
1

OPTIMISING THE

PARALLELISATION OF A

HARMONIC BALANCE NAVIER-

STOKES SOLVER FOR THE ULTRA-

RAPID ANALYSIS OF WIND

TURBINE, TURBOMACHINERY

AND AIRCRAFT WING PERIODIC

FLOWS

Document Title: Final Report

Authorship: Adrian Jackson, M. Sergio Campobasso

Date: 29th March 2013

Version: 1.8

2

Abstract
COSA is a novel CFD system based on the compressible Navier-Stokes model for

unsteady aerodynamics and aeroelasticity of fixed structures, rotary wings and

turbomachinery blades. It includes a steady, time domain, and harmonic balance flow

solver. All three solvers use a finite volume scheme with structured multi-block grids.

All solvers can also use Low-Speed Preconditioning, which enables their use also for

low-speed flows, such as those associated with horizontal axis wind turbines.

Turbulence effects are incorporated by using the two-equation K-ω shear stress

transport turbulence model of Menter.

COSA has primarily been parallelised using MPI, but there is also a hybrid

parallelisation that adds OpenMP functionality to the MPI parallelisation to enable

larger numbers of cores to be utilised for a given simulation as the MPI parallelisation

is limited to the number of geometric partitions (or blocks) in the simulation. This

project worked to optimise these two parallelisation strategies, improving the

efficiency of both and therefore reducing the computational time required to compute

simulations.

Through a combination of different MPI optimisations we have managed to halve the

runtime of the MPI based parallelisation when comparing to the original code for a

representative use case. Furthermore, we have optimised the hybrid code so that it is

close to 90% efficient when going beyond the number of cores that the MPI can

exploit.

3

Table of Contents

Table of Contents ... 3

1 Introduction .. 4

1.1 COSA ... 4

1.2 HECToR .. 5

1.3 Test Cases .. 5

1.3.1 Test Case 1 ... 5

1.3.2 Test Case 2 ... 5

1.3.3 Test Case 3 ... 5

1.4 Problem to be tackled... 5

2 Initial Performance... 6

3 Optimised MPI Parallelisation ... 9

3.1 Rationalise MPI Communications ... 9

3.2 Collective Optimisations .. 16

3.3 Rationalise MPI I/O ... 19

3.4 Linear Algebra Routines .. 23

4 Optimised Hybrid Parallelisation ... 23

5 Advanced Hybrid Functionality ... 26

6 Summary .. 27

7 Acknowledgements .. 28

Appendix A .. 28

Appendix B .. 31

Test Case 1 ... 31

Test Case 2 ... 31

Test Case 3 ... 33

4

1 Introduction
This report documents the work performed during the dCSE project titled

“OPTIMISING THE PARALLELISATION OF A HARMONIC BALANCE

NAVIER-STOKES SOLVER FOR THE ULTRA-RAPID ANALYSIS OF WIND

TURBINE, TURBOMACHINERY AND AIRCRAFT WING PERIODIC FLOWS”.

The project, undertaken at EPCC, The University of Edinburgh, in conjunction with

Dr M. Sergio Campobasso from the Systems, Power and Energy Research Division of

Glasgow University, aimed to improve the overall performance of the COSA

simulation code, thereby reducing the computational resources required to undertake

scientific simulations, enabling more efficient use of the resources provided by the

HECToR service (and other HPC systems), and reducing the runtime required to

undertake simulations for large scale problems.

1.1 COSA

COSA is a novel CFD system based on the compressible Navier-Stokes (NS) model

for unsteady aerodynamics and aeroelasticity of fixed structures, rotary wings and

turbomachinery blades. The COSA code is written in FORTRAN, and it includes a

steady, a time domain (TD) [1-3] and a harmonic balance (HB) [2] flow solver. All

three solvers use a finite volume scheme with structured multi-block grids. The

integration of the steady and HB equations is based on an explicit multigrid algorithm

using a multi-stage Runge-Kutta (RK) smoother. Solution of unsteady problems in the

TD is obtained by using Jameson’s dual-time stepping. Turbulent flow effects are

modelled by means of the two-equation K-ω Shear Stress Transport (SST) turbulence

model of Menter [1].

The COSA suite also uses Low-Speed Preconditioning [2,3], which enables its use

also for low-speed flows, such as those associated with horizontal axis wind turbines

(HAWT’s). All 3 COSA solvers (steady, TD, and HB) have been parallelised, since

their execution requires large amounts of computational resources. There are three

different parallelisations of the current code[5,6]:

• OpenMP

• MPI

• Hybrid (mixed OpenMP and MPI)

The OpenMP parallelisation can work for all three solvers, with different

parallelisations available over the blocks in the multi-block grids, over the harmonics

for the HB solver, and over the grid points for those problems that use low numbers of

blocks or harmonics (for instance a single block, TD, simulation).

The MPI parallelisation distributes the blocks of the multi-block grid over the

available MPI processes to distribute the work of the simulation. Communication is

required between the blocks where data on the edge of blocks (called cuts in COSA)

needs to be communicated to neighbouring blocks (halo communications). The

maximum number of processes that the MPI parallelisation can use is limited by the

number of geometric partitions (grid blocks) in the simulation.

5

The hybrid parallelisation combines the MPI code with either the harmonic OpenMP

parallelisation or the grid point OpenMP parallelisation, depending on the simulation

being performed.

1.2 HECToR

HECToR, a Cray XE6 computer, is the UK National Supercomputing Service. This

project utilised the Phase 3 incarnation of the system. Phase 3 of HECToR consists

of 2816 nodes, each containing two 16-core 2.3 GHz ’Interlagos’ AMD Opteron

processors per node, giving a total of 32 cores per node, with 1 GB of memory per

core. This configuration provides a machine with 90,112 cores in total, 90TB of main

memory, and a peak performance of over 800 TFlop/s.

1.3 Test Cases

Three different test cases have been used for understanding the performance and

runtime characteristics of COSA, the details of these are provided next.

1.3.1 Test Case 1

This test case is a HB analysis of a heaving and pitching wing designed to extract

energy from an oncoming air stream. The 512-block grid has 262,144 cells, and 31

real harmonics are used. This HB analysis has the same memory requirements of a

steady flow analysis with more than 8 million cells. Further details on the

aerodynamics of this device and the analysis of its efficiency based on COSA time-

domain simulations are reported in the articles [1,3].

1.3.2 Test Case 2

The test case is that associated with the HB flow analysis of the blade section at 90%

span of a multi-megawatt horizontal axis wind turbine operating in yawed wind. The

analysis has been performed using both a coarse and a fine grid, both consisting of 32

grid blocks. The coarse grid has 73728 cells, whereas the fine grid has 654336 cells.

