
dCSE Project on Improving Scaling in Conquest for HECToR
Phase 3—OpenMP-MPI Hybrid Implementation

Lianheng Tong

Thursday, 2012/09/27

Abstract

This report describes the work done in the distributed Computational Science and Engineer-
ing (dCSE) project aimed to improve the scaling performances of the linear scaling ab initio
Density Function Theory code Conquest by implementing the hybrid OpenMP-MPI paralleli-
sation architecture. After profiling the most time consuming part of Conquest was found to be
the matrix multiplication subroutines, and OpenMP work-sharing schemes were implemented
in these subroutines. Several different implementations using OpenMP, including tasks had
been tried and compared. Tests showed the hybrid parallelisation implementation significantly
improved weak-scaling performances of Conquest running on HECToR.

1 Introduction

There are various classes of important problems in material science and biochemistry where ab initio
quantum mechanical studies on a large-scale system is required for the understanding the observed
properties of a given material or molecule. For example, to understand the formation of hut-cluster
self-assembly of Germanium (Ge) on Silicon (Si) 001 surface[6], we need to simulate at least one
complete Ge hut-cluster with several layers of the Si surface in a simulation cell. The hut-cluster
is about 20nm × 20nm in size, and including the Si substrate this amounts to over 20,000 atoms
in total. For studies involving bio-chemical molecules, the non-crystalline nature of the system,
and the importance of including several different action groups and solvants means that a small
repeating simulation cell is never satisfactory. A dozen DNA base pairs would already involve a few
thousand atoms.

Conquest[1] is a linear scaling density functional theory (DFT)[5] code ideally suited for ab
initio studies on such large systems. A good scaling property is essencial for codes like Conquest
running on HPC platforms such as HECToR, so that the size of a given system can be increased
by increasing the number of cores used accordingly while keeping the amount of work on each core
constant. This way we could hopefully simulate a very large system with use of many cores without
using more time. This property is referred to in the literature as weak-scaling.

Conquest used to have almost perfect weak-scaling on HECToR Phase 2a (see table 1), where
there are four cores per each node; however since Phase 2b—24 cores per node—the scaling became
worse (see table 2). Scaling can be improved on Phase 2b if one runs calculations with undersat-
urated nodes. For example, as seen from table 2 if we limit the number of cores per node to 4,
then weak-scaling improves significantly. This suggested there is a penalty for saturating the newer

1

1 INTRODUCTION

Table 1: Weak-Scaling test for Conquest running on HECToR Phase 2a. The test system is bulk
Si.

Atoms Time/Core (s) Cores
4096 7069 8
32768 6894 64
262144 6931 512
2097152 7032 4096

generation of CPUs with MPI processes, caused by the fact that there are a limited number of inter-
node communication channels. When all of the cores tries to communicate with each other between
the nodes there will inevitably be congestion. By under-saturating the nodes we are effectively
increasing the number of inter-node communication channels per MPI process.

Table 2: Weak-Scaling test for Conquest running on HECToR Phase 2b. The test system is bulk
Si. PPN stands for MPI processes per node.

Atoms Time/Core (s) Cores Nodes/PPN Time/Core (s) Cores Nodes/PPN
4096 1400 144 6/24 1132 128 32/4
8192 1416 264 11/24 1126 256 64/4

16384 1655 528 22/24 1391 512 128/4
32768 1776 1032 43/24 1197 1024 256/4

HECToR Phase 3 now has nodes each having two 16 core CPUs, in other words 32 cores. We
therefore expect scaling of Conquest to be even worse on the new system. This is a problem not
unique to Conquest, but common to nearly all pure MPI codes on the new generation of multi-
core CPUs. In addition to the issues related to scaling performances, another important limitation
for a pure MPI code is memory usage. The new generation of CPUs tend to have more cores per
node, but less memory per core. Each node on HECToR Phase 3 has a total of 32 GB of RAM
organised in 4 NUMA regions, and this means if running fully saturated, each MPI process could
only have 1 GB of memory available. This is to be compared with 8 GB of memory in total for
each quad-core node on Phase 2a, and 32 GB of total memory for 24 cores on each node on Phase
2b. This means if we want to use all cores on HECToR Phase 3, we would need to reduce the size
of the simulation system per core or use a coarser integration grid. Neither solution is satisfactory.
The former introduces computation inefficiencies as the amount of continuous work for each core
will be reduced—leading to more cache misses; and the latter reduces the accuracy of a calculation.

The simplest solution to the above limitations without any modification to the code is of course
to run calculations with fewer MPI processes per node. This is very expensive and highly inefficient
as a large number of cores will be left unused. It follows therefore many originally pure MPI codes
on HECToR are now migrating to a hybrid parallelisation model mixing the distributed memory
parallelisation (DMP) structure of MPI with shared memory parallelisation (SMP) solutions such
as OpenMP. This way we can run fewer MPI processes per node, thus reducing the amount of
competition in inter-node communications and making more memory available per process; and at

2

2 SCALING PROPERTIES OF VANILLA CONQUEST ON HECTOR PHASE 3

the same time utilising the remaining cores on each node by using OpenMP threads to share the
work load of each MPI master processes. Note that in this case only the master threads handle the
MPI communications.

The aim of this dCSE project is to first analyse Conquest’s scaling performance on HECToR
Phase 3, find the hottest part (i.e. the most time consuming part) of the code and then implement
the hybrid SMP-DMP parallelisation (OpenMP-MPI) architecture in Conquest.

In this report, I will first present performance profiling results of the current Conquest code—
which from now on will be referred to as “/vanilla/” version—on HECToR 3. Then I will discuss
possible approaches to add multi-threaded OpenMP parallelism into Conquest, and finally I will
show the performance improvements of the code after the required work had been done.

2 Scaling Properties of Vanilla Conquest on HECToR Phase 3

Test calculations on a system of bulk Silicon were done to test performances of Conquest on
HECToR Phase 3. The calculations were ab initio static (the Si ions are fixed in space) self-
consistent density functional ground-state energy calculations, with integration grid of 0.32 Bohrs.
The basis used was single zeta (SZ), which gives each Silicon atom 4 basis functions.

The code was compiled by Cray compiler suite 4.0.46, with Cray LibSci 11.0.06. I have also
tried PGI compiler and ACML library, however I found the Cray compiler and science library gave
the fastest code.

The most important scaling property for Conquest concerning the developer and researchers
is weak-scaling, that is how the amount of time it takes for a calculation to finish varies with respect
to size of the simulation system, with amount of work allocated to each core being fixed. The size
of the system is increased by increasing the number of cores used in the calculation.

There is a technical complication when comparing the wall times for the calculations. There
are three main iteration loops in Conquest: loop for calculating the inverse of the overlap matrix
using Hoteling’s method[4], loop for McWeeny initialisation[7] and the combined loop for energy
minimisation[2] and charge self-consistency. As the system size increases the number of iterations
for each of the loops for a given accuracy tolerance also increases. Hence the raw wall times obtained
from the calculations cannot be compared directly. It is not possible to fix the number of iterations
for each calculation, because if a calculation reaches the maximum allowed iterations while still not
achieving the required tolerance Conquest would exit abruptly, and any operations that follows
will not be performed. The recorded wall time in this case would still be different from the case
when a calculation successfully finished the calculation in the given iteration steps.

To calculate a wall time that could be compared between the different sized systems, I timed
each of the iteration steps in the calculations, then by counting the number of iterations done in
each calculation, I took away from the total wall time the time taken for the extra iterations done by
a calculation. This way I was ensuring that the final wall times were the time taken for a complete
ab initio self-consistent DFT calculation with exactly the same number of iterations in each stage
of the calculations.

