to write to the restart and 

flowtec files independently we needed to ensure that all the threads are involved in the 

opening of the files so they each have a separate file handle to write.  Therefore, we 

implemented a hybrid file opening and closing strategy as follows: 

 
!$OMP DO ORDERED 

      do i=1,omp_get_num_threads() 
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!$OMP ORDERED 

         call openfile(fid,'restart',iomode) 

!$OMP END ORDERED 

      end do 

!$OMP END DO 

 

Where openfile calls MPI_FILE_OPEN which is a collective operations and 

therefore has to be called from all the OpenMP threads in the order sequence shown 

above.  The only other modification that needs to be made to enable file writing from 

the OpenMP threads was to ensure that they could correctly calculate where each 

harmonic needs to be written to (rather than each block as was the case previously). 

 

With these optimisations in place the code was once again benchmarked and the 

following results collected (using test case 1): 

 MPI (512 cores) Original Hybrid  

(2048 cores) 

New Hybrid  

(2048 cores) 

Runtime (seconds) 1693 772.16 460 

Scaling (compared 

to the MPI code) 

N/A 2.19 3.68 

Table 6: Optimised hybrid runtime using test case 1 

We can see that the hybrid code performance has improved, with close to ideal 

scaling being obtained for this benchmark case, even when full functionality (i.e. 

including I/O) is used.  However, it should be noted that to achieve this performance 

it is necessary to change the lustre stripe count (which specifies how many I/O servers 

can be used to write the file) for the restart file.  By default the restart file has is setup 

to use a single I/O server (a stripe count of 1), and this gives ideal performance of the 

MPI code and the old hybrid code.  However, when the restart I/O functionality is 

parallelised with OpenMP the default stripe count does not give ideal performance, so 

we changed this stripe count to -1 which enables all available I/O servers to be used.  

This gave better performance than the original stripe count. 

 

The parallelisation of the writing of the flowtec files over harmonics with OpenMP 

does not require this as there are multiple flowtec files which can be distributed to 

different I/O servers by the lustre file system. 

 

6 Summary 
We have undertaken a range of optimisation work on the COSA simulation code.  The 

MPI optimisation work we performed has resulted in the new code scaling much 

better than the original MPI code, with the overall runtime being reduced to half that 

of the original code for a representative test case at 256 and 512 cores on HECToR.  

This represents a significant saving in computational resources. 

 

We have also worked to optimise the hybrid version of the code.  The original hybrid 

code gave around a halving in computational runtime for four times the computational 

resources, with an operating efficiency of around 55%. The new hybrid code operates 

at around 90% efficiency for the same test case on HECToR, again representing a 

significant saving in computational resources, and furthermore enabling users to 

complete simulations in around half the time that the original code took for the same 

problem. 
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Another outcome of this project is that COSA has now been installed as a package, 

available to all users, on HECToR.  MPI and hybrid executables are available, along 

with a user guide describing the code and how to use it, and example simulations to 

enable interested parties to experiment with the software.  The executables include all 

the optimisations undertaken in this project. 

 

All the code modifications performed in this project have been incorporated back into 

the main COSA source code, and extensively tested to ensure they have not altered 

the correctness of the COSA simulations. 
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c--------------------------------------------------------------------- 

      subroutine resid(idir,nl,flux,res) 

c---------------------------------------------------------------------        

 

      implicit none 

 

      include 'common.block' 

      include 'cosa.inc' 

 

      integer*4 idir,nl,iblock,imax,jmax,iflux,ires 

      real (kind=8) res(*),flux(*) 

 

      do iblock = 1,mynblocks 

        imax   = i_imax     (iblock,nl) 

        jmax   = j_jmax     (iblock,nl) 

        ires   = 1 + off_p3 (iblock,nl) * npde * dim5 

        iflux  = 1 + off_0  (iblock,nl) * npde * dim5 

        call bresid(flux(iflux),res(ires),idir,imax,jmax,npde,nharms) 

      end do 

 

      return 

      end 

 

c--------------------------------------------------------------------- 

      subroutine bresid(flux,res,idir,imax,jmax,npde,nharms) 

c---------------------------------------------------------------------        

 

      implicit none 

 

      include 'common.block' 

 

      integer*4 imax,jmax,npde,nharms 

      integer*4 i,j,idir,ipde,n 

      real (kind=8)  

     &     res(-1:imax+1,-1:jmax+1,npde,0:2*nharms), 

     &     flux(imax,jmax,npde,0:2*nharms) 

 

      if (idir.eq.1) then 

 

#ifdef OPENMPNHARMS 

!$OMP PARALLEL DO 

!$OMP& PRIVATE(n,ipde,j,i)  

!$OMP& SHARED(nharms,npde,cosa2d,cosa3d,imax,jmax,res,flux) 