Further details on the time-domain and HB COSA analyses of this problem are

reported in the article [2].

1.3.3 Test Case 3

Test case 3 is a finer grid version of test case 2. In TC3, the computational grid has

2048 blocks, and the grid has 4,194,304 cells. In the simulations we have used 17 real

harmonics.

1.4 Problem to be tackled

Whilst the different parallelisations of COSA enable large simulations to be

performed correctly, and in a much shorter time than the serial code, the efficiency of

the different parallel implementations is not optimal. The OpenMP parallelisation

allows simulations to be run on local computers such as desktop machines, and small

shared-memory clusters, however it cannot be used on large scale resources.

Furthermore, the OpenMP parallelisation did not scale well even on small numbers of

cores. The MPI code is generally efficient, although there are some areas that can be

improved, but can only utilise a maximum number of cores equal to the maximum

number of grid blocks in the simulation. The hybrid code was developed to address

this restriction, enabling parallelisation that use more cores than the number of blocks

6

in the simulation, however it was less efficient than the pure MPI parallelisation as it

used the inefficient OpenMP functionality as well as the reasonably efficient MPI

functionality.

Therefore, this dCSE project aimed to improve COSA in the following two areas to

enable it to efficiently be used on HECToR:

1. Optimise MPI communications of the COSA HB solver

2. Optimise the OpenMP and hybrid parallelisation of the COSA HB solver

For the remainder of this report we will outline the current performance of the

existing COSA parallelisation in Section 2, discuss the optimisation performed on the

MPI code in Section 3, outline the initial optimisation work undertaken on the hybrid

code in Section 4, and further advanced hybrid optimisation undertaken in Section 5.

We will finish with summary of the work undertaken and the overall performance

benefits in the final section, Section 6.

2 Initial Performance
The efficiency of the existing harmonic OpenMP parallelisation has been assessed

using test case 1. Figure 1 shows the runtime of the OpenMP parallelisation on a 32-

core node of HECToR, and it highlights a poor performance of the OpenMP

parallelisation.

Figure 1:Runtime for the OpenMP code for test case 1

The speedup of the MPI parallelisation of the code on the same test case as the one

used for the OpenMP parallel scaling study is shown in Figure 2. The MPI code has

much better scaling than the equivalent OpenMP functionality, but it is still not

optimal, particularly at larger process counts. The MPI code was designed to provide

a one-to-one correspondence to the functionality of the serial code and it sends the

dataset of one halo cell at a time rather than the dataset of all halo cells associated

with a particular grid cut (boundary between adjacent blocks) at once. Although

7

important in establishing correctness and confidence in the parallelisation, this

simplistic approach is inefficient. In an efficiently implemented MPI code, increasing

the size of the grid blocks without altering the overall number of blocks should have a

negligible impact on the MPI efficiency, because the overall number of MPI

communications does not vary significantly, and the ratio between the time spent for

actual computing and communications remains about constant (this is because both

the size of the MPI messages and the number of operations of each block increases).

Conversely, in the MPI code, increasing the size of each block reduces the MPI

efficiency, because this operation results in a larger number of small MPI messages.

However, in the code with an ideal parallelisation there would be a constant number

of messages, the size of which depends on the block size, rather than an increase in

the number of messages sent. An example is provided by the table below, which

reports the results of a scaling test of the existing MPI COSA HB solver on HECToR

Phase 2b. Test case 2 was used for these benchmarking runs. As expected, the MPI

efficiency is higher for the coarse grid, as a consequence of the substantially larger

number of (small) MPI messages present in the fine grid case.

Cores 1 2 4 8 16 32

Coarse grid speed-up 1.00 1.82 3.21 5.56 11.30 21.01

Fine grid speed-up 1.00 1.80 2.96 4.55 9.34 17.47
Table 1: Scaling of the original MPI code using test case 2 with different mesh sizes

Aside from this issue, the existing MPI HB code has an acceptable performance, also

for larger problems, as demonstrated in Error! Reference source not found., where

the speed-up of the MPI code is plotted against the number of processes used.

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Cores

S
p
e
e
d
-
u
p

IDEAL

MPI

Figure 2: Parallel speedup of MPI code for test case 1

8

We also looked in detail at the performance of the MPI code, profiling it with the

Craypat performance analysis tool available on HECToR. We obtained the following

profiling data using 512 MPI processes on test case 1.

Samp% | Samp | Imb. | Imb. |Group

 | | Samp | Samp% | Function

 | | | | PE=HIDE

 100.0% | 63045.9 | -- | -- |Total

|--

| 78.8% | 49694.5 | -- | -- |USER

||---

|| 17.3% | 10911.0 | 596.0 | 5.2% |blsp_

|| 14.9% | 9415.1 | 630.9 | 6.3% |proflux_b_

|| 6.6% | 4143.6 | 393.4 | 8.7% |vflux_b_

|| 4.7% | 2933.7 | 739.3 | 20.1% |src_bhb_

|| 4.1% | 2554.6 | 289.4 | 10.2% |tridi_

|| 2.7% | 1709.7 | 368.3 | 17.7% |muscl_bi_

|| 2.7% | 1698.2 | 183.8 | 9.8% |cirs_b_

|| 2.7% | 1686.2 | 155.8 | 8.5% |bresid_

|| 2.6% | 1660.3 | 213.7 | 11.4% |muscl_bj_

|| 1.6% | 1020.4 | 128.6 | 11.2% |eig_ns_p_

|| 1.6% | 1011.3 | 190.7 | 15.9% |prec_bres_

|| 1.5% | 936.2 | 198.8 | 17.5% |lm_bviscoff_

|| 1.5% | 922.2 | 179.8 | 16.3% |bq_der_i_

|| 1.2% | 785.1 | 103.9 | 11.7% |bdeltat_

|| 1.2% | 782.9 | 210.1 | 21.2% |bq_der_j_

|| 1.2% | 727.7 | 101.3 | 12.2% |limit_j_

|| 1.1% | 708.3 | 212.7 | 23.1% |limit_i_

|| 1.1% | 698.0 | 124.0 | 15.1% |b_rtst_

|| 1.0% | 633.1 | 107.9 | 14.6% |cut_q_

||===

| 14.7% | 9292.6 | -- | -- |MPI

||---

|| 10.2% | 6412.1 | 3715.9 | 36.7% |MPI_WAITANY

|| 2.7% | 1704.2 | 170.8 | 9.1% |MPI_ISEND

||===

| 6.4% | 4058.8 | -- | -- |ETC

||---

|| 1.4% | 886.5 | 127.5 | 12.6% |__c_mzero8

|| 1.2% | 731.8 | 251.2 | 25.6% |_int_malloc

|==

We can see that the majority of the runtime of COSA (around 80%) for this testcase is

spent in user routines (i.e. the subroutines in the COSA project), with around 15% of

the runtime in MPI communications. Furthermore, we can see that there are 10

subroutines that take up around 60% of the overall runtime of the code. Therefore,

we can identify those routines that are critical for optimising the OpenMP

performance (and therefore ensuring that the hybrid code has good performance), and

also which parts of the communication functionality are dominating the MPI

performance enabling us to effectively target our work on the MPI optimisation. It

9

should be noted that the above profiling data was collected with the I/O in COSA

turned off, so I/O costs have not been profiled.