The table below shows the results

Atoms Nodes MPI Processes Wall Time (s) Ratio
512 1 32 855.039 1.000
4096 8 256 1114.189 1.303
32768 64 2048 1788.672 2.092

3

2 SCALING PROPERTIES OF VANILLA CONQUEST ON HECTOR PHASE 3

The “Ratio” column gives the ratio of wall time taken for the calculations compared with respect
to that of the 512 atoms calculation.

If I undersaturated the nodes, the amount of wall time did reduce significantly, and the scaling
also improved albeit by not as significant amount. In the following result I fixed the number of MPI
processes per node to be 4:

Atoms Nodes MPI Processes Wall Time (s) Ratio
512 8 32 552.090 1.000
4096 64 256 617.986 1.119
32768 512 2048 1034.916 1.875

It is interest to note that the time taken for a calculation done on a saturated node was signifi-
cantly greater than that done on a set of unsaturated nodes. This was true even for the 512 atoms
case, where there were no inter-node communications for the saturated case. Cray PAT sampling
results also seemed to suggest percentage of time spend on MPI communications for the two 512
atoms calculations were roughly the same. The following are the sampling results for the calculation
with 1 node and 32 MPI processes:

Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function
| | | | PE=HIDE

100.0% | 53401.8 | -- | -- |Total
|--
| 96.0% | 51286.7 | -- | -- |USER
||---
|| 47.6% | 25432.5 | 80.5 | 0.3% |m_kern_min$multiply_module_
|| 39.4% | 21029.7 | 62.3 | 0.3% |m_kern_max$multiply_module_
|| 1.5% | 791.5 | 35.5 | 4.4% |daxpy_k
|| 1.2% | 627.8 | 26.2 | 4.1% |act_on_vectors_new$calc_matrix_elements_module_
||===
| 3.3% | 1750.9 | -- | -- |MPI
||---
| 1.9% | 1030.8 | 66.2 | 6.2% | mpi_recv
||===
| 0.7% | 364.2 | -- | -- |ETC
|==

and below are the sampling results of same calculation but using 8 nodes with 4 MPI processes per
node:

Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function
| | | | PE=HIDE

100.0% | 34440.5 | -- | -- |Total
|---
| 96.0% | 33073.8 | -- | -- |USER
||--

4

2 SCALING PROPERTIES OF VANILLA CONQUEST ON HECTOR PHASE 3

|| 49.8% | 17161.5 | 55.5 | 0.3% |m_kern_min$multiply_module_
|| 38.2% | 13158.1 | 42.9 | 0.3% |m_kern_max$multiply_module_
|| 1.3% | 453.8 | 32.2 | 6.8% |act_on_vectors_new$calc_matrix_elements_module_
|| 1.2% | 399.9 | 38.1 | 9.0% |daxpy_k
|| 1.0% | 356.8 | 22.2 | 6.1% |get_matrix_elements_new$calc_matrix_elements_module_
||==
| 3.5% | 1193.5 | -- | -- |MPI
||--
| 2.1% | 735.9 | 148.1 | 17.3% | mpi_recv
||==
| 0.5% | 173.2 | -- | -- |ETC
|===

Therefore when running unsaturated on HECToR Phase 3 the code simply ran more efficient overall.
Never-the-less, as I increased system size, we can see that MPI communications starts to take

more time for the saturated calculations. The following is the CrayPAT sampling report on the
4095 atoms calculation with 8 nodes and 32 MPI processes per node (total 256 MPI processes):

Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function
| | | | PE=HIDE

100.0% | 76646.5 | -- | -- |Total
|---
| 74.1% | 56780.6 | -- | -- |USER
||--
|| 37.2% | 28489.2 | 214.8 | 0.8% |m_kern_min$multiply_module_
|| 29.7% | 22748.4 | 367.6 | 1.6% |m_kern_max$multiply_module_
|| 1.1% | 863.7 | 57.3 | 6.2% |daxpy_k
||==
| 25.3% | 19418.8 | -- | -- |MPI
||--
|| 16.6% | 12711.1 | 3233.9 | 20.4% |mpi_recv
|| 7.1% | 5415.4 | 4300.6 | 44.4% |MPI_BARRIER
||==
| 0.6% | 447.2 | -- | -- |ETC
|===

And this is the report for the same calculation running on 64 nodes and 4 MPI processes per node:

Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function
| | | | PE=HIDE

100.0% | 42299.6 | -- | -- |Total
|---
| 87.5% | 37015.6 | -- | -- |USER
||--

5

3 STRUCTURE OF CONQUEST MATRIX MULTIPLICATION SUBROUTINES

|| 45.4% | 19203.9 | 99.1 | 0.5% |m_kern_min$multiply_module_
|| 34.5% | 14596.5 | 143.5 | 1.0% |m_kern_max$multiply_module_
|| 1.2% | 503.7 | 42.3 | 7.8% |act_on_vectors_new$calc_matrix_elements_module_
|| 1.0% | 432.6 | 53.4 | 11.0% |daxpy_k
||==
| 12.0% | 5084.6 | -- | -- |MPI
||--
|| 6.3% | 2652.1 | 1701.9 | 39.2% |mpi_recv
|| 4.8% | 2043.0 | 829.0 | 29.0% |MPI_BARRIER
||==
| 0.5% | 199.4 | -- | -- |ETC
|===

As we can observe the amount of time spent in MPI communications was over 25% of the total run
time for the saturated calculation, compared with 12% in the unsaturated calculation. This trend
continues as we increase system size. For 32768 atoms case, if running saturated on 64 nodes the
MPI communication time took 53% of the total run time (1788.672 s), and became the main bottle-
neck of the calculation; however if running on 512 nodes, the time spent in MPI communications
reduced to 47.0% of the total time (1034.916 s), with the user (computation) routines still being
the most time consuming using over 52% of the total time.

All of the above results suggests that a SMP-DMP hybrid parallelisation architecture would be
very likely to improve performance of Conquest on HECToR Phase 3.

By looking at the CrayPAT results we can see that in all cases the Conquest matrix multipli-
cation kernels m_kern_min and m_kern_max are by far the most time consuming part of the code.
This is not surprising, as the two major computations in the code are matrix multiplication and
integration on grid. The profiling tool revealed to us that the code spends much longer in matrix
multiplication (over 70% of total run time on average) than integration1 (less than 3% of the total
time on average). It follows that the work for implementing shared memory parallelisation should
be concentrated on the two matrix kernels m_kern_min and m_kern_max of the multiply_module.

3 Structure of Conquest Matrix Multiplication Subroutines

Before we try to implement shared memory parallelisation such as OpenMP, we need to first un-
derstand the structure of the matrix multiplication routines. A detailed description of the parallel
sparse matrix multiplication algorithm used by Conquest can be found in the work[3] by Bowler
et al. For the purpose of explaining my OpenMP implementations in the following sections of this
this report I will give a brief description of the algorithm here.

3.1 Conquest Matrix Data Structure

To maximise efficiency both in terms of cache usage and MPI communications, Conquest organises
matrix data in several intermediate levels of groupings.

Conquest divides the simulation cell input by the user—will be referred to as the fundamental
simulation cell (FSC)—into many spacial partitions. Each partition contains zero or more atoms,

1The subroutines associated with integrations are act_on_vectors_new and daxpy_k.

6

3 STRUCTURE OF CONQUEST MATRIX MULTIPLICATION SUBROUTINES

and they are assigned to the MPI processes either automatically via Hilbert curve method or man-
ually by the user using a mapping file. Ideally one would want to assign the partitions in such a
way so that the atoms are evenly distributed to the MPI processes and the atoms that are spatially
close together are assigned to the same MPI process. This is to ensure good load balancing and
minimise communications. The set of atoms in the FSC in charge of by a MPI process is referred
to as the primary set of that process.