#endif 

        do n = 0,2*nharms 

          do ipde = 1,npde 

            if ((cosa2d.and.(ipde.ne.4)).or.cosa3d) then 

              do j = 1,jmax-1 

                do i = 1,imax-1 

                  res(i,j,ipde,n) = res(i,j,ipde,n) + 

     &                              flux(i+1,j,ipde,n)-flux(i,j,ipde,n) 

                end do 

              end do 

            end if 

          end do 

        end do 

#ifdef OPENMPNHARMS 

!$OMP END PARALLEL DO 

#endif 

      else if (idir.eq.2) then 

 

#ifdef OPENMPNHARMS 

!$OMP PARALLEL DO 

!$OMP& PRIVATE(n,ipde,j,i) 

!$OMP& SHARED(res,flux,cosa3d,npde,nharms,coda2d,imax,jmax)  

#endif 

        do n = 0,2*nharms 

          do ipde = 1,npde 

            if ((cosa2d.and.(ipde.ne.4)).or.cosa3d) then 

              do j = 1,jmax-1 

                do i = 1,imax-1 

                  res(i,j,ipde,n) = res(i,j,ipde,n) + 

     &                              flux(i,j+1,ipde,n)-flux(i,j,ipde,n) 

                end do 

              end do 

            end if 

          end do 

        end do 

#ifdef OPENMPNHARMS 

!$OMP END PARALLEL DO 

#endif 

 

      end if 

 

      return 

      end 
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Below is an optimised version of the above routine where the OpenMP parallel region 

has been hoisted to the routine above to reduce the OpenMP overheads. 

 
c--------------------------------------------------------------------- 

      subroutine resid(idir,nl,flux,res) 

c---------------------------------------------------------------------        

 

      implicit none 

 

      include 'common.block' 

      include 'cosa.inc' 

 

      integer*4 idir,nl,iblock,imax,jmax,iflux,ires 

      real (kind=8) res(*),flux(*) 

 

#ifdef OPENMPNHARMS 

!$OMP PARALLEL DEFAULT(NONE)  

!$OMP& SHARED(mynblocks, i_imax, j_jmax, off_p3, off_0, nharms, nl, npde, dim5)  

!$OMP& SHARED(flux, res, idir) 

!$OMP& PRIVATE(imax, jmax, ires, iflux, iblock)  

#endif 

iblock = 1,mynblocks 

        imax   = i_imax     (iblock,nl) 

        jmax   = j_jmax     (iblock,nl) 

        ires   = 1 + off_p3 (iblock,nl) * npde * dim5 

        iflux  = 1 + off_0  (iblock,nl) * npde * dim5 

        call bresid(flux(iflux),res(ires),idir,imax,jmax,npde,nharms) 

      end do 

#ifdef OPENMPNHARMS 

!$OMP END PARALLEL 

#endif 

 

      return 

      end 

 

c--------------------------------------------------------------------- 

      subroutine bresid(flux,res,idir,imax,jmax,npde,nharms) 

c---------------------------------------------------------------------        

 

      implicit none 

 

      include 'common.block' 

 

      integer*4 imax,jmax,npde,nharms 

      integer*4 i,j,idir,ipde,n 

      real (kind=8)  

     &     res(-1:imax+1,-1:jmax+1,npde,0:2*nharms), 

     &     flux(imax,jmax,npde,0:2*nharms) 

 

      if (idir.eq.1) then 

 

#ifdef OPENMPNHARMS 

!$OMP DO 

!$OMP& PRIVATE(n,ipde,j,i)  

#endif 

        do n = 0,2*nharms 

          do ipde = 1,npde 

            if ((cosa2d.and.(ipde.ne.4)).or.cosa3d) then 

              do j = 1,jmax-1 

                do i = 1,imax-1 

                  res(i,j,ipde,n) = res(i,j,ipde,n) + 

     &                              flux(i+1,j,ipde,n)-flux(i,j,ipde,n) 

                end do 

              end do 

            end if 

          end do 

        end do 

 

      else if (idir.eq.2) then 

 

#ifdef OPENMPNHARMS 

!$OMP DO 

!$OMP& PRIVATE(n,ipde,j,i)  

#endif 

        do n = 0,2*nharms 

          do ipde = 1,npde 

            if ((cosa2d.and.(ipde.ne.4)).or.cosa3d) then 

              do j = 1,jmax-1 

                do i = 1,imax-1 

                  res(i,j,ipde,n) = res(i,j,ipde,n) + 

     &                              flux(i,j+1,ipde,n)-flux(i,j,ipde,n) 

                end do 

              end do 

            end if 

          end do 



31 

 

        end do 

 

      end if 

 

      return 

      end 

 

 

Appendix B 
The configuration data for each of the test cases is included below. 