3 Optimised MPI Parallelisation
The primary focus for this work was to optimise the inefficient MPI communications

in COSA. The existing code utilises non-blocking MPI communications, but for a

large simulation there can be as many as 5,000 messages sent between

communicating processes at each Runge-Kutta step. Optimising this was one of the

first steps in the dCSE. However, there were a number of other areas that were also

identified for optimisation in this work. A number of places in the COSA code use

hand coded linear algebra functionality, it was decided to replace this with the same

functionality implemented in a linear algebra library. Furthermore, for large

simulations the I/O was seen to take up a large portion of the runtime so we also

looked at optimising that. The following subsections will go into these optimisations

in more detail.

3.1 Rationalise MPI Communications

As mentioned in the introduction to this section the current MPI parallelisation can

require a large number of messages to be send and received to communicate “halo” or

cut data to neighbouring processes. This is because the existing code sends small

parts of the boundary data to neighbouring processes at a time, with an example of

this shown in the following pseudo code:

 do i = 0,boundary length

 if(myblock1 .and. myblock2) then

 do n = 0, 2*nharms

 do ipde = 1, npde

 copy 1st part of q2 to q1

 copy 2nd part of q2 to q1

 end do

 end do

 else if(myblock1) then

 receive 1st part of q1 from remote process

 receive 2nd part of q1 from remote process

 else if(myblock2) then

 send 1st part of q2 to remote process

 send 2nd part of q2 to remote process

 end if

 end do

Note that in the above pseudo code we can see that the MPI communications have

already been partially optimised, as they don’t send a message for each element of the

n and ipde loops, they aggregate the data to be sent or received into an array and

then send that array, as shown in the following code (which implements one of the

send steps in the pseudo code above):

 datasize = npde*((2*nharms)+1)

 tempindex = 1

 do n = 0, 2*nharms

 do ipde = 1, npde

10

 sendarray(tempindex,localsendnum) =

& q2(in1,jn1,ipde,n)

 tempindex = tempindex + 1

 end do

 end do

 call sendblockdata(sendarray(1,localsendnum),iblk1,

& iblk2,datasize,sendrequests(localsendnum))

However, as the send and receive functionality is within a loop, and for that loop the

send and receive processes do not change (the same sender and receiver are involved

in all the communications for a given invocation of the loop) it is possible to reduce

all these send and receives down to one send and one receive by further aggregating

the data into a single send array and using a single receive array.

We implemented such a scheme, which aggregated together communications, at the

expense of extra data storage (required to store the aggregated data), and tested it with

test case 1. All the communication functionality is contained in routines named

cutman_ in COSA. The results for HECToR are shown in Figure 3.

Figure 3: Runtime for the new MPI code vs the old MPI code on HECToR using test case 1

We can see from Figure 3 that the optimised MPI communication strategy has not

improved the performance of the code; indeed the original MPI code is slightly faster

at 256 and 512 cores whereas the new MPI code is slight faster at lower core counts.

This is contrary to what we expected so we investigate what was happening in the

code in more detail using the Scalasca[4] profiling tool.

We ran performance profiling using the test data outlined in the previous Figures and

discovered that the new MPI code does indeed dramatically reduce the number of

MPI messages sent by the cutman_ routines. Figure 4 and 5 show examples of the

output of the Scalasca tool showing message counts and data transfer sizes for the old

and new codes.

11

Figure 4: Communications profile, old MPI code using test case 1

12

Figure 5: Communications profile, new MPI code using test case 1

We can see from these Figures that the total amount of data sent using both versions

of the code is exactly the same (see the left hand column, under the “Bytes

transferred” heading). However, if we look at the “Communications” metric which

outlines how many messages are sent, we can see that the new code sends two orders

of magnitude fewer messages than the old code (1.39 x 10
9
 vs 2.47 x 10

7
 for the sends

and receives).

13

Figure 6: Timings profile, old MPI code using test case 1

14

Figure 7: Timings profile, new MPI code using test case 1

Figures 6 and 7 present profile information from the same runs as Figures 4 and 5,

however Figures 6 and 7 now focus on the runtime information (how much time is

spent in routines) rather than how often routines are called. From these we can see

that the new code does reduce the overall time spent in the messages sent for the halo

exchange (the point-to-point message times are 6.19 x 10
4
 vs 5.45 x 10

4
) however,

compared to the overall runtime (approximately 5.2 x 10
5
) this is not a large saving.

Furthermore, the saving in the point-to-point time is balanced by an increase in the

time for the collective communications (from around 1 x 10
4

for the old code to 1.57 x

10
4
 for the new code).

15

We can see that optimising the point-to-point communications when there are

collective communications occurring every timestep is simply moving the place

where the synchronisation (and therefore loss of performance) occurs from the halo

communication exchange to the collective (global) communications. Furthermore,

the new MPI code uses a different approach to the original code. In the original code

the halo data associated with each cut owned by a process is sent as the cut is

computed. This means that large numbers of messages are sent, however it does have

the benefit that the communications associated with sending the cut data are spread

out through the cut calculations/computations. The new code collects all the data

associated with all the cuts a process has to communicate and then sends them all at

once after all the cuts have been processed. This concentrates the communication into

a much smaller section of the code and may cause contention for the communication

network by (as a consequence of the approach taken) meaning processes tend to all

communicate at the same time rather than the communications being spread out.

However, the performance data we collected was contrary to what we expected and

had experienced on previous versions of HECToR (when COSA was run on phase2b

of HECToR the MPI communications were seen to be more dominant), therefore we

ran the same scaling tests as outlined in Figure 3 on a different machine (a large Bull

supercomputer with 2 x 8 core Intel Xeon processors per node and an Infiniband QDR

interconnect) and collected the performance data shown in Figure 8.