Because Conquest uses a representation basis set—referred to as support functions—that are
centred around each atom, the matrices in Conquest thus have the label Aiαjβ , where both row
index and the column index each has two sub-indices: i (or j) corresponding to the atom, and α (or
β) corresponding to the support function centred on the given atom. The row atomic indices range
over all atoms in the fundamental simulation cell; while the column indices ranges over all neighbours
of the given row index atom, including those in the periodic images of the FSC. Conquest matrices
does not store elements corresponding to the cases where i and j are non-neighbours (i.e. outside
interaction range). The values of these ignored matrix elements are assumed to be zero. The
matrices are distributed across the MPI processes by rows. In other words each matrix is stored on
each MPI node as a continuous block of memory ranged in the four-level hierarchy of partitions–
row atomic indices–column atomic index (neighbour list)–(α, β) support functions block. Please see
figure 1.

Figure 1: Conquest matrix storage scheme

7

3 STRUCTURE OF CONQUEST MATRIX MULTIPLICATION SUBROUTINES

The list of all atoms being a neighbour to at least one atom in the primary set is called a halo. In
other words the halo contains all atoms that interact with atoms belonging to a given MPI process.
Any atom in a halo is called a halo atom. A partition that contains at least one halo atom is called
a halo-partition. And the set of all halo-partitions for a given interaction range is called the covering
set and the union of all covering sets (of all interaction ranges) is called the grand covering set.

Since the concept of neighbourhood depends on interaction range, the following groupings are
not only local to each MPI process but also distinct for each defined interaction range:

• Neighbour list

• Halo

• Halo-partition

• Covering set

And the following groupings are local to each MPI process but independent of interaction ranges:

• Partition

• Primary set

• Grand covering set

A halo-partition, if containing a halo atom not a member of the primary set, belongs to a remote
MPI process. Since matrix elements are stored in continuous blocks of memory in terms of partitions
(see figure 1), in Conquest partitions forms the most basic unit for MPI communications.

3.2 Matrix multiplication

The formula for matrix multiplication concerned here is

(1) Ciαjβ =
∑
kγ

AiαkγBkγjβ

Each matrix is assumed to have a distinct interaction range, and the computation of a matrix
element of C is done by the MPI process which this element belongs to. Thus, in order to calculate
Ciαjβ for i in the primary set, and all of the j in C-neighbour list of i, the MPI process needs only
to fetch data Bkγjβ , where k is not part of the primary set (but is member of A-neighbour list of i)
from the remote MPI processes. By the nature of Conquest matrix storage, the local MPI process
would already have all the required data from A stored. For efficiency of MPI communication,
remote data are fetched in continuous blocks of halo-partitions.

The matrix multiplication in Conquest is done in the following scheme (the existence or two
ways of doing the final multiply and add—˜m_kern_max˜ and m_kern_min will be explained later):

! send data, note if a remote process has a neighbour to an
! atom in the local process, then the local process will
! of course have a halo-partition of the remote process
do inode in list of remote nodes in charge of A-halo-partitions

non-blocking send B data for each partitions to remote inode

8

3 STRUCTURE OF CONQUEST MATRIX MULTIPLICATION SUBROUTINES

end do
do kpart = 1, number of A-halo-partitions

! receive data
fetch B data for A-halo-partition kpart
! do the actual computation
if (C range >= A range + B range) then

call m_kern_max
else

call m_kern_min
end if

end do

Generally for matrix multiplication there must be three levels of nested loops: the loop over
row indices of A (or C, they are the same, all primary set indices), the loop over column indices
of A and loop over column indices of C (or B, which ever fewer). Since one needs to minimise
the amount of communications, the loop over column indices of A, or more precisely over the k-
partitions (i.e. partitions which contains primary set atoms (of a MPI process) corresponding to k
index in equation (1)) must be the outermost.

Once a halo-partitions is fetched, each MPI process will have enough data to compute the partial
sum (for the maximum case—see paragraphs below)

(2) Ckpart
iαjβ =

∑
k∈kpart

∑
γ

AiαkγBkγjβ

locally. And this work is done by the matrix multiplication kernel subroutines.

subroutine m_kern_max ! or m_kern_min
do atoms k in kpart A-halo-partition

Transcribe j indexing from B partition to C-halo labeling
do atoms i in A neighbour list of k

work out indices needed for atom i
do atoms j in B neighbour list of k

if (j is also in C halo) then
do n2 in j support functions

calculate array addresses
do n1 in i support functions

calculate array addresses
do n3 in k support functions

multiply and add matrix elements
end do ! support fns for k

end do ! support fns for i
end do ! support fns for j

end if
end do ! atoms j

end do ! atoms i
end do ! atoms k

end subroutine m_kern_max ! or m_kern_min

Conquest recognises two possible situations: the first is the case when R(C) ≥ R(A) +R(B),
where R corresponds to the range of a given matrix this is referred to as the maximum case; and

9

4 LINKING MULTI-THREADED BLAS LIBRARY USING DGEMM

the second is when R(C) < R(A) + R(B). In the extreme of the second case we could have
R(C) < |R(A)−R(B)|, which is referred to as the minimum case. The only difference between the
two cases are the fact that the role of the matrices A and C are swapped and BT is used in place of
B. This is done in order to reuse cache as much as possible (see [3]). This means the order of inner
multiplication and addition of matrix elements in the matrix multiplication kernel differs: For the
maximum case (m_kern_max) we have

C(n1, n2, ncbeg) = C(n1, n2, nabeg) + &
A(n3, n1, ncbeg) * B(n3, n2, nbbeg)

and for the minimum case

A(n3, n1, ncbeg) = A(n3, n1, ncbeg) + &
C(n1, n2, nabeg) + B(n3, n2, nbbeg)

where nabeg, nbbeg and ncbeg are the addresses of the beginning of the support function blocks
corresponding to the particular (i, k), (k, j) or (i, j) neighbour pairs in A, B and C respectively.

For the purpose of adding shared memory parallelisation to matrix multiplication subroutines,
the distinction between the maximum and minimum case is not very important. The implementation
in both cases is very similar with only subtle differences.

4 Linking Multi-Threaded BLAS Library Using DGEMM

There are a second version of m_kern_max and m_kern_min already available in Conquest, which
can be be used instead of the default versions (described above) by setting an input flag. The
modified version uses the fact that the sum over γ in equation (2) can be regarded as a matrix
multiplication on its own-right:

Ckiαjβ =
∑
γ

AiαkγBkγjβ

Hence if instead of looping over the support function blocks and do the multiplication and summation
explicitly, but store Aiαkγ and Bkγjβ in temporary arrays in FORTRAN matrix format, then level
3 BLAS library routine DGEMM can be used to calculate the required Ckiαjβ . The overall partial sum
may be calculated by summing over k later on:

Ckpart
iαjβ =

∑
k∈kpart

Ckiαjβ

The use of DGEMM in the optional matrix multiplication kernels means that if we use these kernels
and link with a multi-threaded BLAS library, then we would have a shared-memory parallelisation
implementation with minimum work and without any modifications to the code.

4.1 Test Results

I ran test calculations by running total of 32 MPI processes on systems of 512 and 2048 Si atoms. I
also tested calculations with the single zeta (SZ) basis (4 support functions per atom) and the single

10

4 LINKING MULTI-THREADED BLAS LIBRARY USING DGEMM

zeta with polarisation (SZP) basis (9 support functions per atom) for the 512 atoms case, so that I
could look at the case when the support-functions blocks are larger. For multi-threaded calculations,
I increased the number of nodes (via threads) while keeping the number of MPI processes constant
at 32. I made sure that the MPI processes are equally distributed across each node, and across
each NUMA region. For example if running with 2 threads, the code would be using 2 nodes, with
16 MPI processes per node, 4 MPI processes per NUMA region and 2 threads per MPI process; if
running with 4 threads, the code would be running on 4 nodes, with 8 MPI processes per node,
2 MPI processes per NUMA region and 4 threads per MPI process; and so on. The maximum
number of threads in the tests was 8, as this was the largest number of threads each NUMA region
could support. If we went beyond this number, then data would need to be shared between the
NUMA regions, and there would be communications, which would lead to a dramatical reduction
in multi-threaded performance.