 

Test Case 1 

*** input file for 2D Euler/NS COSA solver *** 

model      id        flow-type  debug 

laminar    1         external   n 

gamma      reyno     pranl      machfs   alpha 

1.4d0      1100      0.71d0     1.d-01   0.d0 

flow-mode  solver    rk option  nharms   freq. 

unsteady   hb        rkex       15       0.014 

move       dh0x      dh0y       xh         yh     dthet0  

phipp 

plupit     0.d0      1.d0       0.33333333 0.d0   76.33d0 

270.d0 

irest      srest     cfl        lmax     iupdt    toler 

 0         1500      0.5        250      1        1.d-20 

rkap       irs-typ   cfli       psi 

-1.        cirs_v1   1.0        0.25 

ilim       epslim    cntrpy     etpfxtyp entfxctf 

0          5.d-04    0.d0       0        0.95d0 

nlevel     nl_crs    nl_fmg     nstart   npre   npost     

ncrs 

3          2         1          5        5      5         

10 

prol. type 

bilinear 

flow-speed 

nolomach 

tref 

288.2 

functional 

cl_cd_cm_1 0.33333333 0.0 

1  

20 475 476 479 480 483 484 487 488 491 492 495 496 499 

500 503 504 507 508 511 512 

512 

Test Case 2 

Coarse input file: 
*** input file for 2D Euler/NS COSA solver *** 

model      id        flow-type  debug 

laminar    1         external   n  
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gamma      reyno     pranl      machfs   alpha 

1.4d0      1000      0.71d0     0.2244   9.138 

flow-mode  solver    rk option  nharms   freq. 

unsteady   hb        rkex       8        

0.002707149187620 

move       dh0x      dh0y 

plunge     1.2091    0.d0 

irest      srest     cfl        rmpf     lmax   iupdt    

toler 

 0         4000      1.5        1.0      10000  1        

1.d-13 

rkap       irs-typ   resper     cfli     psi 

-1.        cirs_v1   0          3.0d0    0.25 

ilim       epslim    cntrpy     etpfxtyp   entfxctf 

0          5.d-04    0.d0       0          0.95d0 

nlevel     nl_crs    nl_fmg     nstart   npre   npost    

ncrs 

3          4         1          2        2      2        

8  

flow-speed cff-typ   visc-prec  prec-typ lx     ly 

lomach     2         viscous    mixed    28.0   28.0  

epsp(1)    epsp(2)   epsp(3) 

2.d-1      9.d-1     9.d-1 

tref 

288.2 

functional  

clmom 0.25d0 0.d0 

1                                           ! nbody 

12  3  4  5  6  7  8  9  10  11  12  13  14 ! n_bodblo, 

i_bdbl(i_bodblo) 
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Fine input file: 
*** input file for 2D Euler/NS COSA solver *** 

model      id        flow-type  debug 

laminar    1         external   n 

gamma      reyno     pranl      machfs   alpha 

1.4d0      1000      0.71d0     0.2244   9.138 

flow-mode  solver    rk option  nharms   freq. 

unsteady   hb        rkex       8        

0.002707149187620 

move       dh0x      dh0y 

plunge     1.2091    0.d0 

irest      srest     cfl        rmpf     lmax   iupdt    

toler 

 0         4000      1.5        1.0      10000  1        

1.d-13 

rkap       irs-typ   resper     cfli     psi 

-1.        cirs_v1   0          3.0d0    0.25 

ilim       epslim    cntrpy     etpfxtyp   entfxctf 

0          5.d-04    0.d0       0          0.95d0 
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nlevel     nl_crs    nl_fmg     nstart   npre   npost    

ncrs 

3          4         1          2        2      2        

8 

flow-speed cff-typ   visc-prec  prec-typ lx     ly 

lomach     2         viscous    mixed    28.0   28.0 

epsp(1)    epsp(2)   epsp(3) 

2.d-1      9.d-1     9.d-1 

tref 

288.2 

functional 

clmom 0.25d0 0.d0 

1                                             ! nbody 

12  27  25  23  21  19  18  3  4  5  7  9  11 ! n_bodblo, 

i_bdbl(i_bodblo) 
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Test Case 3 

*** input file for 2D Euler/NS COSA solver *** 

model      id        flow-type  debug 

laminar    1         external   n 

gamma      reyno     pranl      machfs   alpha 

1.4d0      1000      0.71d0     0.2244   9.138 

flow-mode  solver    rk option  nharms   freq. 

unsteady   hb        rkex       8        

0.002707149187620 

move       dh0x      dh0y 

plunge     1.2091    0.d0 

irest      srest     cfl        lmax   iupdt    toler 

 0         200       1.5        2      1        1.d-12 

rkap       irs-typ   cfli       psi 

-1.        cirs_v1   3.0d0      0.25 

ilim       epslim    cntrpy     etpfxtyp   entfxctf 

0          5.d-04    0.d0       0          0.95d0 

nlevel     nl_crs    nl_fmg     nstart   npre   npost    

ncrs 

3          4         1          2        2      2        

8 

prol. type 

bilinear 

flow-speed cff-typ   visc-prec  prec-typ lx     ly 

lomach     2         viscous    mixed    28.0   28.0 

epsp(1)    epsp(2)   epsp(3) 

2.d-1      9.d-1     9.d-1 

tref 

288.2 

functional 

cl_cd_cm_0 0.25d0 0.d0 

1 
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48 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

46 47 48 49 50 51 52 53 54 55 56 

2048 