Figure 8: Runtime for the new MPI code vs the old MPI code on Bull supercomputer using test

case 1

We can see from Figure 8 that the performance profile is significantly different to that

of HECToR. Here, combining the MPI messages has significantly improved the

overall performance at all core counts (it should be noted that we could not complete

the 16 core original MPI job in the time limit for jobs on this machine so it is not

included in the Original MPI line), with the optimised code runtime being around two

orders of magnitude quicker than the original code.

We can, therefore, conclude that the network on HECToR is very good at performing

lots of small messages, so much so that the aggregation we performed did not

16

significantly improve performance on HECToR. However, for other systems, and

even potentially for ARCHER (depending on what hardware is chosen for that

machine), HECToR’s replacement, this is a very beneficial change.

3.2 Collective Optimisations

Following on from the MPI optimisation we documented in the previous section we

looked at the collective communications used within COSA. The main routine that

uses MPI collective communication functions in COSA is combineforces, the

body of which is outlined below:

 do i=1,nbody

 temparray(1) = cl(n,i)

 temparray(2) = cd(n,i)

 datalength = 2

 if(functag.eq.3) then

 temparray(3) = cm(n,i)

 datalength = 3

 end if

 call realsumallreduce(temparray,datalength)

 cl(n,i) = temparray(1)

 cd(n,i) = temparray(2)

 if(functag.eq.3) then

 cm(n,i) = temparray(3)

 end if

 end do

Studying this code it is evident that the code is potentially undertaking more all

reduce operations than is necessary, especially if nbody is large. Furthermore

combineforces is called from within a loop that iterates over the number of

harmonics (this sets the n variable in the code above), meaning that the all reduce is

called nbody*((2*nharms)+1)times.

By moving where combineforces is called from and aggregating the data to be

communicated in the all reduce operations it is straight forward to combine these all

reduce calls into a single all reduce for each call of the combineforces routine, as

shown below:

 j = 1

 do k = 0,2*nharms

 do i=1,nbody

 temparray(j) = cl(k,i)

 j = j +1

 temparray(j) = cd(k,i)

 j = j + 1

 temparray(j) = cm(k,i)

 j = j + 1

 end do

 end do

 call realsumallreduce(temparray,j-1)

17

 j = 1

 do k = 0,2*nharms

 do i=1,nbody

 cl(k,i) = temparray(j)

 j = j +1

 cd(k,i) = temparray(j)

 j = j + 1

 cm(k,i) = temparray(j)

 j = j + 1

 end do

 end do

As with the previous communication aggregation we have performed this at the

expense of extra memory requirements for the combineforces routine, however

these are not significant so do not adversely impact the overall memory footprint of

the code, even for high nbody and harmonic sizes.

We profiled the new code using scalasca as before, and the results are shown in

Figures 9 and 10

18

Figure 9: Collective communication profile for the original MPI code using test case 1

19

Figure 10: Collective communication profile for the new MPI code using test case 1

We can see from comparing the number of collective communications performed in

Figures 9 and 10 that the number has reduced by an order of magnitude, from 1.37 x

10
6

in Figure 9 to 1.73 x 10
5
 in Figure 10, whilst the amount of data transferred

(shown under the bytes transferred section) has stayed the same.

3.3 Rationalise MPI I/O

All the profiling, performance analysis, and optimisation work we have outlined in the

previous sections has been focussing on the main computational and communication

parts of COSA. Particularly, we have been using COSA with the data output turned

off. However, for any real user of the code this is not an option, the data that is

20

written into the output files records the simulation undertaken by the code and enables

analysis and understanding of those simulations.

COSA produces a number of different output files, but for optimisation there are two

types of file that are important, as they are the largest and require the most time to

write; the flowtec files and the restart file. COSA produces a single restart file at the

end of the simulation (or more frequently if requested by the user) which can be used

to restart the simulation from the point the restart file was written. It also produces

one flowtec file per real harmonic at the end of the simulation. The flowtec files

contain the solution in a format suitable for use with the commercial CFD

postprocessor and flow visualisation software TECPLOT.

When large simulations are executed the output can be extremely large, with the

restart file being many gigabytes (GB) in size and each flowtec file being close to a

GB in size. We have noticed when undertaking large simulation with the I/O

functioning that writing these files was taking a significant fraction of the total

runtime.

Therefore, we worked on optimising the I/O used for writing the main output files to

ensure that the I/O is being performed efficiently. The existing code does use parallel

I/O functionality, calling MPI I/O routines to perform the output from all processes at

once. However, the I/O is performed, as shown in the example below, through

individual writes of data elements to the file one at a time:

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n), 4*doublesize,1,

 MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION)

call mpi_file_write(fid(n),x(i,j,n),1,

 & MPI_DOUBLE_PRECISION,MPI_STATUS_IGNORE, ierr)

disp = disp + doublesize

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION)

call mpi_file_write(fid(n),y(i,j,n),1,

 & MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr)

disp = disp + doublesize

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION)

call mpi_file_write(fid(n),rho,1,

 & MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr)

disp = disp + doublesize

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION)

call mpi_file_write(fid(n),ux,1,

 & MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr)

disp = disp + doublesize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n), 4*doublesize,1,

 & MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

Where the setupfile subroutine invokes the MPI_FILE_SEEK function.

21

This use of MPI I/O is not optimal; generally MPI I/O gives the best performance

when large amounts of data are written in a single call to the file. However, the way

the data is structured in COSA, and the format of the output files, prohibits doing this.

It is important to the developers and users of COSA that the output files of the serial

and parallel version of the code are the same so in the scope of this project we did not

have the effort to change the way it currently writes the data. However, we can

optimise the current functionality, aggregating the data to be written into arrays and

then writing that data all at once. An example of this optimisation of the I/O code

outlined above is provided below:

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n), 4*doublesize,1,

 & MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

tempdata(tempindex) = x(i,j,n)

tempindex = tempindex + 1

tempdata(tempindex) = y(i,j,n)

tempindex = tempindex + 1

tempdata(tempindex) = rho

tempindex = tempindex + 1

tempdata(tempindex) = ux

tempindex = tempindex + 1

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION)

call mpi_file_write(fid(n),tempdata(1),tempindex-1,

 & MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr)

disp = disp + doublesize*(tempindex-1)

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n), 4*(tempindex-1),1,

 & MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

Testing the new I/O functionality using test case 1 we collected the following data:

 Runtime (seconds)

Original MPI Code (No I/O) 421

Original MPI Code 701

New MPI Code 547

Table 2: I/O functionality runtime using test case 1

We can see that for the simulation performed (using 512 processes and running for

250 iterations of the simulation) that the original I/O functionality imposed a

significant overhead on the overall simulation time, increasing the runtime by around

60%. The optimised I/O functionality reduces this overhead to around 30%, more

than halving the time required to output data to disk. For this simulation the amount

of data outputted is not very large, the restart file is around 350 MB and there are 31

flowtec files of 20 MB each (so overall just less than 1 GB is written to disk).