The code was compiled with Cray compiler suite 4.0.46 and Cray LibSci 11.0.06.

Figure 2: Strong scaling: Wall time vs. increasing number of threads used by DGEMM

Figure 2 shows the total wall time vs. the number of threads used by the multi-threaded DGEMM,
and the corresponding speed-up (wall time of 1 threaded calculation divided by wall time of n
threaded calculation) vs. the number of threads. To my surprise, the multi-threaded calculations in
general performed worse than the single threaded version. A quick profiling by CrayPAT revealed
that in all cases (except for the single threaded calculations) much of the time were spent in a
function call called _new_slave_entry, for example see table below (for 512 atoms, SZ basis):

11

5 IMPLEMENTING OPENMP IN MATRIX MULTIPLICATION KERNELS

N Threads Total Time (s) Most Time Consuming Part % Total Time
1 796.822 m_kern_maxgemm 29.3%
2 795.209 _new_slave_entry 65.3%
4 988.843 _new_slave_entry 77.0%
8 1526.096 _new_slave_entry 66.7%

It seemed that most of the time spent in the multi-threaded DGEMM cases were in the overhead
to create threads. This might be caused by the fact that DGEMM call was nested in the inner most
loop of the matrix kernel routines.

One would expect however that by increasing the basis size, we increase the amount of work
for each DGEMM call, and hence the multi-threaded DGEMM kernels should perform better. The sur-
prising result shows that this is not true. Again the bottle-necks for the calculations were in
_new_slave_entry, which on average used over 65% of the total calculation time.

I had also tried PGI compilers and multi-threaded ACML libraries, however I found PGI compiler
on HECToR generally produced a slower code than Cray, and when compiled with ACML library,
the code ran too slow (> 4 hours for 8 threaded calculations). And CrayPAT profiling showed again
the bottle-necks were in thread-creation.

Although using multi-threaded DGEMM version for the kernel failed to improve performance of
Conquest, the single threaded DGEMM version was in fact faster than the original matrix multipli-
cation kernels, where the inner most calculations are done explicitly (DGEMM version finished with
wall time of 796.822 s, compared with the original version which used 855.039 s).

5 Implementing OpenMP in Matrix Multiplication Kernels

With the failure of using multi-threaded BLAS libraries to improve performance of Conquest, the
next logical step was to implement explicit OpenMP regions in Conquest matrix multiplication
subroutines.

We want the master threads to handle all of the MPI communications, and the slave threads
to help-out the master thread in the heavy computational loops. Therefore any OpenMP parallel
region must be created after data from remote A-halo-partitions have been fetched from the remote
MPI processes, and hence be inside the matrix multiplication kernel subroutines.

Inside the multiplication kernel, there are three main loops, the outer most loops over the atoms
k in each of theA-halo-partitions, the middle loops over primary set atoms i which areA-neighbours
of k and the inner loop loops over atoms j, which are both C-neighbours of i and B-neighbours of
k. In general, we want to use create OpenMP parallel regions on the outer most loop possible, so
that we can minimise the amount of overhead related to thread creation at !$omp parallel and
the implicit OpenMP barrier at !$omp end parallel.

It is perfectly okay to make the parallel region to enclose the entire multiplication kernel sub-
routine. Most of the passed variables of the multiplication kernel are input (i.e. read) only, these
are safe to be defined as shared in the parallel region. The matrices must be defined as shared as
they are the main data the threads must work on as a team. For the maximum case, the matrix
elements of A and B will be read only, only elements of C will be accumulated with respect to kγ
component. And for the minimum case, C and B will be read only, and only A will be accumu-
lated, this time with respect to jβ component. We only have to be careful about avoiding racing
conditions in components where accumulation are done.

12

5 IMPLEMENTING OPENMP IN MATRIX MULTIPLICATION KERNELS

To obtain the correct data from the matrix arrays for each support-function blocks the origi-
nal implementation uses simple incrementation of address indices after each of the i and j loops.
However, since loops are going to be work-shared in the OpenMP implementation, the original
book-keeping method no longer works. Therefore extra i and j loops need to be done to work out
the starting positions of the support-function blocks before the work-sharing starts, and store these
array indices in temporary arrays.

5.1 Maximum Case

For the maximum case (m_kern_max), upon the input of arrays A, B and C the kernel calculates
the equation

Ckpart
iαjβ =

∑
k∈kpart

∑
γ

AiαkγBkγjβ

the partial sum computed in the kernel is accumulated over both γ and k. This means if a OpenMP
work-sharing construct is to be implemented on the outer-most k-loop, then matrix A must be
included in the list for reduction. While reduction is allowed since OpenMP 2.0 for FORTRAN
arrays (mainly because the intrinsic operators “+”, “-”, “*”, “/” etc. can operate on arrays), using
reduction in this case would be inefficient and dangerous. The reason is that with reduction clause,
private copies of matrix C (maximum case) or A (minimum case) are created (intrinsically) on
each participating thread, and after the work-sharing these private matrices must then be summed
over, one full matrix summation for every thread. More importantly, due to the sparse nature of
the matrices, the number of neighbours of each atom k could be different, resulting in different
data structures of C (or A) matrices on each participating thread, and the final “+” operation for
the reduction would be too primitive to handle the different data structures in the matrices, hence
causing race conditions. It follows therefore the work-sharing construct should be done either on
i-loop or j-loop. The inner support-function loops (that associated with n1, n2 and n3) should
not be work-shared, as it would be more efficient to apply loop-un-rolling and vectorisation using
compiler optimisations. In general since work-sharing (!omp do in this case) in OpenMP also has
an overhead, it is good practice to implement work-sharing on the outer most loop possible. It
therefore follows the most logical loop to work-share is the i-loop.

The OpenMP implementation to the maximum multiplication kernel is hence done as follows:

subroutine m_kern_max(k_off, kpart, ib_nd_acc, ibaddr, nbnab, &
ibpart, ibseq, bndim2, a, b, c, ahalo, chalo, &
at, mx_absb, mx_part, mx_iprim, lena, lenb, &
lenc, debug)

use datatypes
use matrix_module
use basic_types, only: primary_set
use primary_module, only: bundle

implicit none

! Passed variables
type(matrix_halo) :: ahalo, chalo

13

5 IMPLEMENTING OPENMP IN MATRIX MULTIPLICATION KERNELS

type(matrix_trans) :: at
integer :: mx_absb, mx_part, mx_iprim, lena, lenb, lenc
integer :: kpart, k_off
real(double) :: a(lena)
real(double) :: b(lenb)
real(double) :: c(lenc)
integer, optional :: debug
! Remote indices
integer(integ) :: ib_nd_acc(mx_part)
integer(integ) :: ibaddr(mx_part)
integer(integ) :: nbnab(mx_part)
integer(integ) :: ibpart(mx_part*mx_absb)
integer(integ) :: ibseq(mx_part*mx_absb)
integer(integ) :: bndim2(mx_part*mx_absb)
! Local variables
integer :: jbnab2ch(mx_absb) ! Automatic array
integer :: nbkbeg, k, k_in_part, k_in_halo, j, jpart, jseq
integer :: i, nabeg, i_in_prim, icad, nbbeg, j_in_halo, ncbeg
integer :: n1, n2, n3, nb_nd_kbeg
integer :: nd1, nd2, nd3
integer :: naaddr, nbaddr, ncaddr
! OpenMP required indexing variables
integer :: nd1_1st(at%mx_halo), nd2_1st(mx_absb)

