
dCSE Project on Improving Automatic Load Balancing and
Molecular Dynamics in Conquest

Lianheng Tong

Wednesday, 2013/04/17

Abstract

This report describes the work done in the distributed Computational Science and Engi-
neering (dCSE) project (6 months) aimed to improve the molecular dynamics capabilities of the
linear scaling ab initio Density Functional Theory code Conquest. The work is split into two
parts: the first concerns the initial load balancing, and the second concerns the implementation
of dynamic reassignment of simulation data among the processors for molecular dynamics (MD).
For the first part of this project, a flexible non-cubic Hilbert space-filling-curve has been suc-
cessfully developed, which can generate compact 3D Hilbert curves with arbitrary and distinct
number of recursions in (x, y, z) directions. A new automated partitioner and load balancing
algorithm has been successfully developed and tests have shown significant improvements in
initial load balancing over the existing implementation. For the second part of the project,
all the required implementations for dynamically reassigning the indices and matrix elements
have successfully been implemented. The new MD allows the reuse of simulation data from
the previous steps, which reduced computational time by 40%–90%. However, tests have also
shown that reusing the simulation data from previous steps introduced an energy drift during
MD simulation, which has become the subject of further studies.

1 Introduction

The use of quantum mechanical techniques to simulate the structure and properties of systems has
become a cornerstone of modern science. Commonly used DFT[5] codes like CASTEP and VASP,
which form a significant proportion of HECToR use, all have a computational effort which scales
with the cube of the number of atoms, N , (N3 scaling) and memory requirements which scale with
N2. This scaling limits the size of system which can be modelled to a few thousand atoms at most,
even on the largest HPC platforms, as well as limiting parallel scaling. Within biochemistry, it is
common practice to embed small quantum mechanical simulations within classical force fields to
circumvent this problem.

Over the last fifteen years, significant effort has gone into the development of linear scaling DFT
codes, where the computational effort and memory requirements scale linearly with the system
size. Conquest is one of the linear scaling code available on HECToR that has demonstrated the
scalability necessary to go beyond 10000 atoms and several hundred cores efficiently[2].

This project focuses on improving the load balancing of Conquest, to enable its use for MD
simulations on 10,000 to 100,000 atoms and beyond. This will involve two areas: the initial distri-
bution of computational responsibility across the processors; and dynamically redistribution of load
and data as the simulation progresses.

1

1 INTRODUCTION

For initial load distribution, Conquest currently uses three methods: an automated scheme
with Conquest, which uses space filling curves[3], an external python utility which divides the
simulation cell and assigns system data to the processors according to user parameters, which is
commonly used if the automated scheme was deemed insufficient, and another external code, based
on simulated annealing, which is less commonly used. The automated scheme employed the use
of Hilbert curves[7], which had the advantage of being compact in space. This means system data
(such as atoms and grid points) close together in space (and thus be more likely to be involved in
computation together) will be more likely assigned to the same processor, thus reducing amount of
communications required. The standard Hilbert curve and space filling curve in general also imposes
a rigid constraint on the automated load distributor in that all divisions of the simulations cell must
be the same in all three directions (that is cubic), and the divisions must be in the power of 2. This
constraint makes the automated scheme ill suited for systems with cells far from being cubic, such
as slabs and thin columns. The proposed improvement to the automatic scheme is thus to find a
way to relax the cubic constraint on the Hilbert curves, while still retaining the compactness of the
curve.

Due to the complex matrix element indexing and storage systems used by Conquest for highly
optimised linear scaling matrix operations, matrix storage formats and indices are dependent on the
positon of atoms in the simulation cell. This makes implementation of molecular dynamics in Con-
quest a challenging problem. Conquest at the present implements a simple Born-Oppenheimer
molecular dynamics algorithm which assumes the atoms remain assigned to the same partition
(sub-division of the simulation cell) through-out the calculation. While this is fine for small atomic
movements, the code is unable to address the situations when an atom has move sufficiently far
to leave its original partition, as neighbour lists point to incorrect locations. Further more, due
to the fact that atomic movements causes neighbour list changes, and the processor ownership of
matrix elements are dependent on locations of the atoms, the sparse matrix formats and size on
each processor change as simulation progresses. The current Conquest avoids this problem by
resetting the matrices and restart the calculations from the start, treating every time step as an
initial calculation. While this will always produce the correct Born-Oppenheimer results, it is not
an efficient way to perform molecular dynamics calculations. This project is aimed to tackle these
problems head-on, and implement dynamic reassignment of indices and reorder matrix elements at
every molecular dynamics step, so that Conquest can perform stable molecular dynamics simula-
tions irrespective of size of atomic movements, and be able to reuse calculated matrix data in the
next simulation steps.

This work done in this project will be very likely to benefit wide range of codes available on
HECToR and beyond. The principles used in the flexible space-filling-curve automated load balanc-
ing scheme can be easily transfered to other parallel codes which relies on domain decomposition
to distribute data to processors. The implementation done on molecular dynamics for Conquest
will add new capabilities in the code, and the ability to do ab initio quantum mechanical molecular
dynamics on 10000+ atoms for up to 2–5 ps will open doors to new scientific studies which would
not have been possible before.

In The rest of this report, methods used for implementing the two objectives stated above will
be discussed, together with relevant test data.

2

2 AUTOMATIC PARTITIONING SCHEME

2 Automatic Partitioning Scheme

Conquest divides the simulation cell into equal sized partitions, which forms the basic blocks for
the assignment of atomic data to the processors1. If no user defined real space integration grid
block distributions are given then the code distribute the real space grid point to the processors
according to the partitions. This means the processor in charge of a particular partition will also
be responsible for the set of grid points blocks inside that partition. A good partitioning scheme is
therefore crucial for the load balance of Conquest.

The current implementation of Conquest estimates the partition cell sizes based on the maxi-
mum number of atoms Nmax

a,part allowed in a partition. Nmax
a,part is an user definable parameter. Starting

from an initial guess assuming uniform distribution of atoms, the code gradually increases the num-
ber of partitions in each dimension, until the maximum number of atoms in partitions does not
exceed Nmax

a,part. Once the desirable partitions are found, a standard 3D Hilbert curve is used to
“thread” through the partitions converting the three tuples (ix, iy, iz) of the partition coordi-
nates into an one dimensional integer on the Hilbert curve. The 1D integer index is then used for
assigning the partitions to each processors, weighted by the number of atoms in each partition—so
that the processor gets roughly similar number of atoms each.

The use of the Hilbert curve to thread through the partitions has a distinct advantage that the
Hilbert curve is compact in space. This means that irrespective to the number of divisions used
for partitioning the cell, the partitions that are near to each other in space are near to each other
on the Hilbert curve. This means, once the partitions are assigned to the processors, the group of
atoms belonging to the same processor will likely be close in space, and group of atoms belonging to
partitions that are further apart on the Hilbert curve—and thus assigned to different processors—
will be likely to be further apart in space. This reduces the amount of MPI communications during
calculation, as only interactions between atoms within a finite range are considered.

There is however also a disadvantage in using the standard 3D Hilbert curves for indexing the
partitions. Due to the recursive nature of Hilbert curve generation, the number of partitions along
each of the three cell dimensions must be the same, and are powers of 2. If the simulation cell is far
from cubic, with one or two sides significantly longer than the rest, then too many partitions may
have to be taken in the shortest dimension. At the best this creates many empty partitions which
slows down the calculation; at worst, this causes significant load imbalances which eventually lead
to the code crushing—examples of this happening is presented this report.

The aim of this part of the dCSE project is to find a way of construct a 3D Hilbert curve that
allows different levels of recursions in different spacial dimensions.

2.1 Non-Cubic Hilbert Curve

The goal is to find a method to generate a non-cubic 3D Hilbert curve which allows the levels
of recursions Nx, Ny and Nz in x, y and z direction which can take any distinct value in range
0, 1, 2, · · · . A solution has been successfully found, and is presented in this section.

The key to the solution is to break the non-cubic curve into three levels. The inner most level
contains standard cubic 3D Hilbert curves with the level of recursion NC = min(Nx, Ny, Nz); the
middle level contains square 2D Hilbert curves with the level of recursion NP equal to the second
highest among Nx, Ny, Nz minus NC ; and the upper level contains a 1D Hilbert curve (a straight

1In this report, a “processor” is equivalent to a MPI process. An MPI process may create more than one threads
and use one or more physical cores, but in this report a processor strictly means a MPI node,

3

2 AUTOMATIC PARTITIONING SCHEME

line), with recursion NL = max(Nx, Ny, Nz) − NP − NC . Figure 1 illustrates the concept using
an example of generation of non-cubic Hilbert curve with Nx = 3, Ny = 2 and Nz = 1. Within
this approach, each partition cell will be a point on the NL-th order cubic 3D Hilbert curve; each
3D curve will be a point on the NP -th order 2D Hilbert curve; and each 2D curve will be a
point on the NL-th order 1D Hilbert curve. In total, the generated Hilbert curve will go through
2Nx × 2Ny × 2Nz number of partition cells. If Nx = Ny = Nz then the standard Nx-th order cubic
3D curve is obtained.