However, if we consider a larger simulation then the savings are even more

significant. The previous simulation (test case 1) had a 512-block grid with 262,144

22

cells, and 31 real harmonics, but the simulations currently being studied using COSA

typically have a million or more cells. We benchmarked the new MPI functionality

using test case 3 (which produces a restart file of around 2.6 GB and 15 flowtec files

each 281 MB in size), only undertaking a single iteration of the simulation. The

resultant runtimes on 512 and 2048 cores are shown in the following table.

 Original I/O Code (seconds) New I/O Code (seconds)

512 processes 1444 904

2048 processes 1147 801

Table 3: Performance of the new I/O functionality using test case 3

We also discovered a bug in the parallel I/O code when undertaking this work. When

writing very large restart files (above ~4 GB) the original code did not work. It was

ascertained that the code that calculated the locations in the file for each MPI process

to write data to using a FORTRAN integer datatype. However, on HECToR (and

many other machines) this defaults to a 4-byte integer datatype, and therefore cannot

be used to calculate address bigger than 2
32

bytes of memory (around 4 GB). We

fixed this by specifying these offset addresses as 8-byte integers in the code, enabling

COSA to deal with larger simulations properly.

We evaluated the overall performance improvement from all the MPI optimisations

we have detailed in this section comparing the performance of the original code with

the latest MPI code, and plotting the results in Figure 11 below.

Figure 11: Runtime of the original and optimised MPI codes using test case 1

We have significantly improved the performance of the code at larger core counts,

with the runtime of the optimised MPI code at 256 and 512 cores around half the time

of the original MPI code.

23

3.4 Linear Algebra Routines

During the performance evaluation of COSA for this project it was recognised that

there were a number of subroutines in the code implementing standard linear algebra

functionality, particularly:

• Matrix inversion

• Matrix-vector products

The harmonic balance Navier-Stokes equations can be viewed as a set of

(2*nharms)+1 steady problems, all coupled by a source terms depending on the

same number of steady flow solutions, which represent (2*nharms)+1 equally-

spaced snapshots of the sought nonlinear periodic flow [2]. The multigrid HB solver

of COSA can be operated in two modes, using either a fully explicit Runge-Kutta

(FERK) smoother, or a Point-Implicit Runge-Kutta (PIRK) smoother. In the PIRK

integration, the HB source term is treated implicitly at each Runge-Kutta stage. This

results in the entire solution update process requiring the solution of ncell linear

systems, each of dimension (npde*((2*nharms)+1))at every Runge-Kutta

stage. However, the use of the PIRK HB integration allows the use of substantially

larger pseudo-time steps for time-marching the solution with respect to the

conventional FERK HB integration, without any loss of numerical stability. As a

consequence, a given convergence level of the HB solution can be achieved using a

substantially lower number of MG iterations using the PIRK rather than the FERK

integration.

The original COSA code solved these ncell systems using hand-written linear

algebra routines. These were replaced by the corresponding routines in the LAPACK

and BLAS libraries to ensure that optimal code for these functions were being used.

All test cases presented in this report used relatively small time-steps and therefore

were run using the FERK HB integration. However, the PIRK functionality is now

routinely used in production runs of the COSA HB solver, since it significantly

reduces runtimes due to the use of fewer MG cycles. In order to demonstrate the

computational performance improvement achieved by using the LAPACK routines,

test case 1 has been run on HECToR also using the PIRK HB integration. It has

emerged that, at 512 processes, the new version of the code (using LAPACK routines)

runs in around half the time of the original code (~740 seconds vs ~1400 seconds)

The FERK or PIRK integration are selecting by choosing the appropriate flag (rkex

or rkim) in the input file of COSA.

4 Optimised Hybrid Parallelisation
Using the information obtained in the profiling of the original code we worked to

optimise the OpenMP functionality in COSA. The profiling data shown in Section 2

highlighted the fact that only a small number of routines are heavily used for

harmonic balance simulations.

The original hybrid code, which used the original OpenMP parallelisation, could be

built to parallelise over blocks, harmonics, or grid cells, depending on the type of

simulation being performed. However, as the key strength of COSA is its harmonic

24

balance functionality we decided to focus the hybrid optimisation on harmonic

balance simulations.

Removing the original OpenMP functionality and re-implementing OpenMP simply

for the key routines we have identified enabled us to optimise the code by removing

OpenMP parallel regions from parts of the code that are used in the harmonic balance

simulations but do not consume much of the runtime (and therefore do not have

enough work within them to justify the overheads imposed when using OpenMP

parallelisations).

The following table contains all the routines in COSA that had OpenMP added during

this work. In the table the subroutine column lists those routines that have OpenMP

parallel regions in them. The related subroutines column lists those routines that have

orphaned OpenMP do directives in them which are called by the routines lists in the

subroutine column.

File Subroutine Related Subroutines

cosa.f resid bresid

cosa.f deltat bdeltat

cosa.f cirs cirs_b

cosa.f precres prec_bres

cosa.f src_hb src_bhb

flux.f roflux roflux_b

flux.f proflux proflux_b

flux.f vflux vflux_b

flux.f muscl muscl_bi

limit_i

muscl_bj

limit_j

flux.f q_der bq_der_i

bq_der_j

flux.f rtst b_rtst

losp.f lsp blsp

losp.f lm_cutoff_pg lm_bcutoff_pg

losp.f lm_viscoff lm_bviscoff

However, we also recognised that the way the OpenMP code has been added to

COSA also was not efficient. In general the loops in the code that compute over the

harmonics of the simulation are called within subroutines which are called for each

block in the simulation, and in each subroutine there can be a number of separate

loops over harmonics. Simply parallelising each harmonic loop with an OpenMP

parallel do directive meant that there were a lot of places that OpenMP parallel

regions were started and finished in the code. There is an overhead associated with

starting and finishing a parallel region in OpenMP, therefore we re-engineered the

OpenMP code we had added to reduce these overheads.