!$omp parallel default(none) &
!$omp shared(kpart, ibaddr, ib_nd_acc, nbnab, ibpart, ibseq, &
!$omp k_off, bndim2, mx_absb, mx_part, at, ahalo, chalo, &
!$omp a, b, c) &
!$omp private(i, j, k, j_in_halo, k_in_halo, k_in_part, nbkbeg, &
!$omp nb_nd_kbeg, nd1, nd2, nd3, jpart, jseq, jbnab2ch, &
!$omp nabeg, nbbeg, ncbeg, i_in_prim, icad, naaddr, &
!$omp nbaddr, ncaddr, n1, n2, n3, nd1_1st, nd2_1st)

! Loop over atoms k in current A-halo partn
do k = 1, ahalo%nh_part(kpart)

k_in_halo = ahalo%j_beg(kpart) + k - 1
k_in_part = ahalo%j_seq(k_in_halo)
nbkbeg = ibaddr(k_in_part)
nb_nd_kbeg = ib_nd_acc(k_in_part)
nd3 = ahalo%ndimj(k_in_halo)
! for OpenMP sub-array indexing
nd1_1st(1) = 0
do i = 2, at%n_hnab(k_in_halo)

i_in_prim = at%i_prim(at%i_beg(k_in_halo)+i-2)
nd1_1st(i) = nd1_1st(i-1) + nd3 * ahalo%ndimi(i_in_prim)

end do
nd2_1st(1) = 0
do j = 2, nbnab(k_in_part)

nd2_1st(j) = nd2_1st(j-1) + nd3 * bndim2(nbkbeg+j-2)
end do
! transcription of j from partition to C-halo labelling
do j = 1, nbnab(k_in_part)

14

5 IMPLEMENTING OPENMP IN MATRIX MULTIPLICATION KERNELS

jpart = ibpart(nbkbeg+j-1) + k_off
jseq = ibseq(nbkbeg+j-1)
jbnab2ch(j) = chalo%i_halo(chalo%i_hbeg(jpart)+jseq-1)

end do
!$omp do schedule(runtime)

! Loop over primary-set A-neighbours of k
do i = 1, at%n_hnab(k_in_halo)

! nabeg = at%i_beg(k_in_halo) + i - 1
i_in_prim = at%i_prim(at%i_beg(k_in_halo)+i-1)
nd1 = ahalo%ndimi(i_in_prim)
icad = (i_in_prim-1) * chalo%ni_in_halo
! nabeg index for openMP is calculated inside loop, here
nabeg = at%i_nd_beg(k_in_halo) + nd1_1st(i)
! Loop over B-neighbours of atom k
do j = 1, nbnab(k_in_part)

! nbbeg = nbkbeg + j - 1
nd2 = bndim2(nbkbeg+j-1)
nbbeg = nb_nd_kbeg + nd2_1st(j)
j_in_halo = jbnab2ch(j)
if (j_in_halo /= 0) then

ncbeg = chalo%i_h2d(icad+j_in_halo)
!nd2 = chalo%ndimj(j_in_halo)
if (ncbeg /= 0) then ! multiplication of ndim x ndim blocks

do n2 = 1, nd2
nbaddr = nbbeg + nd3 * (n2 - 1)
ncaddr = ncbeg + nd1 * (n2 - 1)
do n1 = 1, nd1

naaddr = nabeg + nd3 * (n1 - 1)
do n3 = 1, nd3

c(ncaddr+n1-1) = c(ncaddr+n1-1) + &
a(naaddr+n3-1) * b(nbaddr+n3-1)

end do
end do

end do
end if

end if ! End of if(j_in_halo.ne.0)
end do ! End of j = 1, nbnab

end do ! End of i = 1, at%n_hnab
!$omp end do

end do ! End of k = 1, nahpart
!$omp end parallel

return
end subroutine m_kern_max

15

5 IMPLEMENTING OPENMP IN MATRIX MULTIPLICATION KERNELS

5.2 Minimum Case

For the minimum case (m_kern_min), upon input of arrays A, B, and C the kernel calculates the
equation

Aiαkγ =
∑
j

∑
β

Ciαjβ ∗Bkγjβ

where k ∈ kpart. The important distinction between m_kern_min and m_kern_max is that this
time it is the j and β indices that are summed over. Following the same arguments as that of the
maximum case, OpenMP work-sharing region could be setup at either the outermost k-loop, or the
medium level i-loop. Initially for sake of symmetry between the minimum case and the maximum
case I choose the i-loop for the !$omp do workshare. The comparison between the performances
resulting from work-sharing the different loops will be shown in section 6.1.1.

The OpenMP implementation to minimum multiplication kernel is thus given as:

subroutine m_kern_min(k_off, kpart, ib_nd_acc, ibaddr, nbnab, &
ibpart, ibseq, bndim2, a, b, c, ahalo, chalo, &
at, mx_absb, mx_part, mx_iprim, lena, lenb, &
lenc)

use datatypes
use matrix_module
use basic_types, only: primary_set
use primary_module, only: bundle

implicit none

! Passed variables
type(matrix_halo) :: ahalo, chalo
type(matrix_trans) :: at
integer :: mx_absb, mx_part, mx_iprim, lena, lenb, lenc
integer :: kpart, k_off
! Remember that a is a local transpose
real(double) :: a(lena)
real(double) :: b(lenb)
real(double) :: c(lenc)
! dimension declarations
integer :: ibaddr(mx_part)
integer :: ib_nd_acc(mx_part)
integer :: nbnab(mx_part)
integer :: ibpart(mx_part*mx_absb)
integer :: ibseq(mx_part*mx_absb)
integer :: bndim2(mx_part*mx_absb)
! Local variables
integer :: jbnab2ch(mx_absb)
integer :: k, k_in_part, k_in_halo, nbkbeg, j, jpart, jseq
integer :: i, nabeg, i_in_prim, icad, nbbeg, j_in_halo, ncbeg
integer :: n1, n2, n3, nb_nd_kbeg
integer :: nd1, nd2, nd3
integer :: naaddr, nbaddr, ncaddr
! For OpenMP

16

5 IMPLEMENTING OPENMP IN MATRIX MULTIPLICATION KERNELS

integer :: nd1_1st(at%mx_halo), nd2_1st(mx_absb)

!$omp parallel default(none) &
!$omp shared(kpart, ibaddr, ib_nd_acc, nbnab, ibpart, ibseq, &
!$omp k_off, bndim2, mx_absb, mx_part, at, ahalo, chalo, &
!$omp a, b, c) &
!$omp private(j_in_halo, k_in_halo, k_in_part, nbkbeg, &
!$omp nb_nd_kbeg, nd1, nd2, nd3, i, j, k, jpart, jseq, &
!$omp jbnab2ch, icad, nabeg, nbbeg, ncbeg, naaddr, nbaddr, &
!$omp ncaddr, n1, n2, n3, i_in_prim, nd1_1st, nd2_1st)

! Loop over atoms k in current A-halo partn
do k = 1, ahalo%nh_part(kpart)

k_in_halo = ahalo%j_beg(kpart) + k - 1
k_in_part = ahalo%j_seq(k_in_halo)
nbkbeg = ibaddr(k_in_part)
nb_nd_kbeg = ib_nd_acc(k_in_part)
nd3 = ahalo%ndimj(k_in_halo)
! for OpenMP sub-array indexing
nd1_1st(1) = 0
do i = 2, at%n_hnab(k_in_halo)

i_in_prim = at%i_prim(at%i_beg(k_in_halo)+i-2)
nd1_1st(i) = nd1_1st(i-1) + nd3 * ahalo%ndimi(i_in_prim)

end do
nd2_1st(1) = 0
do j = 2, nbnab(k_in_part)

nd2_1st(j) = nd2_1st(j-1) + nd3 * bndim2(nbkbeg+j-2)
end do
! transcription of j from partition to C-halo labelling
do j = 1, nbnab(k_in_part)

jpart = ibpart(nbkbeg+j-1) + k_off
jseq = ibseq(nbkbeg+j-1)
jbnab2ch(j) = chalo%i_halo(chalo%i_hbeg(jpart)+jseq-1)

end do
!$omp do schedule(runtime)