The 1D, 2D and 3D Hilbert curves are generated by doing recursions on the basic 1D, 2D and
3D unit Hilbert curves, with appropriate orientations. The unit curve are generated using reflective
Gray code method[4].

The n-bit Gray codes represent the spacial coordinates of the points in the unit Hilbert curve—
with coordinates have values 0 or 1—in n-dimensions. The transformation from Gray code to/from
binary code thus corresponds to the mapping from/to the spacial coordinates to/from the sequencial
indices in an unit Hilbert curve. This can be done very efficiently through bit-wise operations (see
for example [8]).

The orientation of a unit Hilbert curve can be defined by specifying the start and end coordinates
(Gray codes) of the Gray code sequence. For n < 3 dimensions, start and end coordinates uniquely
define the Hilbert curve. For 3D, there are two distinct unit Hilbert curves for every pair of start
and end points. For the problem associated with this project, finding either one of the 3D unit
curve giving the desired travel is sufficient. The canonical n-bit reflective Gray code sequence starts
from 0 and travels to 2n−1. A more general Gray code sequence (i.e. unit Hilbert curve) may be
generated by first rotating the bits in the canonical code sequence, so that the sequence travels
from 0 to t, where t is the travel direction given as (start XOR end); then XOR the sequence with the
desired start Gray code. The standard Hilbert curves can be generated by recursively generating
unit curves, with the travel direction of the child unit curve at a given point on the parent curve
equal to the direction of the next point on the parent curve in relation to the given point.

To generate the non-cubic Hilbert curve, both the integer sequencial index i of the coordinates
on the path and the spacial coordinates (x, y, z) are decomposed into new representations:

i→ (l, p, c)

(x, y, z)→ (L,P,C)

where, l = (bl1, b
l
2, · · · , blNL) is the decomposed index bundle of the point on the outer 1D Hilbert

curve, with bli corresponding to the sequence indices of the the corresponding i-th recursion of the
n-dimensional (1D for l) unit Hilbert curve. bl1 is the index for outer most level, and bl

NL innermost.
So l corresponds to the bl

NL-th point of the inner-most child curve at the bl
NL−1

-th point of its
parent curve, which is at the bl

NL−2
-th point of its parent curve and so on. The similar applies to

p = (bp1, b
p
2, · · · , b

p
NP) representing a point on the middle level 2D curve located at point l on the 1D

curve; and c = (bc1, b
c
2, · · · , bcNC) representing a point on the inner 3D curve, located at point p on the

2D curve. The same goes for the spacial indices, with L = (gl1, g
l
2, · · · , glNL), P = (gp1 , g

p
2 , · · · , g

p
NP)

and C = (gc1, g
c
2, · · · , gcNL) corresponding to the Gray codes representing the spacial coordinates of

the unit Hilbert curve at different levels of recursion.
The Hilbert curve is then generated from top level (starting from the 1D curve L) downwards,

working out the correct rotation (start and end positions) of each child curve. Therefore, given
Hilbert index i:

4

2 AUTOMATIC PARTITIONING SCHEME

1. i is decomposed to (l, p, c)

2. (L,P,C) is worked out from top level downwards using binary to Gray code transformations

3. (L,P,C) is then transformed back into (x, y, z)

The code implemented is given below:

subroutine Hilbert3D_IntToCoords(ind, coords)
implicit none
! Passed parameters
integer, intent(in) :: ind
integer, dimension(:), intent(out) :: coords
! Local variables
type(unpacked) :: unpkd_ind, unpkd_coords
integer :: index, c_start, c_end, start, end, ii
integer :: l_ind, p_ind, c_ind
! ind goes starts from 1, transform to index which starts from 0
index = max(0, ind - 1)
! unpack ind, unpkd_ind is allocated by UnpackIndex
call UnpackIndex(index, unpkd_ind)
! allocate the unpacked coordinates with same dimension as unpkd_ind
call AllocUnpacked(unpkd_coords, unpkd_ind%N_l_levels, &

unpkd_ind%N_p_levels, unpkd_ind%N_c_levels)
! zero the l, p and c levels for unpkd_coords
unpkd_coords%l = 0
unpkd_coords%p = 0
unpkd_coords%c = 0
! move along the outer-mose level of the line
start = 0
end = 1
if (DimLine > 1) then

! recursively generate the 1D fractal coordinates
do ii = 1, unpkd_coords%N_l_levels

l_ind = unpkd_ind%l(ii)
unpkd_coords%l(ii) = GrayEncodeTravel(start, end, 1, l_ind)
! from parent start and end calculate child (c_)start and
! (c_)end at point l_ind of the parent curve
call ChildStartEnd(start, end, 1, l_ind, c_start, c_end)
start = c_start
end = c_end

end do
end if
! move in the middle level squares, the highest level unit square
! always move along the direction of the higher level 1D line
start = start * 2 ! need to convert from 1 to 10 (1D to 2D)
end = end * 2
if (DimSquare > 1) then

do ii = 1, unpkd_coords%N_p_levels
p_ind = unpkd_ind%p(ii)
unpkd_coords%p(ii) = GrayEncodeTravel(start, end, 2, p_ind)
call ChildStartEnd(start, end, 2, p_ind, c_start, c_end)

5

2 AUTOMATIC PARTITIONING SCHEME

start = c_start
end = c_end

end do
end if
! move in the inner level cubes, the highest level unit cube
! follows the direction of the children of the upper level unit
! square, unless dimension of 2D curve is 1, in which case it
! follows the direction of the line
start = start * 2 ! need to convert from 10 to 100 (2D to 3D)
end = end * 2
if (DimCube > 1) then

do ii = 1, unpkd_coords%N_c_levels
c_ind = unpkd_ind%c(ii)
unpkd_coords%c(ii) = GrayEncodeTravel(start, end, 3, c_ind)
call ChildStartEnd(start, end, 3, c_ind, c_start, c_end)
start = c_start
end = c_end

end do
end if
! pack unpkd_coords to give the cartesian coordinates
call PackCoords(unpkd_coords, coords)
! deallocate memory
call DeallocUnpacked(unpkd_ind)
call DeallocUnpacked(unpkd_coords)

end subroutine Hilbert3D_IntToCoords

Similarly, given coordinates (x, y, z)

1. (x, y, z) is decomposed to (L,P,C)

2. Using Gray code to binary transformations, working from top level downwards, get the corre-
sponding (l, p, c)

3. (l, p, c) is then transformed back into i

The code implemented is given below:

subroutine Hilbert3D_CoordsToInt(coords, ind)
implicit none
! Passed parameters
integer, dimension(:), intent(in) :: coords
integer, intent(out) :: ind
! Local variables
type(unpacked) :: unpkd_coords, unpkd_ind
integer :: index, start, end, c_start, c_end, ii
integer :: l_coords, p_coords, c_coords
call UnpackCoords(coords, unpkd_coords)
call AllocUnpacked(unpkd_ind, unpkd_coords%N_l_levels, &

unpkd_coords%N_p_levels, unpkd_coords%N_c_levels)
! zero the l, p and c levels for unpkd_ind
unpkd_ind%l = 0

6

2 AUTOMATIC PARTITIONING SCHEME

unpkd_ind%p = 0
unpkd_ind%c = 0
! move along the outer level 1D Hilbert curve
start = 0
end = 1
if (DimLine > 1) then

do ii = 1, unpkd_coords%N_l_levels
l_coords = unpkd_coords%l(ii)
unpkd_ind%l(ii) = GrayDecodeTravel(start, end, 1, l_coords)
call ChildStartEnd(start, end, 1, unpkd_ind%l(ii), c_start, c_end)
start = c_start
end = c_end

end do
end if
! move in the middle level 2D Hilbert curve, the highest level
! square always has travel along direction of the line
start = start * 2 ! need to convert from 1 to 10 (1D to 2D)
end = end * 2
if (DimSquare > 1) then

do ii = 1, unpkd_coords%N_p_levels
p_coords = unpkd_coords%p(ii)
unpkd_ind%p(ii) = GrayDecodeTravel(start, end, 2, p_coords)
call ChildStartEnd(start, end, 2, unpkd_ind%p(ii), c_start, c_end)
start = c_start
end = c_end

end do
end if
! move in the lower level 3D Hilbert curve, the highest level cube
! follows the direction of children of the 2D curve, unless
! dimension of 2D curve is 1, in which case it follows the
! direction of the 1D curve
start = start * 2 ! need to convert from 10 to 100 (2D to 3D)
end = end * 2
if (DimCube > 1) then

do ii = 1, unpkd_coords%N_c_levels
c_coords = unpkd_coords%c(ii)
unpkd_ind%c(ii) = GrayDecodeTravel(start, end, 3, c_coords)
call ChildStartEnd(start, end, 3, unpkd_ind%c(ii), c_start, c_end)
start = c_start
end = c_end

end do
end if
call PackIndex(unpkd_ind, index)
! index starts counting from 0, so correct for ind which counts
! from 1
ind = index + 1
! deallocate memory
call DeallocUnpacked(unpkd_ind)
call DeallocUnpacked(unpkd_coords)

end subroutine Hilbert3D_CoordsToInt

7

2 AUTOMATIC PARTITIONING SCHEME

2.2 Load Balancing

The original Conquest implementation assigns partitions to the processors and tries to balance
the load by weighting on either

1. Number of partitions (General.LoadBalance = partitions)

2. Number of atoms (General.LoadBalance = atoms [default])

Generally speaking, load balancing by weighting on the number of partitions per processor is
not recommended, unless the atoms are evenly distributed in the simulation cell. Even in that case,
the number of atoms located inside each partition may vary, which results in poor load balance. A
processor can also potentially get all empty partitions, in which case the code will fail to run.