This reduction in overheads was achieved by hoisting (moving to a higher level in the

program) the parallel regions from within the subroutines where the harmonic loops

are, to the calling subroutine, as shown in the two code samples in Appendix A.

25

We also implemented “first touch” initialisation functionality to ensure that data is

initialised on the cores that will be processing it. The original code zeroed all the data

arrays when they were allocated, and the allocation is done on the master thread. We

have altered the zeroing of the arrays so it is done in parallel, following the

parallelisation pattern that is used in the rest of the code.

Comparing the performance of the new OpenMP code with that of the original

harmonic OpenMP parallelisation we obtained the scaling data shown in Figure 12. It

should be noted that this data was collected with I/O turned on, using test case 1,

which is not an ideal test case for the OpenMP harmonic parallelisation.

Figure 12: Runtime of the old and new OpenMP harmonic parallelisation using test case 1

It should also be noted that due to the hardware used in HECToR, which is AMD

Interlagos processors, it is difficult to compare the performance of 1 process using a

single core on a processor to 2 processes using 2 cores on a processor as the processor

is made up of 8 modules, each of which can run 2 processes (giving the 16 cores in a

processor, and HECToR has 2 processor per node giving 32 cores per node), but they

share the floating point unit and memory caches and bandwidth. The cores can also

change their computing frequency if not all the cores on the processor are being used.

Therefore, the performance of the program using a single core on a processor (whilst

the rest are idle) may be significantly higher than if 2 or more of the cores are being

used as using a single core only potentially gives that process access to more floating

point hardware and memory bandwidth than is available when 2 processes are running

on a module. This means that calculating the scaling of a parallel code based on the

performance of the code on a single core may not be ideal.

Using this optimised OpenMP implementation improves the performance of the

hybrid code, as shown in the table next, which provides a comparison of the

performance of the hybrid and MPI codes for the old OpenMP functionality and the

optimised functionality (using test case 1).

MPI Runtime Old Hybrid Runtime New Hybrid Runtime

1693 2670.13 2215.69
Table 4: Performance of the hybrid code using test case 1 on 512 cores

26

The data in the above table is collected using a simulation with 512 blocks so the MPI

code is using 512 MPI tasks and the hybrid code is using 128 MPI tasks each with 4

threads. This means that each MPI task in the hybrid case has 4 blocks of the

simulation, which is not ideal for the performance of the new hybrid code. This

hybrid code is designed to work best when the number of blocks per MPI task is 1, so

we also ran the hybrid code using 512 MPI tasks each with 4 OpenMP threads (using

a total of 2048 cores), the results of which are show in the following table (using test

case 1).

 MPI (512 cores) Old Hybrid

(2048 cores)

New Hybrid

(2048 cores)

Runtime (seconds) 1693 772.16 520

Scaling (compared

to the MPI code)

N/A 2.19 3.26

Table 5: Performance of the hybrid code using test case 1 on 2048 cores

We can see that we have improved the performance of the hybrid code compared to

the original hybrid code. However, there is still a performance gap between the ideal

scaling of the hybrid code and the currently scaling of the hybrid code. Ideally, when

using 4 times the number of cores (as is the case in the example above) the scaling

would be 4 times the pure MPI code, whereas the new hybrid code has a scaling of

3.26.

5 Advanced Hybrid Functionality
For the hybrid code we have parallelised the key computational routines using

OpenMP, but as outlined in Section 4 the performance is still not ideal for the hybrid

code. However, there are two areas in the code that haven’t been parallelised with

OpenMP:

• I/O

• MPI Communication

The MPI communications are performed over a loop of the cut, or halo, data. Each

cut is independent so they can be performed by separate threads. However, as they

involve MPI communications then we need to ensure that we are using the threaded

version of the MPI library using the function MPI_INIT_THREAD rather than the

usual MPI_INIT function. Furthermore, we need to ensure that the MPI library

being used can support MPI_THREAD_MULTIPLE (individual OpenMP threads

can perform MPI communications).

The I/O undertaken through the MPI code used MPI I/O functionality. In general the

I/O operations are independent for each block and then each harmonic within the

block. However, there are a number of collective operations (operations that all

processes must be involved in) in the I/O functionality, particularly opening and

closing files. To enable the OpenMP threads to be able to write to the restart and

flowtec files independently we needed to ensure that all the threads are involved in the

opening of the files so they each have a separate file handle to write. Therefore, we

implemented a hybrid file opening and closing strategy as follows:

!$OMP DO ORDERED

 do i=1,omp_get_num_threads()

27

!$OMP ORDERED

 call openfile(fid,'restart',iomode)

!$OMP END ORDERED

 end do

!$OMP END DO

Where openfile calls MPI_FILE_OPEN which is a collective operations and

therefore has to be called from all the OpenMP threads in the order sequence shown

above. The only other modification that needs to be made to enable file writing from

the OpenMP threads was to ensure that they could correctly calculate where each

harmonic needs to be written to (rather than each block as was the case previously).

With these optimisations in place the code was once again benchmarked and the

following results collected (using test case 1):

 MPI (512 cores) Original Hybrid

(2048 cores)

New Hybrid

(2048 cores)

Runtime (seconds) 1693 772.16 460

Scaling (compared

to the MPI code)

N/A 2.19 3.68

Table 6: Optimised hybrid runtime using test case 1

We can see that the hybrid code performance has improved, with close to ideal

scaling being obtained for this benchmark case, even when full functionality (i.e.

including I/O) is used. However, it should be noted that to achieve this performance

it is necessary to change the lustre stripe count (which specifies how many I/O servers

can be used to write the file) for the restart file. By default the restart file has is setup

to use a single I/O server (a stripe count of 1), and this gives ideal performance of the

MPI code and the old hybrid code. However, when the restart I/O functionality is

parallelised with OpenMP the default stripe count does not give ideal performance, so

we changed this stripe count to -1 which enables all available I/O servers to be used.

This gave better performance than the original stripe count.

The parallelisation of the writing of the flowtec files over harmonics with OpenMP

does not require this as there are multiple flowtec files which can be distributed to

different I/O servers by the lustre file system.

6 Summary
We have undertaken a range of optimisation work on the COSA simulation code. The

MPI optimisation work we performed has resulted in the new code scaling much

better than the original MPI code, with the overall runtime being reduced to half that

of the original code for a representative test case at 256 and 512 cores on HECToR.

This represents a significant saving in computational resources.