! Loop over primary-set A-neighbours of k
do i = 1, at%n_hnab(k_in_halo)

!nabeg=at%i_beg(k_in_halo)+i-1
i_in_prim = at%i_prim(at%i_beg(k_in_halo)+i-1)
nd1 = ahalo%ndimi(i_in_prim)
icad = (i_in_prim-1) * chalo%ni_in_halo
nabeg = at%i_nd_beg(k_in_halo) + nd1_1st(i)
! Loop over B-neighbours of atom k
do j = 1, nbnab(k_in_part)

!nbbeg = nbkbeg + j - 1
nd2 = bndim2(nbkbeg+j-1)
nbbeg = nb_nd_kbeg + nd2_1st(j)
j_in_halo = jbnab2ch(j)
if (j_in_halo /= 0) then

!nd2 = chalo%ndimj(j_in_halo)
ncbeg = chalo%i_h2d(icad+j_in_halo)
if (ncbeg /= 0) then ! multiplication of ndim x ndim blocks

17

6 SCALING PROPERTIES OF CONQUEST AFTER OPENMP IMPLEMENTATION

do n2=1, nd2
nbaddr = nbbeg + nd3 * (n2 - 1)
ncaddr = ncbeg + nd1 * (n2 - 1)
do n1 = 1, nd1

naaddr = nabeg + nd3 * (n1 - 1)
do n3 = 1, nd3

a(naaddr+n3-1) = a(naaddr+n3-1) + &
c(ncaddr+n1-1) * b(nbaddr+n3-1)

end do
end do

end do
end if

end if
end do

end do
!$omp end do

end do
!$omp end parallel

return
end subroutine m_kern_min

6 Scaling Properties of Conquest After OpenMP Implementation

I tested the OpenMP-MPI hybrid implementation by running full ab initio self-consistent static
DFT ground state energy calculations of the same bulk Si system with different number of atoms
and basis sizes. The code was compiled with Cray compiler suite 4.0.46 and Cray LibSci 11.0.06.

Figure 3: Weak Scaling: fixed work-load 16 atoms per core, bulk Si with SZ basis. (MM) = time
spent matrix multiplication

18

6 SCALING PROPERTIES OF CONQUEST AFTER OPENMP IMPLEMENTATION

Figure 3 shows the weak scaling property of Conquest using pure MPI and MPI with 2, 4 and
8 OpenMP threads per MPI process. The average amount of work allocated to each core was the
same, at 16 atoms per core. More precisely 512 atoms were assigned to each node (consisting of 32
cores). In all of the calculations all cores were utilised. For the pure MPI calculations each node
were saturated by running 32 MPI processes per node. For OpenMP-MPI hybrid calculations, the
number of MPI processes per node times the number of threads per MPI process was always 32. So 2
thread calculations used 16 MPI processes per node and 2 threads per MPI process; and 4 threaded
calculations used 8 MPI processes per node and 4 threads per MPI process; and so on. I made sure
the MPI processes were distributed evenly across the NUMA regions using the -S option of aprun.
The maximum number of threads I had tested was 8, again due to the NUMA regions. The system
size was increased by increasing the number of cores in the calculation. Ideally we want the wall time
to be similar for calculations of any system size. The solid lines in the figure corresponds to total
wall time, and the dashed lines corresponds to the time taken in matrix-multiplication subroutines.

Due to the fact that the larger systems takes more iterations to reach the desired accuracy
tolerance, the times I present in figure 3 are corrected in the same manor as that described in
section 2.

As we can see from figure 3 pure MPI parallelisation is faster overall for smaller systems. This
is expected, since the only multi-threaded part in the code is the matrix multiplication kernels,
and therefore having less MPI processes running means other parts of the code would run slower.
This is confirmed by the increase in difference in time between the solid lines of total wall time and
the dashed lines of total matrix multiplication time as the number of threads per MPI processes
increase. More threads of course means less total number of MPI processes given the same number
of cores. The hybrid implementations however have a much better weak-scaling (more flat) than
the pure MPI implementation, so as the size of system increase, we can see that the performances
of hybrid implementations starts to overtake the pure MPI implementation.

We notice that weak scaling improves as the number of threads per MPI processes increase (and
the number of MPI processes per node decrease). This is especially evident in matrix multiplication
where OpenMP has been implemented, albeit this is off-set by other parts of code in the total wall
time.

A compromise between the number of MPI processes and the number of threads to use has to be
found. In the example of bulk Si, I found using 16 MPI processes per node and 2 threads per MPI
process may be the best choice for systems with over 10000 atoms, while the pure MPI calculations
are still faster for smaller systems.

Figure 4 shows the amount of speed up when using the same number of MPI processes but
increasing number of OpenMP threads per MPI process. The number of MPI processes was fixed
at 32. For single thread calculations, a single node of 32 cores were used; for 2 threads calculation,
2 nodes were used and 16 MPI processes were assigned to each node, with 8 per NUMA region; for
4 threads calculation, 4 nodes were used with 8 MPI processes assigned to each node, 4 per NUMA
region; and so on. The dashed lines again shows the time or speed-up in matrix multiplication
subroutines, while the solid line corresponds to the total wall time. The scaling for larger system
size is better because there are more atoms per MPI process resulting in larger loops on each process
for the OpenMP work-sharing constructs and more work-load for each work-sharing threads to work
on.

Figure 5 shows the amount of speed up with increasing number of OpenMP threads per MPI
process for different basis sizes. The number of MPI processes was again fixed at 32. The SZ basis

19

6 SCALING PROPERTIES OF CONQUEST AFTER OPENMP IMPLEMENTATION

Figure 4: Strong Scaling: Comparing different system sizes

has 4 support functions per Si atom, while SZP basis has 9 per atom. The result however is puzzling.
We would expect that as the basis size increases there will be more work for each support-function
blocks in the matrix kernel, and hence this should mean larger chunks to work on for each of the
work-sharing threads. So in theory calculations with larger basis set should scale better. The results
shows the opposite, and this trend is also observed in the multi-threaded DGEMM case as show in
figure 2.

I have also looked at the effect of different scheduling schemes to the performances of the
calculations. First to note is the choice of chunk sizes. The upper-limits of the worked-shared loops
are not known a priori, these depends on the neighbour-lists of the different matrix types calculated
during a calculation. The work-load in the loop also varies and depends on the neighbour lists
calculated using data inside each loop. Hence the work-load cannot be determined before the work-
sharing construct. Without more knowledge before hand, for STATIC scheduling the most obvious
choice is to evenly divide the loop into chunks of similar sizes for each thread; for DYNAMIC scheduling
without the chunk size should be 1; and for GUIDED scheduling the default chunk sizes—sets the
chunk sizes dynamically by dividing the remaining work to be done by the available threads. For
bulk Si systems, the different choices of scheduling schemes had minimal effect to the performance
of the calculations (see figure fig:omp_strong_scaling_scheduling). This is unsurprising, since the
system is a perfect lattice evenly distributed across the fundamental simulation cell and this means
the size and work-load of j-loops in the multiplication kernel are going to be very similar for each
i and k, and hence the work-load on the work-sharing threads are evenly divided unless one choses
a chunk size that is too large. The STATIC scheduling gives the best results by a small margin, this
is probably because it requires the least amount of overhead.