For simulation systems with diverse number of species such as bio-molecules, weighting with
respect to the number of atoms per processor may still lead to poor load balance, as the number of
support functions—the actual computational load—differs significantly between different species.

The original partitioning algorithms in Conquest was written with the standard 3D Hilbert
curve codes deeply embedded, and with the initial assumption that the level of recursions in all three
dimensions are the same. This makes modifying the existing partitioning code to accommodate the
new non-cubic Hilbert curves impractical. A completely new partitioning and load distribution
module was therefore created in Conquest. Taking advantage of this opportunity, new features
were added to the code so that:

• The shape of the system under consideration is now being taken into account in the automatic
partitioner

• Load assignment to processors can now weight on the number of support functions per pro-
cessor

• The user can now specify the number of partitions along which dimensions are to be set
manually and which are to be determined automatically by the automatic partitioner. The
original code only allows user to either let the code to determine the number of partitions
fully automatically or set the partitions manually by supplying a partition map file generated
from an external code

2.2.1 Determining System Shape

The simulation systems are classified into four categories, with the automatic partitioner behaving
differently corresponding to the system type:

1. Bulk: where the atoms distribute nearly all parts of the simulation cell. The automatic par-
titioner will try to generate partitions that has edges of roughly equal lengths in all directions

2. Slab: where the atoms are distributed in a narrow slab either in the middle or at the two
ends of the simulation cell. In the latter case, the system is assumed to be wrapped around
by periodic boundary conditions. The automatic partitioner will not divide the simulation
cell in the dimension perpendicular to the slab plane, so that a lot of empty partitions can be
avoided, and try to generate the partitions so that each partition will have its edges parallel
to the slab plane with roughly equal lengths.

8

2 AUTOMATIC PARTITIONING SCHEME

3. Chain: where the atoms form a narrow column along either x, y or z directions in the cell.
The column can either be in the middle of the cell, or be wrapped into 2 or 4 parts along
the simulation cell edges due to periodic boundary conditions. In this case the automatic will
generate partitions along the longitudinal direction of the chain. No divisions of the simulation
cell will be made in the transverse directions.

4. Molecule: where the atoms are grouped together only in a small (< 50% in each directions)
part of the cell. They can be either grouped as one part in the middle of the cell or become
several parts spread around the simulation cell edges due to periodic boundary conditions. In
this case the automatic partitioner will try to form partitions that has edges of roughly equal
lengths in all directions, the same way as for the bulk systems.

The key to determination of the system type lies in the calculation of gaps in the cell where
there are no atoms. The algorithm will try to determine the largest gap in the cell, and if the largest
gap is in between atoms—that is, not touching the simulation edge in at least one of the 3 cartesian
directions—then the atoms are assumed to be wrapped around by periodic boundary conditions.
The system types are then determined as follows

• Treat each of the x, y and z directions separately, loop over the three directions:

– If the largest gap is in the middle of the cell (in between atoms), and if the gap is greater
or equal to 0.5 of the cell dimension in this direction, then treat the system as “hollow”
in this direction

– Else if the largest gap is on one side of the cell, then we calculate the extent of the
atoms in this direction. If the atomic extent is less than 0.5 of the cell dimension in this
direction, then the system is treated as “hollow” in this direction

• If no direction is “hollow” then the system is a bulk.

• Else if exactly one direction is “hollow” then the system is a slab

• else if exactly two directions are “hollow” then the system is a chain

• else if exactly three directions are “hollow” then the system is a molecule

Since atoms are points in space, in theory gaps will be everywhere. To make the calculation
practical, along each direction, the system is divided into at most 10 segments. The minimum
allowed width of the segment must not be lower than a user controllable parameter denoting the
average atomic diameters (new input flag: General.AverageAtomicDiameter, defaults to 5.0 a0).
The average atomic diameter parameter is used so that for small simulation cells, the segments do
not become too small. The segments are then looped over along each directions, with the total
number in the transverse plane counted. If no atoms were found, then the segment is assumed to
be empty. One or more consecutive empty segments corresponds to a gap in the simulation cell.
The actual gap width is then calculated by calculating the extent of atoms in within the limits of
the segments just before or after the found gap:

• If the gap is not in the middle of the cell, then the gap is the distance between the minimum
or maximum extent of the atom to the bottom or top edges of the simulation box along the
given direction

9

2 AUTOMATIC PARTITIONING SCHEME

• Else if the gap is in the middle of the cell, then gap is equal to the minimum extent of the
atoms above the gap and the maximum extent of the atoms below the gap.

This way the extent, gap and type of the system under simulation can be quite robustly esti-
mated, and this information are fed into the automatic partitioning subroutines so that the simu-
lation cell is divided accordingly.

2.2.2 Initial Guess on Partition Cell Sizes

Following the approach used in the original Conquest implementation, the size of the partition
cells are determined by limiting the number of atoms allowed to be contained in each partition.

The original approach uses the user defined parameter General.MaxAtomsPartition as the
upper limit of the number of atoms allowed in each partition, In the new approach, the upper limit
is determined by

max_natoms_part = ni_in_cell / numprocs
! ni_in_cell is total number of atoms in simulation cell
max_natoms_part = max(max_natoms_part, 1)
max_natoms_part = min(max_natoms_part, global_maxatomspart)
! global_maxatomspart is set by General.MaxAtomsPartition

so that the number of occupied partitions is never less than the number of processors. If this is
not the case then some of the processors cannot be assigned atoms, and the code will fail.

The initial guess on the partition cell sizes are determined by:

1. If the number of partitions in particular directions is fixed and predetermined. If fixed then
initial guess on the number of partitions in that direction is taken as the set value, no resizing
will be performed in this direction. The number of partitions in a direction is fixed when
either (or both) of the following happens:

• The user sets it manually in Conquest_input

• The system is either slab or chain, and number of partitions along this particular direction
is set to 1.

2. For directions along which the number of partitions are not fixed, the partition sizes are
determined by:

• Calculate the volume of the occupied cell Vocc
• Estimate volume of partition to be Vpart = Vocc

max_natoms_part
ni_in_cell

• If three directions are not fixed then the sizes of the partition cell along all directions are
estimated to be roughly equal: rxpart = rypart = rzpart = 3

√
Vpart

• Else if two directions are not fixed, then partition sizes along these two directions u, v
are estimated to be roughly equal: rupart = rvpart =

√
Vocc

fixed_part_dim

• Else if only one direction u is not fixed, then rupart = Vocc
fixed_part_dim1∗fixed_part_dim2

3. The actual initial estimation of partition sizes must divide up the simulation cell exactly into
2Nx , 2Ny and 2Nz parts along the three axes, therefore the partition sizes are recalculated
using

10

2 AUTOMATIC PARTITIONING SCHEME

! n_parts: number of partitions in 3 directions
! n_divs: number of divisions of simulation cell in 3 directions
! r_part: partition cell size in 3 directions
! FSC: the (fundamental) simulation cell
do ii = 1, 3

n_parts(ii) = max(nint(FSC%dims(ii) / r_part(ii)), 1)
n_divs(ii) = int_log2(n_parts(ii))
n_parts(ii) = 2**n_divs(ii)
r_part(ii) = FSC%dims(ii) / real(n_parts(ii),double)

end do

2.2.3 Refining Partition Cell Sizes

The initial estimation of partition sizes are based on the assumption that atoms are uniformly
spread in the occupied region of the simulation cell. This is rarely the case in practice. Hence the
partition sizes needs to be refined so that the number of atoms in each partition stay within the
limit of max_natoms_part. The refinement process is given as follows:

1. Set the number of atoms and support functions in partitions to 0.

2. Loop over all atoms in the simulation cell, the (ix, iy, iz) integer coordinates of the partition
containing the particular atom can be obtained from

ix = floor
(
rxatom/r

x
part
)

(1)

iy = floor
(
ryatom/r

y
part
)

(2)

iz = floor
(
rzatom/r

z
part
)

(3)

• From the (ix, iy, iz) coordinates of the partition, work out the corresponding non-cubic
Hilbert curve index iHilbert, using method presented in section 2.1.