We have also worked to optimise the hybrid version of the code. The original hybrid

code gave around a halving in computational runtime for four times the computational

resources, with an operating efficiency of around 55%. The new hybrid code operates

at around 90% efficiency for the same test case on HECToR, again representing a

significant saving in computational resources, and furthermore enabling users to

complete simulations in around half the time that the original code took for the same

problem.

28

Another outcome of this project is that COSA has now been installed as a package,

available to all users, on HECToR. MPI and hybrid executables are available, along

with a user guide describing the code and how to use it, and example simulations to

enable interested parties to experiment with the software. The executables include all

the optimisations undertaken in this project.

All the code modifications performed in this project have been incorporated back into

the main COSA source code, and extensively tested to ensure they have not altered

the correctness of the COSA simulations.

7 Acknowledgements
This work was supported by Dr M. Sergio Campobasso at Glasgow University.

This project was funded under the HECToR Distributed Computational Science and

Engineering (CSE) Service operated by NAG Ltd. HECToR – A Research Councils

UK High End Computing Service - is the UK's national supercomputing service,

managed by EPSRC on behalf of the participating Research Councils. Its mission is to

support capability science and engineering in UK academia. The HECToR

supercomputers are managed by UoE HPCx Ltd and the CSE Support Service is

provided by NAG Ltd. http://www.hector.ac.uk

References

[1] M.S. Campobasso, A. Piskopakis, M. Yan, Analysis of an Oscillating Wing in a

Power-Extraction Regime Based on the Compressible ReynoldsAveraged Navier-

Stokes Equations and the K −ω SST Turbulence Model, ASME paper GT2013-94531,

presented at the ASME/IGTI Turbo Expo 2013 Technical Conference, 3rd-7th June

2013, San Antonio, Texas, USA..

[2] M.S. Campobasso and M.H. Baba-Ahmadi, Analysis of Unsteady Flows Past

Horizonatal Axis Wind Turbine Airfoils Based on Harmonic Balance Compressible

Navier-Stokes Equations with Low-Speed Preconditioning, ASME Journal of

Turbomachinery, Vol. 134, no. 6, 2012. DOU: 10.1115/1.4006293.

[3] M.S. Campobasso and J. Drofelnik, Compressible Navier-Stokes analysis of an

oscillating wing in a power-extraction regime using efficient low-speed

preconditioning, Computers and Fluids, Vol. 67, 2012, pp. 26-40. DOI:

10.1016/j.compfluid.2012.07.002.

[4] http://www.scalasca.org/

[5] A. Jackson and M. S. Campobasso. Shared-memory, distributed-memory, and

mixed-mode parallelisation of a cfd simulation code. Computer Science - R&D, 26(3-

4):187–195, 2011.

[6] A. Jackson, M. S. Campobasso, and M. H. Baba-Ahmadi. On the Parallelization of

a Harmonic Balance Compressible Navier-Stokes Solver for Wind Turbine

Aerodynamics, pages 747–761. ASME International, 2011.

Appendix A
Below is an example of the original OpenMP harmonic parallelisation, including the

routine that calls the routine that has been parallelised.

29

c---

 subroutine resid(idir,nl,flux,res)

c---

 implicit none

 include 'common.block'

 include 'cosa.inc'

 integer*4 idir,nl,iblock,imax,jmax,iflux,ires

 real (kind=8) res(*),flux(*)

 do iblock = 1,mynblocks

 imax = i_imax (iblock,nl)

 jmax = j_jmax (iblock,nl)

 ires = 1 + off_p3 (iblock,nl) * npde * dim5

 iflux = 1 + off_0 (iblock,nl) * npde * dim5

 call bresid(flux(iflux),res(ires),idir,imax,jmax,npde,nharms)

 end do

 return

 end

c---

 subroutine bresid(flux,res,idir,imax,jmax,npde,nharms)

c---

 implicit none

 include 'common.block'

 integer*4 imax,jmax,npde,nharms

 integer*4 i,j,idir,ipde,n

 real (kind=8)

 & res(-1:imax+1,-1:jmax+1,npde,0:2*nharms),

 & flux(imax,jmax,npde,0:2*nharms)

 if (idir.eq.1) then

#ifdef OPENMPNHARMS

!$OMP PARALLEL DO

!$OMP& PRIVATE(n,ipde,j,i)

!$OMP& SHARED(nharms,npde,cosa2d,cosa3d,imax,jmax,res,flux)

#endif

 do n = 0,2*nharms

 do ipde = 1,npde

 if ((cosa2d.and.(ipde.ne.4)).or.cosa3d) then

 do j = 1,jmax-1

 do i = 1,imax-1

 res(i,j,ipde,n) = res(i,j,ipde,n) +

 & flux(i+1,j,ipde,n)-flux(i,j,ipde,n)

 end do

 end do

 end if

 end do

 end do

#ifdef OPENMPNHARMS

!$OMP END PARALLEL DO

#endif

 else if (idir.eq.2) then

#ifdef OPENMPNHARMS

!$OMP PARALLEL DO

!$OMP& PRIVATE(n,ipde,j,i)

!$OMP& SHARED(res,flux,cosa3d,npde,nharms,coda2d,imax,jmax)

#endif

 do n = 0,2*nharms

 do ipde = 1,npde

 if ((cosa2d.and.(ipde.ne.4)).or.cosa3d) then

 do j = 1,jmax-1

 do i = 1,imax-1

 res(i,j,ipde,n) = res(i,j,ipde,n) +

 & flux(i,j+1,ipde,n)-flux(i,j,ipde,n)

 end do

 end do

 end if

 end do

 end do

#ifdef OPENMPNHARMS

!$OMP END PARALLEL DO

#endif

 end if

 return

 end

30

Below is an optimised version of the above routine where the OpenMP parallel region

has been hoisted to the routine above to reduce the OpenMP overheads.

c---

 subroutine resid(idir,nl,flux,res)

c---

 implicit none

 include 'common.block'

 include 'cosa.inc'

 integer*4 idir,nl,iblock,imax,jmax,iflux,ires

 real (kind=8) res(*),flux(*)

#ifdef OPENMPNHARMS

!$OMP PARALLEL DEFAULT(NONE)

!$OMP& SHARED(mynblocks, i_imax, j_jmax, off_p3, off_0, nharms, nl, npde, dim5)

!$OMP& SHARED(flux, res, idir)

!$OMP& PRIVATE(imax, jmax, ires, iflux, iblock)