20

6 SCALING PROPERTIES OF CONQUEST AFTER OPENMP IMPLEMENTATION

Figure 5: Strong Scaling: Comparing different basis sizes

6.1 Scaling Properties for Calculations of Ice

As mentioned above, bulk Si is a perfectly uniform system, and is thus a very good to use a test
system to check the best scaling performances of the code. However in practice, a code such as
Conquest will be used to calculate systems such as biological molecules which are more sparsely
and less uniformly distributed across the fundamental simulation cell. The complication for such
systems are two fold: non-uniform distribution of atoms in space and interaction involving different
species each with different size of basis/support-functions. The first problem is to do with load-
balancing, that is how to partition the space and allocate the partitions to MPI processes in such
a way so that each process gets roughly the same amount of work-load. This is beyond the scope
of this dCSE project. The second problem introduces uneven sized loops and work-load for the
work-sharing OpenMP threads.

To test the performance of Conquest on such systems, I timed the calculations on bulk ice. Ice
is a particularly good test system to use because it still had a crystalline structure, this means it is
easy to divide space into partitions with roughly similar number of atoms and atom types distributed
to each MPI process. This avoided the complications introduced by poor load-balancing. On the
other hand the structure has two species types: Hydrogen (H) and Oxygen (O), each with different
basis sizes (for SZ basis, H has 1 support function per atom and O as 4). The ice structure is sparse
and introduces non-uniformity in the neighbour lists. I had chosen a basis set with a particular short
cut-off range (4.8 Bohrs for H and 3.9 Bohrs for O) to exacerbate the unevenness in the neighbour

21

6 SCALING PROPERTIES OF CONQUEST AFTER OPENMP IMPLEMENTATION

Figure 6: Strong Scaling: Comparing different scheduling schemes

lists.

Table 3: Strong scaling: Ice 1536 atoms with SZ basis, using MPI+OpenMP hybrid scheme with
loop work-sharing at i-loop for both matrix multiplication kernels, 32 MPI processes

Number of Threads Wall Time (s), STATIC DYNAMIC GUIDED
1 976.290 980.669 977.957
2 564.746 599.262 544.354
4 397.290 526.171 452.203
8 320.667 415.751 416.387

Table 3 shows the strong scaling result (with respect to the number of OpenMP threads) obtained
from calculations on 1536 atoms bulk ice, and fixed 32 MPI processes. We can see clearly that for all
OpenMP scheduling schemes, the performance improvements flattens out after number of threads
increased beyond 4.

After some investigation I found that the apparent poor scaling performance for more than 4
threads was caused by the fact that the ice structure was sparse which results in some neighbour
lists being very short. That is, some of the i-loops in the matrix multiplication kernel I was trying

22

6 SCALING PROPERTIES OF CONQUEST AFTER OPENMP IMPLEMENTATION

Table 4: Top most occurring loop limits of k, i and j-loops in the matrix multiplication kernel for
a typical full self-consistent DFT calculation on bulk ice (1536 atoms) with SZ basis.

k-loop limits occurrences i-loop limits occurrences j-loop limits occurrences
48 503168 48 6149664 61 5980608
1 121984 1 4333248 62 5971648

14 84384 2 2764416 70 5904832
18 77280 3 2579296 67 5836576
16 66048 5 2019424 65 5784736
24 63360 4 1802752 59 5736160
17 55680 6 1688608 293 2891168
20 55680 7 1502624 290 2884320
31 52704 9 1398720 291 2859488
26 50880 10 1266496 294 2848448
28 49440 8 1217792 287 2828384
34 48576 13 1161312 277 2755232
36 45024 16 1136352 12 88288
2 44640 11 1067296 15 39680

to parallelise simply were too small and we ran out of neighbours to share between the treads (see
table 4).

6.1.1 Strong Scaling of Work-Sharing on Different Loops in Multiplication Kernel

As mentioned in section 5 for m_kern_max we can work-share either the i-loop or j-loop and for
m_kern_min either the i-loop or k-loop. Table 4 clearly shows the reason for the poor strong scaling
of the hybrid OpenMP implementation based on work sharing on the i-loop for both kernels: the
top most occurring limits in the calculation for the i-loops were mostly less than 8. Therefore the
first thing we should try to improve the strong scaling properties of the OpenMP implementation
is to try to work-share the different loops in the two matrix multiplication kernels.

Table 5: Strong scaling: Wall times (s) of calculations for Ice 1536 atoms with SZ basis, OpenMP
workshare at i, j or k-loops in multiplication kernels, “max: i” means work sharing i-loop in
m_kern_max. All calculations used STATIC scheduling with default chunks, and 32 MPI processes.

Number of Threads max: i, min: i max: i, min: k max: j, min: i
1 976.290 961.908 1095.035
2 564.746 547.537 616.610
4 397.290 369.831 437.063
8 320.667 272.060 415.787

Tabel 5 shows the total wall time for the self-consistent DFT calculation of bulk ice with 1536
atoms in the fundamental simulation cell, with SZ basis, and applying !$omp do work-sharing to the

23

6 SCALING PROPERTIES OF CONQUEST AFTER OPENMP IMPLEMENTATION

different loops. The number of MPI processes was fixed at 32. Since the matrix kernels m_kern_max
and m_kern_min are independent, we only need to compare three cases: work-sharing i-loops in both
kernels, work-sharing i-loop in m_kern_max and k-loop in m_kern_min, and work-sharing j-loop in
m_kern_max and i-loop in m_kern_min. The results indicate that for ice, work-sharing the i-loop in
m_kern_max and k-loop in m_kern_min gives the best performances. This is perhaps unsurprising
in the light of tabel 4 and the fact that in general work-sharing the outer most loops possible will
give the least amount of overhead.

6.1.2 Weak Scaling

Figure 7: Weak scaling: fixed work-load with 48 atoms per core, bulk Ice with SZ basis.

Figure 7 shows the weak scaling of calculations on bulk ice using pure MPI, and MPI with 2,
4 and 8 OpenMP threads per MPI process. 1536 atoms were assigned to each node on HECToR
Phase 3, and in all test cases all cores were used: pure MPI calculation would have 32 MPI processes
distributed per core, and for OpenMP-MPI hybrid calculations, the product of number of MPI
process with the number of OpenMP threads was always 32. The version of hybrid implementation
used in the test had work-sharing on the i-loop in m_kern_max and k-loop in m_kern_min. As we can
see from the figure, for smaller ice systems, the pure MPI calculation is faster, and the more MPI
processes per node the faster the calculation. However the OpenMP-MPI implementation has better
scaling when the number of threads increase, and hence becomes faster when system becomes large.
The key result here is that just as with the bulk Si case, the OpenMP-MPI hybrid implementation
significantly improves the weak-scaling of Conquest for cases where the neighbours are more
sparse.

24

7 FURTHER IMPROVEMENTS

7 Further Improvements

7.1 Attempt at using OpenMP Tasks

Being aware of the fact that in some cases, such as the case with ice in the previous example,
there may be occasions that there are simply too few atoms in a particular neighbour list to give
a large enough loop for OpenMP to work-share efficiently, I considered changing the OpenMP
implementation to use concept of tasks introduced since OpenMP 3.0.

By using OpenMP tasks, we can effectively combine work-sharing of i and j-loops in m_kern_max
and k, i-loops in m_kern_min, so that in theory all threads should have something to do during the
execution of the multiplication kernels.