• Increment the atom count and the associated number of support functions in the partition
iHilbert.

• If the number of atoms in a particular partition is greater than max_natoms_part:
• Refine partitions: increase the number of divisions—Hilbert curve recursion—Nu of the

direction (u) that has the longest partition cell size: rupart = max(rxpart, r
y
part, r

z
part). The

number of partitions in direction u is thus doubled to 2(Nu+1).
• exit the atom loop and return to step 1.

The process repeats until all partitions has number of atoms less than max_natoms_part. During
this process, other important information regarding to the partitions are gathered, such as the
Cartesian Composite (CC) indices of the partition:

iCC = ixrypartr
z
part + iyrzpart + iz

During the actual calculations, it is the CC indices rather than the Hilbert indices that are used
to reference the partitions. Also from the CC indices calculated, work out the atomic index cor-
responding to the partitions (see reference [1]) and store the map between the partition atomic
indices with global (simulation cell) atomic indices. These are important book-keeping information
allowing each processor to identify local and remote atoms.

11

2 AUTOMATIC PARTITIONING SCHEME

2.2.4 Assignment of Partitions to Processors

Once the simulation have been correctly partitioned and indexed on the Hilbert curve, the next
step is to assign the partitions along the Hilbert curve to processors. The assignment is sequencial,
in the sense that each processor always gets a chunk of continuous sequence of partitions on the
Hilbert curve. This ensures the load assignment is taking advantage of the compactness of the
Hilbert curves.

The aim of the assignment process is to let each processor to have roughly equal amount of data,
either weighted in terms of the number of partitions, number of atoms or the number of support
functions. The assignment process is best illustrated in figure 2.

• First, the minimum amount of data (partitions, atoms or support functions) per processor
N/P is estimated to be the global average per processor. The partitions are assigned to the
processors one by one, counting the amount of data being assigned, until the amount is greater
or equal to the minimum required value.

• If the amount of data assigned to the last processor is less than the minimum required amount:

– Reduce the minimum required amount by one, repeat the assignment process.

• The above is repeated until the last processor gets more data than the minimum required.
At this point, work from the last processor to the first, shift the partition boundaries of the
processors on the Hilbert curve and pass the partitions to the previous processor in the list
until the shift of partition boundaries would cause the processor to contain fewer amount of
data than the global average.

• Due to the assignment process, all the empty partitions could be at the end of each processor
chunk. While empty partitions does not contain relevant data, they are still looped over
during calculations, and of no user defined real space grid point assignments are defined, the
processors owning these partitions would also own the real space grid points associated to
the space these partitions occupy. Therefore it is important to balance the empty partitions
among the processors as much as possible. This is done by going from the first processor to
the last, and check if the last partition in the processor chunk is empty and if the processor
contains more partitions than global average number of partitions per processor, if so, then
move the partition boundaries so that the last partition is passed to the next processor. This
repeats until the number of partitions in the processor is less or equal to the global average
of if an occupied partition is encountered, and the process moves on to the next processor.

2.2.5 Significance of Rounding Errors

The reader may recall that whether an atom belongs to a partition is determined by equations (1),
(2) and (3). This is generally okay if the atoms are not close to the partition boundaries. If an atom
is on or very close (within numerical rounding error) to the partition boundaries, then rounding
errors becomes significant.

Consider an example: an atom has x-coordinate 10.0 a.u. and the partitions have cell size in x
of 2.0 a.u. then in theory floor(10.0/2.0) = 5, hence the atom should be in a partition with ix = 5.
However rounding errors can lead to 10.0/2.0 = 4.99999999. This means floor(4.99999999) = 4. So
during calculation, depending on the particular machine and compiled binary, the atom may or may

12

2 AUTOMATIC PARTITIONING SCHEME

not be included in partition with ix = 5. There are also the small rounding errors in the atomic
coordinates that would cause similar effects (for example, x = 9.99999999 instead of 10.0). These
rounding errors causes non even distribution of atoms in partitions even for what appears to be
perfectly uniform systems. Indeed this problem has been encountered numerous times during test
calculations on a perfect crystalline bulk Si structure (see 2.4 below). The problem is also present
in the original Conquest implementation.

The solution to the rounding error problem is simple. The equations (1), (2) and (3) are rewritten
as

ix = floor
(
rxatom/r

x
part + δ

)
iy = floor

(
ryatom/r

y
part + δ

)
iz = floor

(
rzatom/r

z
part + δ

)
where δ = 10−8 is a very small number which adds a padding to the possible rounding error one
may encounter. The rounding error only affects atoms on partition boundaries, and the addition of
δ ensures atoms within δ a.u. to the partition boundaries are included in the correct partition. Tests
have shown that this small modification to the code has a significant improvement on automatic
load balancing of uniformly distributed systems.

2.3 Implementation in Conquest

New Hilbert curve automatic partitioning and load balancing routines have been created. All
the subroutines and functions associated to automatic partitioning algorithms are grouped in two
modules:

• Hilbert3D module, for all of the routines associated to the generation of non-cubic Hilbert
space-filling curves. It is stored in file Hilbert3D.f90

• sfc_partitions_module module, for all of the routines associated to the automatic partition-
ing and load balancing tasks. It is stored in file sfc_partitions_module.f90.

The subroutine sfc_partitions_to_processors is used as a drop-in replacement of the old
automatic partitioning subroutine create_sfc_partitions.

There are several new input flags added to Conquest, these are listed in the tabel below

• General.NPartitionsX: Number of partitions in x, if set to 0 the code will determine the
number automatically. Default is 0

• General.NPartitionsY: Number of partitions in y, if set to 0 the code will determine the
number automatically. Default is 0

• General.NPartitionsA: Number of partitions in z, if set to 0 the code will determine the
number automatically. Default is 0

• General.AverageAtomicDiameter: The average atomic diameter used for estimation of gaps
in the simulation cell. Default is 5.0 a.u.

The following input parameter has been modified:

13

2 AUTOMATIC PARTITIONING SCHEME

• General.LoadBalance: A further option =”supportfunctions”= has been added to the option
list. This flag controls the weighting function used for distributing partitions to the processors.
Default is still =”atoms”=

Note that if the user entered a General.NPartitionsX|Y|Z value that is not a power of 2, then
the code will use the smallest power of 2 integer greater than the user input value as the number of
partions required in that direction.

The sfc_partitions_module also contains a checking subroutine and an information subroutine.
The checking subroutine checks if data has been correctly assigned to the partitions and processors,
such as if there are repeats in atomic indices, if the number of atoms in partitions match the total
number of atoms in the simulation cell etc. The checks are run every time when the automatic
partitioner is used, so that Conquest can be sure that a valid partition–processor map has been
created and it can continue to perform actual calculations. The information subroutine depending
on the user controlled global verbosity flag, prints out various statistical information on the partition
and load assignments to processors, so the user can have an idea whether data had been evenly
distributed among the MPI processes.

The user may use the new partitioning scheme without any modifications to his/her Conquest_input
file used for the old Conquest binary, and should encounter minimal behaviour changes other than
data being allocated differently (hopefully more optimised) internally to the processors.

2.4 Test Results

To test the new non-cubic Hilbert curve partitioner, the computation of the following systems
performed by the updated Conquest had been compared with results from the old partitioning
scheme:

• Bulk Si with 512 atoms, cell dimensions: (41.04 a.u.×41.04 a.u.×41.04 a.u.. Reference code:
BulkSi512C

• Bulk Si with 512 atoms, cell dimensions: (82.09 a.u.×82.09 a.u.×10.26 a.u.). Reference code:
BulkSi512F

• Bulk Si with 512 atoms, cell dimensions: (656.72 a.u. × 10.26 a.u. × 10.26 a.u.). Reference
code: BulkSi512L

• Slab Si with 2048 atoms in xy plane, located in the middle of the cell, cell dimensions:
(82.09 a.u.× 82.09 a.u.× 92.35 a.u.). Reference code: SlabSi2048M

• Slab Si with 2048 atoms in xy plane, located at the bottom of the cell, half of the atoms
wrapped by periodic boundary condition to the top of the cell, cell dimensions: (82.09 a.u.×
82.09 a.u.× 92.35 a.u.). Reference code: SlabSi2048W

• Ge hut cluster on Si substrate (slab) with 5333 atoms, slab spans the xy-plane, and located
at the bottom of the cell, cell dimensions: (164.18 a.u.× 205.22 a.u.× 51.31 a.u.). See figure
3. Reference code: GeSi5333

• Ge hut cluster on Si substrate (slab) with 22746 atoms, slab spans the xy-plane, and located at
the top of the cell and wrapped around to the bottom of the cell, cell dimensions: (328.36 a.u.×
328.36 a.u.× 89.79 a.u.). See figure 4. Reference code: GeSi22746

14

2 AUTOMATIC PARTITIONING SCHEME

• Ge hut cluster on Si substrate (slab) with 39130 atoms, slab spans the xy-plane, and located at
the top of the cell and wrapped around to the bottom of the cell, cell dimensions: (328.36 a.u.×
328.36 a.u.× 97.48 a.u.). See figure 5. Reference code: GeSi22746

• DNA in water with 3439 atoms. This is used to test whether the load balance weighting by the
support functions has any performance improvements over weighting by the atoms. Reference
code: DNAH2O3439

All test results are based on non-self-consistent single point energy minimisation calculations,
with auxiliary matrix tolerance of 10−4 Ha. All calculations were done on HECToR phase 3. The
new non-cubic Hilbert partitioner is referred to in below as SFC-1.6 (revision 1.6 of the new space-
filling-curve implementation); and the original Conquest is referred to as r162 (the 162-nd revision
in the source code trunk—the most recent released version). Both SCF-1.6 and r162 were compiled
with Cray compiler suit PrgEnv-cray/4.0.46 with xt-libsci/12.0.00. The optimisation flag for
the compiler was set at -O3.