#endif

iblock = 1,mynblocks

 imax = i_imax (iblock,nl)

 jmax = j_jmax (iblock,nl)

 ires = 1 + off_p3 (iblock,nl) * npde * dim5

 iflux = 1 + off_0 (iblock,nl) * npde * dim5

 call bresid(flux(iflux),res(ires),idir,imax,jmax,npde,nharms)

 end do

#ifdef OPENMPNHARMS

!$OMP END PARALLEL

#endif

 return

 end

c---

 subroutine bresid(flux,res,idir,imax,jmax,npde,nharms)

c---

 implicit none

 include 'common.block'

 integer*4 imax,jmax,npde,nharms

 integer*4 i,j,idir,ipde,n

 real (kind=8)

 & res(-1:imax+1,-1:jmax+1,npde,0:2*nharms),

 & flux(imax,jmax,npde,0:2*nharms)

 if (idir.eq.1) then

#ifdef OPENMPNHARMS

!$OMP DO

!$OMP& PRIVATE(n,ipde,j,i)

#endif

 do n = 0,2*nharms

 do ipde = 1,npde

 if ((cosa2d.and.(ipde.ne.4)).or.cosa3d) then

 do j = 1,jmax-1

 do i = 1,imax-1

 res(i,j,ipde,n) = res(i,j,ipde,n) +

 & flux(i+1,j,ipde,n)-flux(i,j,ipde,n)

 end do

 end do

 end if

 end do

 end do

 else if (idir.eq.2) then

#ifdef OPENMPNHARMS

!$OMP DO

!$OMP& PRIVATE(n,ipde,j,i)

#endif

 do n = 0,2*nharms

 do ipde = 1,npde

 if ((cosa2d.and.(ipde.ne.4)).or.cosa3d) then

 do j = 1,jmax-1

 do i = 1,imax-1

 res(i,j,ipde,n) = res(i,j,ipde,n) +

 & flux(i,j+1,ipde,n)-flux(i,j,ipde,n)

 end do

 end do

 end if

 end do

31

 end do

 end if

 return

 end

Appendix B
The configuration data for each of the test cases is included below.

Test Case 1

*** input file for 2D Euler/NS COSA solver ***

model id flow-type debug

laminar 1 external n

gamma reyno pranl machfs alpha

1.4d0 1100 0.71d0 1.d-01 0.d0

flow-mode solver rk option nharms freq.

unsteady hb rkex 15 0.014

move dh0x dh0y xh yh dthet0

phipp

plupit 0.d0 1.d0 0.33333333 0.d0 76.33d0

270.d0

irest srest cfl lmax iupdt toler

 0 1500 0.5 250 1 1.d-20

rkap irs-typ cfli psi

-1. cirs_v1 1.0 0.25

ilim epslim cntrpy etpfxtyp entfxctf

0 5.d-04 0.d0 0 0.95d0

nlevel nl_crs nl_fmg nstart npre npost

ncrs

3 2 1 5 5 5

10

prol. type

bilinear

flow-speed

nolomach

tref

288.2

functional

cl_cd_cm_1 0.33333333 0.0

1

20 475 476 479 480 483 484 487 488 491 492 495 496 499

500 503 504 507 508 511 512

512

Test Case 2

Coarse input file:
*** input file for 2D Euler/NS COSA solver ***

model id flow-type debug

laminar 1 external n

32

gamma reyno pranl machfs alpha

1.4d0 1000 0.71d0 0.2244 9.138

flow-mode solver rk option nharms freq.

unsteady hb rkex 8

0.002707149187620

move dh0x dh0y

plunge 1.2091 0.d0

irest srest cfl rmpf lmax iupdt

toler

 0 4000 1.5 1.0 10000 1

1.d-13

rkap irs-typ resper cfli psi

-1. cirs_v1 0 3.0d0 0.25

ilim epslim cntrpy etpfxtyp entfxctf

0 5.d-04 0.d0 0 0.95d0

nlevel nl_crs nl_fmg nstart npre npost

ncrs

3 4 1 2 2 2

8

flow-speed cff-typ visc-prec prec-typ lx ly

lomach 2 viscous mixed 28.0 28.0

epsp(1) epsp(2) epsp(3)

2.d-1 9.d-1 9.d-1

tref

288.2

functional

clmom 0.25d0 0.d0

1 ! nbody

12 3 4 5 6 7 8 9 10 11 12 13 14 ! n_bodblo,

i_bdbl(i_bodblo)

32

Fine input file:
*** input file for 2D Euler/NS COSA solver ***

model id flow-type debug

laminar 1 external n

gamma reyno pranl machfs alpha

1.4d0 1000 0.71d0 0.2244 9.138

flow-mode solver rk option nharms freq.

unsteady hb rkex 8

0.002707149187620

move dh0x dh0y

plunge 1.2091 0.d0

irest srest cfl rmpf lmax iupdt

toler

 0 4000 1.5 1.0 10000 1

1.d-13

rkap irs-typ resper cfli psi

-1. cirs_v1 0 3.0d0 0.25

ilim epslim cntrpy etpfxtyp entfxctf

0 5.d-04 0.d0 0 0.95d0

33

nlevel nl_crs nl_fmg nstart npre npost

ncrs

3 4 1 2 2 2

8

flow-speed cff-typ visc-prec prec-typ lx ly

lomach 2 viscous mixed 28.0 28.0

epsp(1) epsp(2) epsp(3)

2.d-1 9.d-1 9.d-1

tref

288.2

functional

clmom 0.25d0 0.d0

1 ! nbody

12 27 25 23 21 19 18 3 4 5 7 9 11 ! n_bodblo,

i_bdbl(i_bodblo)

32

Test Case 3

*** input file for 2D Euler/NS COSA solver ***

model id flow-type debug

laminar 1 external n

gamma reyno pranl machfs alpha

1.4d0 1000 0.71d0 0.2244 9.138

flow-mode solver rk option nharms freq.

unsteady hb rkex 8

0.002707149187620

move dh0x dh0y

plunge 1.2091 0.d0

irest srest cfl lmax iupdt toler

 0 200 1.5 2 1 1.d-12

rkap irs-typ cfli psi

-1. cirs_v1 3.0d0 0.25

ilim epslim cntrpy etpfxtyp entfxctf

0 5.d-04 0.d0 0 0.95d0

nlevel nl_crs nl_fmg nstart npre npost

ncrs

3 4 1 2 2 2

8

prol. type

bilinear

flow-speed cff-typ visc-prec prec-typ lx ly

lomach 2 viscous mixed 28.0 28.0

epsp(1) epsp(2) epsp(3)

2.d-1 9.d-1 9.d-1

tref

288.2

functional

cl_cd_cm_0 0.25d0 0.d0

1

34

48 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54 55 56

2048