2.4.1 Performance in Relation to Cell Shapes

The test results for the small (512 atoms) bulk Si systems with different shaped cells are presented
below. All partition and load balancing are done automatically, and are weighted against the number
of atoms. Weighting against support functions produces no benefit in this case as there is only one
species present in the simulation.

BulkSi512C BulkSi512F BulkSi512L
r162 Cores 32 (1× 32) 32 (1× 32) 32 (1× 32)

Partitions 4× 4× 4 4× 4× 4 –
Total parts 64 64 –
Occ parts 64 48 –
Max atoms/proc 23 30 –
Min atoms/proc 11 10 –
Mean atoms/proc 16.0 16.0 –
Std. atoms/proc 3.799671 4.138236 –
N McW iterations 14 14 –
N minE iterations 8 8 –
Wall time (s) 562.023 728.443 –

SFC-1.6 Cores 32 (1× 32) 32 (1× 32) 32 (1× 32)
Partitions 4× 4× 4 8× 8× 1 64× 1× 1
Total parts 64 64 64
Occ parts 64 64 64
Max atoms/proc 16 16 16
Min atoms/proc 16 16 16
Mean atoms/proc 16.0 16.0 16.0
Std atoms/proc 0.0 0.0 0.0
N McW iterations 14 14 14
N minE iterations 8 8 8
Wall time (s) 389.424 379.931 376.696

15

2 AUTOMATIC PARTITIONING SCHEME

The r162 version failed to assign atoms to all processors for BulkSi512L, and stopped before any
partition data can be printed. The extreme difference in the cell dimensions had broken the load
balancing algorithm using the standard cubic Hilbert curves, as far too many partitions are being
created in the transverse directions. Significant slow down can be observed going from the cubic cell
BulkSi512C to the flat cell BulkSi512F, as empty partitions are being created due inflexibility of the
cubic 3D Hilbert curve. The new partitioning scheme however produced optimal load balancing in
all three cell shapes. The correction to the rounding error mentioned in section 2.2.5 is also evident
when comparing the results for BulkSi512C, where both partitioning schemes used the same number
of partitions and cubic Hilbert curve. The new scheme correctly corrected the placement of atoms
in partitions, resulting significant improvements in performance.

For the more difficult Si slabs, the results are given below:

SlabSi2048M SlabSi2048W
r162 Cores 128 (4× 32) 128 (4× 32)

Partitions 8× 8× 8 8× 8× 8
Total parts 512 512
Occ parts 320 256
Max parts/proc 66 42
Min parts/proc 1 1
Mean parts/proc 4.0 4.0
Std. parts/proc 7.280110 6.544320
Max atoms/proc 26 34
Min atoms/proc 9 8
Mean atoms/proc 16.0 16.0
Std. atoms/proc 3.818131 3.897114
N McW iterations – 19
N minE iterations – 31
Wall time (s) – 2278.342

SFC-1.6 Cores 128 (4× 32) 128 (4× 32)
Partitions 16× 16× 1 16× 16× 1
Total parts 256 256
Occ parts 256 256
Max parts/proc 2 2
Min parts/proc 2 2
Mean parts/proc 2.0 2.0
Std. parts/proc 0.0 0.0
Max atoms/proc 16 16
Min atoms/proc 16 16
Mean atoms/proc 16.0 16.0
Std atoms/proc 0.0 0.0
N McW iterations 19 19
N minE iterations 34 34
Wall time (s) 1131.634 1137.756

The new partitioner correctly determined the systems to be slabs, and constructed the parti-
tions accordingly, resulting in significantly more optimised load balancing compared to r162. For

16

2 AUTOMATIC PARTITIONING SCHEME

SlabSi2048M, r612 crashed due to OOM error on HECToR. Due to the fact that the phase 3 HEC-
ToR has only 1GB of memory per core, it is easy to go over the limits if the load balance is not
sufficiently good. In this case, the problem did not come from too many atoms being allocated to
one processor, but came from the fact that too many empty partitions were produced and some
processors got too many empty partitions. This fact can be observed from the large disparity be-
tween the maximum and minimum number of partitions per processor (66 vs. 1). The result is too
many integration block points are being assigned to a particular processor, resulting in OOM error.

2.4.2 Ge Hut Clusters

For the Ge hut clusters on Si substrates, r162 with automatic partitioner failed to provide adequate
load balancing such the corresponding calculations for all 3 system sizes failed due to OOM error
on Conquest. The number of processors to atoms ratio was already set to be quite high, averaging
about 20 atoms per processor. Requesting more processors caused the r162 partitioner to fail
due to it being unable to assign atoms to all processors. The old automatic partitioner has been
demonstrated to work on an IBM p690 system (see [3]), however HECToR phase 3 has a very
different architecture, and there are far fewer amount of memory available per core on HECToR.
The new SFC-1.6 version however ran successfully for all systems due to improved partitioning and
load balancing.

Never-the-less Conquest versions r162 and below had been demonstrated to make efficient
calculations on large Ge hut clusters. In all those cases user defined partition files generated from
external utilities were provided in place of the automatic Hilbert partitioner. It would be interesting
to compare the performance Conquest with the new automatic partitioner against the manually
produced partition files. The Manual partitions produced for this test were just simple divisions of
the simulation cell based on visual inspections.

The results are given below: r162M denotes r162 with manual partitioning.

GeSi5333 GeSi22746 GeSi39130
r162M Cores 256 (8× 32) 1024 (32× 32) 1792 (56× 32)

Partitions 16× 16× 1 32× 32× 1 56× 32× 1
Total parts 256 1024 1792
Occ parts 256 1024 1792
N McW iterations 15 14 13
N minE iterations 12 8 8
Wall time (s) 224.020 278.708 350.602

SFC-1.6 Cores 256 (8× 32) 1024 (32× 32) 1792 (56× 32)
Partitions 16× 32× 1 64× 64× 1 64× 64× 1
Total parts 512 4096 4096
Occ parts 512 4096 4096
Max atoms/proc 32 32 38
Min atoms/proc 16 19 17
Mean atoms/proc 20.832031 22.212891 21.835938
Std atoms/proc 3.802640 2.508888 3.869651
N McW iterations 15 14 13
N minE iterations 12 8 8
Wall time (s) 219.705 251.927 328.123

17

3 MOLECULAR DYNAMICS WITH DYNAMIC REASSIGNMENT

As the results show the new automatic partitioner also slightly out performs the manually set
partitions (albeit just simple divisions of the cell, and non-optimised). This can be attributed to the
use of Hilbert curve for indexing the partitions during load assignment in SFC-1.6, which is not the
case for the manually set. The compactness of the Hilbert curve helps with reducing the amount of
MPI communications between the processors.

2.4.3 DNA In Water

DNA in water has 6 pieces including Hydrogen, and is a typical biological system where load
balancing with respect to the number of atoms in processors may not produce optimal perfor-
mances. Tests were carried out for SFC-1.6 running with General.LoadBalance set to atoms and
supportfunctions. The results are given below:

atoms supportfunctions
Cores 256 (8× 32) 256 (8× 32)
Partitions 8× 8× 8 8× 8× 8
Total parts 512 512
Occ parts 512 512
Max atoms/proc 22 23
Min atoms/proc 9 6
Mean atoms/proc 13.433594 13.433594
Std atoms/proc 2.866067 2.668443
Max sf/proc 63 49
Min sf/proc 15 20
Mean sf/proc 29.089844 29.089844
Std sf/proc 8.394784 6.045057
N McW iterations 26 26
N minE iterations 4 4
Wall time (s) 492.558 445.334

The use support functions to weight the assignment of partitions to processors thus produced
9.59% of performance improvement.

3 Molecular Dynamics with Dynamic Reassignment

In the original Conquest implementation, the once the atoms are assigned to the partitions, they
are assumed to be in the partition through out the course of simulation. While each atom has a
global index in the simulation cell, the actual book keeping of which processor owns which atom,
and where should the data related to a remote neighbour atom be fetched are all done based on the
index system based on the partitions and halos, which are collections of partitions which contains
at least an atom within a given interaction range of an atom in the primary set. The primary set
of a MPI process is the set of all atoms owned by the process. If during molecular dynamics (MD),
some of the atoms get out of their partitions into a different partition, or cross the simulation cell
boundaries, the book keeping on them are never updated. Therefore, while the new atomic positions

18

3 MOLECULAR DYNAMICS WITH DYNAMIC REASSIGNMENT

tells the code they belong to the new partitions2, the new partitions have no record of them, and
the old partition still treats the atoms as if they have never left. This produces errors in neighbour
lists, and contradictions in sizes of sending and receiving arrays for values on the integration grids.
Typically a MD calculation may need to be restarted (rerun of the code reading from updated
atomic coordinates) every few time-steps, whenever an atom moves out of its own partition. This
makes Conquest in its original version impractical for performing large scale MD simulations.

Further more, Conquest at the beginning of every MD step starts afresh with McWeeny initial-
isation for the auxiliary matrix L. The auxiliary matrix is the variable used in energy minimisation
process. If the atoms does not move too far in every MD step, then it may be more efficient to reuse
the auxiliary L matrix at the start of the next MD step, skipping the McWeeny L initialisation
process all together.

The work for improving molecular dynamics in Conquest can therefore be done in two parts.
The first is to to add the ability for Conquest to update its partition and bundle3 data dynamically
during a MD run, so that the code does not need to be restarted every time an atom exists or enters
a partition. The second is to implement ways of transfer of matrix rows corresponding to the moved
atoms from their old owners to new owners, the reconstruct L matrix calculated from the previous
MD step, which can be used directly in the energy minimisation loops in the new step.

The work was done in collaboration with Michiaki Arita and Tsuyoshi Miyazaki from National
Institute for Materials Science (NIMS), Japan.

3.1 Over view of MD implementation

Figure 6 shows a simplified picture of the Born-Oppenheimer molecular dynamics algorithm im-
plemented in Conquest. The red path and box denotes the original implementation, in this case
only the atomic neighbour list and the list of neighbouring partitions are up dated. The covering
set is just a collection of all partitions containing a neighbour of an atom in the primary set. The
number of atoms (members) in the partitions are not changed. In the updated approach (black
path), the members information in the partitions are updated according to the new atomic coordi-
nates, and the matrix rows associated to the moved atoms are then transfered to the corresponding
partition/processors.

For the current implementation, the number and size of partitions are assumed to be fixed
through out an MD simulation session. One can have different number of partitions if restarting a
Conquest MD run based on the previous MD data.

After the atoms have been moved and velocities calculated, the following is carried out (corre-
sponding to the blue boxe in figure 6):

1. Using the new atomic coordinates, reassign atoms to partitions, and update the halos and
covering set, and reconstruct the neighbour lists.

2. Use a (new) flag to tell if a primary set atom has data stored locally. If not then:

• Issue MPI_send and MPI_irecv to transfer the relevant L matrix rows and the basis set
coefficients from the old owners to the new owners

2In Conquest, all periodic images of atoms in the simulation cell are treated as if they are real atoms in a much
larger super cell. The data associated to these images are taken from their respective images in the simulation cell,
and thus belongs to the corresponding partition and processor which own the atom in the simulation cell.

3A collection of all partitions owned by a MPI process is referred to as a bundle in Conquest.

19

3 MOLECULAR DYNAMICS WITH DYNAMIC REASSIGNMENT

3. Reorder the local rows (not including the remote rows being fetched in step 2.) of L ac-
cording to the new indices calculated from step 1. This can be done in parallel to the MPI
communications initiated in step 2.

4. After the MPI communications have finished, the reindexed L matrix part on the processor
is reconstructed from the reordered local rows and received received rows.

Once the L matrix has been reconstructed with up to date neighbour lists, it can then be fed
into the DFT routines for the next round of MD loop.

3.2 Update Members Information

After the calculation of DFT ground states and movement of atoms during MD step n, each processor
knows:

• The updated coordinates of atoms in its old primary set

• The updated covering set (neighbour lists) corresponding to the old primary set

• The displacement of atoms in the primary set (from step n− 1 to n)

There are situation where an atom has wondered out of the simulation cell, and therefore,
becomes an “periodic image”. It must be folded back into the simulation cell according to periodic
boundary conditions, and be assigned to the new partition accordingly.

To update the member information, each processor must do the following:

• Loop over all atoms in the simulation cell, recalculate which partition does each atom belong
to, any atom that have existed the simulation cell are assigned partitions corresponding to its
periodic image in the cell

• Reconstruct the partitions, and update the local atom sequence mappings for all proces-
sors. The atom sequences are arranged in the order of bundles (set of partitions owned by a
processor)–partitions–atoms

• From the new processor-partition-atom maps, reconstruct the global atomic index to bundle
atomic index mappings. At the same time, remember the old mappings, as it will be used for
rearranging various data arrays whose elements are still ordered according to the old maps

• Rearrange the atomic coordinates, velocity and species arrays according to the new atomic
bundle indices.

• Update the new primary set

• Update the neighbour list and the covering set

After the member information is updated, the code can either continue onto a new molecular
dynamics step, with L rebuilt from scratch, and pass through the McWeeny initialisation and early
energy minimisation (preparation) steps; or more perhaps more efficiently reconstruct the L matrix
from the current MD step using the updated member information, and use it as the initial input
for the energy minimisation steps in the next MD step. This way, both McWeeny iteration and
early energy minimisation preparations may be skipped, thus improving the running time of the
MD simulation. The section below describes how L may be rebuilt.

20

3 MOLECULAR DYNAMICS WITH DYNAMIC REASSIGNMENT

3.3 Reconstruct L Matrix

After the member information have been updated, in theory all of the required L matrix data
has already been computed by the previous MD step. The L matrix is piece-wisely stored on all
participating processors, with format dependent on the primary and covering set information. As
the primary and covering set has changed, the way Lmatrix is stored must also change to correspond
to the new member informations for the code to run correctly. This section gives a brief explanation
on how is done.

The L matrix is stored in rows on the processors. The row are indexed by atoms and their
corresponding support functions. Only the matrix elements with column index being the neighbours
of i are stored in each row.

Each processor must first work out which of its own rows (atoms) now belongs to the primary
sets of other processors, and which atom now in its primary set is was a member of the primary
set on another processor. The processors not only has to send the relevant rows of L, it also has to
send the information on the global atomic index of the row (i.e. which exact row in the global L) it
is sending, how many rows, and global atomic indices of neighbours j in each row. Otherwise unlike
in the original Conquest implementation where the member data never changes, the processors
would not be able to find out the identity of the remote matrix data it received because the member
data has changed while the data received was still arranged using the old format. Therefore in order
to reorder for each processor to the matrix rows correctly, the exact format information about the
L matrix needs to be sent and received before the matrix rows are being sent, which records:

• The number of atoms in the old primary set corresponding to the Lmatrix before its reordering

• The α indices (support function indices) corresponding to each atom i, indexing the matrix
element Liαjβ

• The number of (old) neighbours j of each atom i, which corresponds to the length of each row
in L

• The global ids of all the neighbours j of atom i in the simulation

• The length of each Liαjβ row (the number of combined index jβ)

• The beginning location in the L matrix array for each row, indexed by i

• The support function β indices of each of neighbours j of atom i

• The displacements between atoms i and the neighbours j of the L matrix not yet been re-
ordered, and with the atoms indexed in the covering set-partition-atom indices of the previous
MD step. This information is important for reordering the matrix elements for the current
MD step.

The above is grouped into a structure type InfoL, and will be sent to and received by the
relevant processor before the matrix data is sent. After this the relevant matrix rows are sent,
using MPI_irecv and MPI_send pair. The part of L is first reordered using the updated member
information, and once the relevant data from the remote matrix row has been received they are
added to the local matrix to complete the reconstruction of L.

21

3 MOLECULAR DYNAMICS WITH DYNAMIC REASSIGNMENT

To reorder the local L matrix, the goal is to identify the row atoms and their neighbours stored
in the old matrix format and correspond them to the atoms in the new covering set. The following
steps are taken:

• Loop over the old primary atoms iold, rows of local L (number from InfoL)

– Loop over the current primary atoms inew and match via global id which inew corresponds
to iold and get the the new bundle index for this atom: inew

– Get the atomic displacement of inew from the previous step, which are stored during
velocity-verlet routine when moving atoms.

– Loop over the old neighbours jold (number from InfoL), at the moment these atoms are
unidentified, the goal of this loop is to find their id in the updated neighbour list.

∗ Get the atomic displacement of jold from data stored in velocity-verlet routine
∗ Get the current position of jnew, calculated using the current position of inew, the

displacement of iold during MD and the old atomic displacements between iold and
jold stored in InfoL

∗ From the position of jnew find the partition in the (current) covering set this atom
belongs to

∗ Loop over the atoms in that partition, and use the global id of jold the current bundle
labeling for jnew

∗ Reorder the L matrix elements

The remote matrix elements are constructed into the new formatted L matrix in the same way,
by identifying the atoms associated to the row and column indices of the received matrix rows in
the new covering set, and then assign the matrix rows to their appropriate places accordingly

3.4 Test Results

The tests were carried out to find out the stability of the implemented MD routines when running
on HECToR. The code was again compiled with Cray compiler suit PrgEnv-cray/4.0.46 with
xt-libsci/12.0.00. The optimisation flag for the compiler was set at -O3.

The test systems are water (ice) boxes of various sizes. The molecular dynamics settings were
always set with:

• Initial ionic temperature: 300 K

• Time step-size: 0.5 fs

• DFT Functional: PW92 (LDA)

• Self-consistency: Mixed energy minimisation and charge self-consistency scheme

3.4.1 Stability

First the stability of the MD algorithm was tested. Conquest was run on 32 cores (1 node) on
HECToR phase 3, for MD simulation of a 768 atoms water box. The first run without reusing
the L matrix, starting from McWeeny initialisations at every time step. This is the way the orig-
inal Conquest implements MD, with the only difference being the member data is now updated

22

3 MOLECULAR DYNAMICS WITH DYNAMIC REASSIGNMENT

after every MD step, so the code would not stop if an atom crosses a partition boundary. The
results were then compared with the MD calculation run that does reuse the L matrix, and skips
the entire McWeeny initialisation steps and early energy minimisation preparations. The L matrix
tolerance, the criteria for finishing the energy minimisation procedure was set to 10−3. Originally
the simulation time was set to be 800 iterations (400 fs). However, due to the slow speed of the
calculation with using McWeeny iterations for every time step, only 136 MD steps were completed
in 12 hours. 32 cores were already quite large number of cores for a 768 atoms system, and in-
creasing the number of cores beyond 64 atoms would result in poor load balancing as well as large
increases in communication-to-computation ratio. In any case the speed up of calculation required
for completing 400+ step computations will need to be 4 to 5 times, this cannot be achieved by
increasing the number of cores before the atoms in the simulation cell run out. Therefore, a long
test run on HECToR for the MD calculation with McWeeny initialisation at every time step was
considered to be impractical. Never-the-less long MD runs for a small 8 atom Si cell with the same
Conquest settings were performed on the NIMS Simulator 1 (Intel Xeon processor Nehalem-EP
(2.8 GHz), 4 cores/ node, 2.85GB per core) in Japan, the results of which are also presented in this
section below.

Figure 7 shows the total energy vs. simulation time results of the MD runs on the 768 atoms
water box carried out using McWeeny initialisation and that reusing the L matrix at each step. The
simulation was carried out for 100 steps. Significant oscillations in total energy was observed for the
both simulation. For both simulations the amplitude of the oscillation decreased over simulation
time, with the amplitude dropping faster for the calculation with reused L. The mean energy of
the “McWeeny” calculation stayed constant, while the “reuseL” result showed a clear drift, which
gradually turned constant at a lower energy.

The oscillations observed for the “McWeeny” calculations seemed to be dependent on the type
of systems. The results shown in figure 8 corresponds to that of the test calculations performed on
Si 8 atoms cell by collaborators from NIMS Japan using exactly the same code demonstrated that
the energy of MD simulation with McWeeny initialisation being used at every step remained largely
constant, with only very small amount oscillations about the mean value. However the energy drift
in “reuseL” results follow the same trend as the corresponding results obtained for the water box on
HECToR.

3.4.2 Increasing L Tolerances

Figure 9 shows the energy vs.\ simulation time results obtained by increasing the L tolerances for
the “reuseL” calculations. The “reuseL” calculations were all simulated for 400 fs (800 MD steps).
Large oscillations where observed in all calculations, which gradually went away. Apart of the initial
oscillations the result for the 768 atoms water box followed the same trend as that was found in the
8 atom Si cell. As the L tolerances becomes stricter, the energy drift in the “reuseL” calculations
became smaller.

The nature of the large oscillations found at the initial stages of MD simulation for the water box
is not well understood. The oscillations should not have been physical, and they suggest possible
poor initial conditions present in the simulation. Significant time has been spent in trying to find a
possible bug in the implementation, however no such bugs were found so far. The damping of the
oscillations as the simulation goes on showed that despite poor initial conditions the MD algorithm
is largely stable and the calculation did not diverge.

The energy drifts found in the “reuseL” calculations may be related to the accumulation of errors

23

3 MOLECULAR DYNAMICS WITH DYNAMIC REASSIGNMENT

during successive MD steps. The resetting of L matrix for the
While this dCSE project has completed, the investigation into the problems in MD simulations

is on going by the collaborative development team of Conquest.

3.4.3 Computational Costs

The tables below shows the computational cost used by the MD simulations performed on HECToR.
The system is water (ice) boxes of different number of atoms,

Method L Tol. N Atoms Cores MD Steps N McWeeny Iter. N minE/SC Iter. Wall time (s)
McWeeny 10−3 768 32 100 1776 307 4047.732
ReuseL 10−3 768 32 100 18 130 2451.367
ReuseL 10−4 768 32 100 18 366 4246.005
ReuseL 10−5 768 32 100 18 656 6211.387
ReuseL 10−6 768 32 100 18 1030 8814.671
McWeeny 10−3 1536 64 100 1800 307 5826.146
ReuseL 10−3 1536 64 100 18 130 3531.344

If the “ReuseL” method was set to use the same L tolerance as the “McWeeny” calculations, then
for the water box system tested the “ReuseL” calculation is about 40% faster than the “McWeeny”
calculation, mainly due to the significantly reduced number of McWeeny iterations required in total.
For loose tolerances, the mixed self-consistent energy minimisation step converge within 1 or 2 steps.
If “ReuseL” calculations are done using stricter tolerances to tackle the energy drifting problem, then
the number of iterations in the mixed self-consistent energy minimisation step to increase, and this
are reflected it the amount of wall time those calculation used. Therefore, while stricter tolerances
may reduce the amount of drift in the total energy, they become less efficient for a given MD time
step. Also worth noting from the above table is that each McWeeny iteration takes considerable
less computational cost compared with a mixed self consistent energy minimisation iteration.

3.4.4 Implemented Subroutine and User Input Flags

The implemented subroutines are arranged in 4 different modules. These are listed below:

• atom_dispenser_module: mapping atoms to partitions

– atom2part

– allatom2part

• UpdateMember_module: member updates

– group_update_mparts

– deallocate_PSmember

– allocate_PSmember

– allocate_Psmember

– primary_update_mparts

24

3 MOLECULAR DYNAMICS WITH DYNAMIC REASSIGNMENT

– deallocate_CSmember

– allocate_Csmamber

– cover_update_mparts

– updateMembers

• UpdateInfo_module: rebuild L matrices

– Lmatrix_CommRebuild

– make_glob_to_node

– sort_recv_node

– alloc_send_array

– CommLmat_send_size

– CommLmat_send_neig

– CommLmat_send_data

– alloc_recv_arra

– CommLmat_irecv_data

– UpdateLmatrix_loca

– UpdateLmatrix_remot

– deallocate_CommLmatArrays

• io_module2: for input and output

– dump_matrixL

– grab_matrixL

– dump_InfoGlobal

– grab_InfoGlobal

– dump_idglob_old

– grab_idglob_old

– deallocate_InfoLmatrix_File

The following new input flags is added

Input Flag Purpose Default
General.UseOLDConquest Whether to turn on the new MD implementation F
AtomMove.ReuseL Whether to reuse L matrix from previous step F
AtomMove.McWeenyFreq Number of MD iteration before resetting L 1
AtomMove.SkipEarlyDM Whether to skip EarlyDM preparation F

25

4 MISCELLANEOUS REMARKS

3.5 Extended Lagrangian Born-Oppenheimer MD

As the test have show that despite a dramatic increase in speed when reusing L matrix for lower
tolerances, the stability of the calculations required a stricter L matrix tolerance, which reduced
the effectiveness in performance improvements when reusing L.

One possible solution was found by extending the existing Conquest Bon-Oppenheimer MD
to use the extended Lagrangian formalism[6], which incorporates additional electronic degrees of
freedom into the Born-Oppenheimer Lagrangian. L matrix is reused at every MD step, and no
McWeeny initialisation iterations are required for the extended Lagrangian Born-Oppenheimer MD.

Result of a preliminary test calculation using Conquest with the extended Lagrangian formal-
ism performed on an 8 atom Si cell is shown in figure 10. The results show that extended Lagrangian
formalism produced virtually no energy drift when using a loose tolerance of 10−3.

The computational costs of the extend Lagrangian Born-Oppenheimer MD for the 8 atoms Si
cell is compared with the “McWeeny” and “ReuseL” methods in the table below:

Method L Tol. MD Steps N McWeeny Iter. N minE/SC Iter.
Ex. Lag. 1o−3 2000 17 4766
McWeeny 10−3 2000 34000 > 20000
ReuseL 10−3 2000 17 >2000
ReuseL 10−4 2000 17 ≈ 4000
ReuseL 10−5 2000 17 7476
ReuseL 10−6 2000 17 16677
ReuseL 10−7 2000 17 28298

The results indicate that while the Extended Lagrangian formalism is more complicated (hence
more expensive per MD step than “ReuseL” method) and takes more iterations to for the energy
to converge than “ReuseL” method using the same L tolerance, the extended Lagrangian method
offered much more superior performance in stability of the MD simulation. The new method is still
significantly faster than the method involving resetting L with McWeeny initialisation at every MD
step.

The research in this topic is on-going, and it is beyond the scope of this dCSE project.

4 Miscellaneous Remarks

During running tests on the Hilbert automatic partitioner implementation on HECToR, errors were
encountered which was traced to be caused by the optimisation settings during compilation of Con-
quest using Cray compiler (PrgEnv-cray/4.0.46). Setting optimiser flags to either -O2 and -O3
caused error in the atomic indices, while turning off optimisation made the error disappear. Further
analyst showed this may have been caused by the optimiser trying to merge or swap several lines
of code—inserting a print statement between the incident lines fixed the bug (with the optimiser
set to -O3).

The code was properly fixed eventually by rewriting the part of code that was causing the
problem in a different way (while doing the same logical functions).

26

6 ACKNOWLEDGEMENT

5 Summary and Conclusion

The goal of this dCSE project is to:

1. Implement a more flexible Hilbert partitioning algorithm in Conquest, in order to improve
the user friendliness of the code in general and load balancing when running on HECToR.

2. Change the existing molecular dynamics code in Conquest to include ability to dynamically
reassign atoms to partitions, thus allowing the code to perform molecular dynamics simulations
without needing to restart in frequent intervals. Furthermore, allow the code to use the
calculated L matrix from the previous MD step in order to speed up the simulation.

Objective 1 has been successfully achieved. A solution for generating flexible non-cubic Hilbert
curves has been found, and the associated automatic partitioning algorithms have been implemented
in Conquest. The new automatic partitioning algorithm shows significant improvement in both
load balancing performances and functionality over the original implementation. It allowed users to
manually set partitions in any given direction at will. Tests have shown that due to the use of Hilbert
curves the partitioning algorithm out-performed the external utility that was traditionally used by
users to manually set partitions and distribute data to processors, and thus can potentially become a
replacement over the existing external utility. The partitioner in full-auto mode also performed well
compared with the original implementation. In particular the new automatic partitioning scheme
allowed calculations to be performed efficiently for awkward systems on HECToR with minimal user
input, where the original automatic partitioner would fail.

Objective 2 has been achieved with partial success. All of the proposed implementations re-
lated to MD has been successfully implemented. Most importantly Conquest can now perform
stable MD simulations for indefinite number of steps without the need to restart the job. In
terms of performance improvements, however, while reusing L reduces the computation cost from
40%(water)-90%(Si) compared with initialising the matrix at every time step, significant energy
drift where observed. Tightening up computational tolerances during MD simulations helped to
reduce the energy drift, but at a great cost to overall computational time. Large initial oscillations
in total energy was also observed during doing test calculations on water boxes. The investigation
on this problem is still on-going by the Conquest development team. Due to the energy drift and
oscillation issues with the current MD implementation, the MD simulation of large GramicidinA
embedded lipid bilayer originally proposed for the project was not performed.

The recent works indicated that solution to the problems discovered in MD may be solved by
employing the extended Lagrangian Born-Oppenheimer formalism. While the investigation on this
topic is still on-going, preliminary studies have shown positive results.

The work on the new Hilbert partitioner has been submitted into Conquest trunk, and is
available to all users of Conquest.

6 Acknowledgement

The Author wish to thank Michiaki Arita and Tsuyoshi Miyazaki for their contribution to the work
on implementing the improved molecular dynamics algorithms in Conquest.

This project was funded under the HECToR Distributed Computational Science and Engineer-
ing (CSE) Service operated by NAG Ltd. HECToR—A Research Councils UK High End Computing

27

REFERENCES

Service—is the UK’s national supercomputing service, managed by EPSRC on behalf of the par-
ticipating Research Councils. Its mission is to support capability science and engineering in UK
academia. The HECToR supercomputers are managed by UoE HPCx Ltd and the CSE Support
Service is provided by NAG Ltd. http://www.hector.ac.uk

References

[1] D. R. Bowler, T. Miyazaki, and M. J. Gillan. Parallel sparse matrix multiplication for linear
scaling electronic structure calculations. Comput. Phys. Commun., 137(2):255–273, June 2001.

[2] D. R. Bowler, T. Miyazaki, and M. J. Gillan. Recent progress in linear scaling ab initio electronic
structure techniques. J. Phys.: Condens. Matter, 14(11):2781, 2002.

[3] V. Brázdová and D. R. Bowler. Automatic data distribution and load balancing with space-filling
curves: implementation in CONQUEST. J. Phys.: Condens. Matter, 20(27):275223, 2008.

[4] F. Gray. Pulse code communication, 1953.

[5] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects.
Phys. Rev., 140(4A):A1133, 1965.

[6] A. M. N. Niklasson. Extended born-oppenheimer molecular dynamics. Phys. Rev. Lett.,
100(12):123004–, Mar. 2008.

[7] H. Sagan. Space Filling Curves. Springer, 1994.

[8] J. Skilling. In G. Erickson and Y. Zhai, editors, Bayesian Inference and Maximum Entropy
Methods in Science and Engineering: 23rd Int. Workshop, number CP707, page 381–7, New
York, 2004. American Institute of Physics.

28

http://www.hector.ac.uk

REFERENCES

Figure 1: Construction of Hilbert curve with Nx = 3, Ny = 2, Nz = 1

29

REFERENCES

Figure 2: Assignment of partitions to processors

30

REFERENCES

Figure 3: Ge Hut Cluster on Si Substrate, 5333 atoms

Figure 4: Ge Hut Cluster on Si Substrate, 22746 atoms

31

REFERENCES

Figure 5: Ge Hut Cluster on Si Substrate, 39130 atoms

Figure 6: Over view of MD scheme implemented in Conquest

32

REFERENCES

Figure 7: Total Born Oppenheimer energy vs the simulation time. The black curve labelled
“McWeeny” corresponds to the results obtained from MD runs which reconstructs L matrix at
every step with McWeeny initialisation; the red curve labelled “reuseL” corresponds to the results
obtained from MD runs which reuses the L matrix at each step

Figure 8: MD simulation results for 8 atoms bulk Si cell. The time-step was 0.5 fs, with the
simulation running for total of 2000 MD steps. The calculation was performed by Michiaki Arita
on NIMS simulater 1. The magenta line corresponds to the calculation with L reconstructed from
scratch using McWeeny initialisation; the cyan, blue, navy and green lines corresponds to the MD
simulation with L being reused, and with L tolerances set to 1e-2, 1e-3, 1e-4 and 1e-6 respectively

33

REFERENCES

Figure 9: Total Born Oppenheimer energy vs the simulation time for various L tolerances. The black
curve labelled “McWeeny” corresponds to the results obtained from MD runs which reconstructs L
matrix at every step with McWeeny initialisation; The rest of the curves corresponds to the results
obtained from MD runs which reuses the L matrix at every step, with different L tolerances

34

REFERENCES

Figure 10: Energy vs. simulation time for MD simulation of 8 atoms Si cell. The calculations were
performed by Michiaki Arita using NIMS simulator 1 in Japan. The magenta curve corresponds to
the results obtained using the “McWeeny” approach with L tolerance set to 1e-3; the green curve
corresponds to the results obtained using extended Lagrangian MD method , with L tolerance set to
1e-3; the rest of the curves correspond to the results obtained using “reuseL” method, with various
L tolerances

35

	Introduction
	Automatic Partitioning Scheme
	Non-Cubic Hilbert Curve
	Load Balancing
	Determining System Shape
	Initial Guess on Partition Cell Sizes
	Refining Partition Cell Sizes
	Assignment of Partitions to Processors
	Significance of Rounding Errors

	Implementation in Conquest
	Test Results
	Performance in Relation to Cell Shapes
	Ge Hut Clusters
	DNA In Water

	Molecular Dynamics with Dynamic Reassignment
	Over view of MD implementation
	Update Members Information
	Reconstruct L Matrix
	Test Results
	Stability
	Increasing L Tolerances
	Computational Costs
	Implemented Subroutine and User Input Flags

	Extended Lagrangian Born-Oppenheimer MD

	Miscellaneous Remarks
	Summary and Conclusion
	Acknowledgement