My OpenMP task implementation for m_kern_max is given as follows

subroutine m_kern_max(k_off, kpart, ib_nd_acc, ibaddr, nbnab, &
ibpart, ibseq, bndim2, a, b, c, ahalo, chalo, &
at, mx_absb, mx_part, mx_iprim, lena, lenb, &
lenc, debug)

use datatypes
use matrix_module
use basic_types, only: primary_set
use primary_module, only: bundle
use omp_lib

implicit none

! Passed variables
type(matrix_halo) :: ahalo, chalo
type(matrix_trans) :: at
integer :: mx_absb, mx_part, mx_iprim, lena, lenb, lenc
integer :: kpart, k_off
real(double) :: a(lena)
real(double) :: b(lenb)
real(double) :: c(lenc)
integer, optional :: debug
! Remote indices
integer(integ) :: ib_nd_acc(mx_part)
integer(integ) :: ibaddr(mx_part)
integer(integ) :: nbnab(mx_part)
integer(integ) :: ibpart(mx_part*mx_absb)
integer(integ) :: ibseq(mx_part*mx_absb)
integer(integ) :: bndim2(mx_part*mx_absb)
! Local variables
integer :: nbkbeg, k, k_in_part, k_in_halo, j, jpart, jseq
integer :: i, nabeg, i_in_prim, icad, nbbeg, j_in_halo, ncbeg
integer :: n1, n2, n3, nb_nd_kbeg
integer :: nd1, nd2, nd3
integer :: naaddr, nbaddr, ncaddr
! The OpenMP firstprivate clause for some reason crashes (at least
! for gcc) whenever there is automatic arrays in its
! list. Everthing works fine with allocatable arrays. The

25

7 FURTHER IMPROVEMENTS

! allocation of allocatable arrays may be slightly slower than
! automatic arrays, but it is the only option at the moment.
integer, dimension(:), allocatable :: nd1_1st, nd2_1st, jbnab2ch

allocate(nd1_1st(at%mx_halo), nd2_1st(mx_absb), jbnab2ch(mx_absb))

!$omp parallel default(none) &
!$omp shared(kpart, ibaddr, ib_nd_acc, nbnab, ibpart, ibseq, &
!$omp k_off, bndim2, mx_absb, mx_part, at, ahalo, chalo, &
!$omp a, b, c) &
!$omp private(i, j, k, j_in_halo, k_in_halo, k_in_part, nbkbeg, &
!$omp nb_nd_kbeg, nd1, nd2, nd3, jpart, jseq, jbnab2ch, &
!$omp nabeg, nbbeg, ncbeg, i_in_prim, icad, naaddr, &
!$omp nbaddr, ncaddr, n1, n2, n3, nd1_1st, nd2_1st)

! run on single thread for generating tasks
!$omp single

! task for generating computation tasks
!$omp task untied &
!$omp default(none) &
!$omp shared(kpart, ibaddr, ib_nd_acc, nbnab, ibpart, ibseq, &
!$omp k_off, bndim2, mx_absb, mx_part, at, ahalo, chalo, &
!$omp a, b, c) &
!$omp private(i, j, k, j_in_halo, k_in_halo, k_in_part, nbkbeg, &
!$omp nb_nd_kbeg, nd1, nd2, nd3, jpart, jseq, jbnab2ch, &
!$omp nabeg, nbbeg, ncbeg, i_in_prim, icad, naaddr, &
!$omp nbaddr, ncaddr, n1, n2, n3, nd1_1st, nd2_1st)

! Loop over atoms k in current A-halo partn
do k = 1, ahalo%nh_part(kpart)

k_in_halo = ahalo%j_beg(kpart) + k - 1
k_in_part = ahalo%j_seq(k_in_halo)
nbkbeg = ibaddr(k_in_part)
nb_nd_kbeg = ib_nd_acc(k_in_part)
nd3 = ahalo%ndimj(k_in_halo)
! for OpenMP sub-array indexing
nd1_1st(1) = 0
do i = 2, at%n_hnab(k_in_halo)

i_in_prim = at%i_prim(at%i_beg(k_in_halo)+i-2)
nd1_1st(i) = nd1_1st(i-1) + nd3 * ahalo%ndimi(i_in_prim)

end do
nd2_1st(1) = 0
do j = 2, nbnab(k_in_part)

nd2_1st(j) = nd2_1st(j-1) + nd3 * bndim2(nbkbeg+j-2)
end do
! transcription of j from partition to C-halo labelling
do j = 1, nbnab(k_in_part)

jpart = ibpart(nbkbeg+j-1) + k_off
jseq = ibseq(nbkbeg+j-1)
jbnab2ch(j) = chalo%i_halo(chalo%i_hbeg(jpart)+jseq-1)

end do
! Loop over primary-set A-neighbours of k
do i = 1, at%n_hnab(k_in_halo)

26

7 FURTHER IMPROVEMENTS

i_in_prim = at%i_prim(at%i_beg(k_in_halo)+i-1)
nd1 = ahalo%ndimi(i_in_prim)
icad = (i_in_prim-1) * chalo%ni_in_halo
nabeg = at%i_nd_beg(k_in_halo) + nd1_1st(i)
! Loop over B-neighbours of atom k
do j = 1, nbnab(k_in_part)

nd2 = bndim2(nbkbeg+j-1)
nbbeg = nb_nd_kbeg + nd2_1st(j)
j_in_halo = jbnab2ch(j)

!$omp task if(j_in_halo /= 0) &
!$omp default(none) &
!$omp shared(nbnab, bndim2, chalo, a, b, c) &
!$omp firstprivate(nd1, nd2, nd3, nbkbeg, nb_nd_kbeg, nd2_1st, &
!$omp jbnab2ch, nabeg, icad, k_in_part, j_in_halo, &
!$omp nbbeg) &
!$omp private(ncbeg, n1, n2, n3, naaddr, nbaddr, ncaddr)

if (j_in_halo /= 0) then
ncbeg = chalo%i_h2d(icad+j_in_halo)
if (ncbeg /= 0) then ! multiplication of ndim x ndim blocks

do n2 = 1, nd2
nbaddr = nbbeg + nd3 * (n2 - 1)
ncaddr = ncbeg + nd1 * (n2 - 1)
do n1 = 1, nd1

naaddr = nabeg + nd3 * (n1 - 1)
do n3 = 1, nd3

c(ncaddr+n1-1) = c(ncaddr+n1-1) + &
a(naaddr+n3-1) * b(nbaddr+n3-1)

end do
end do

end do
end if

end if ! End of if(j_in_halo.ne.0)
!$omp end task

end do ! End of j = 1, nbnab
end do ! End of i = 1, at%n_hnab

!$omp taskwait
end do ! End of k = 1, nahpart
! need to wait for all the computation tasks to finish before the
! generating task is to end.

!$omp end task
!$omp end single
!$omp end parallel

deallocate(nd1_1st, nd2_1st, jbnab2ch)

return
end subroutine m_kern_max

The parallel region is generated as soon as the code enters the subroutine, a single thread is
then assigned the job of generating an untied task for generating the computation tasks. For every
iteration in i and j loop, a computation task is generated and put into the task pool for any idle

27

7 FURTHER IMPROVEMENTS

threads to pick-up. A taskwait must be present at the end of every iteration of k-loop to avoid
race-conditions, since all matrix elements of A (a) associated with i and j must be calculated before
we start to accumulate the new products onto them. The reason for using an outer task region to
generate the computation tasks is because if the computation task generating thread at some stage
is assigned a long computation task it-self, then some other idle thread should be able to take over
the task generating job, so that the task-pool is never empty with idle threads waiting.

In the original !$omp do implementation, the arrays for holding the sub-matrix indices are allo-
cated as automatic arrays on the stack. However it seemed that if used as a firstprivate variable
for an explicit task-region, these arrays must either be static or allocatable, and automatic arrays
caused the code to crash. I therefore changed all the offending automatic arrays to allocatable ar-
rays, and this seemed to have solved the problem. I did not found specific mention of the FORTRAN
automatic arrays in the OpenMP 3.1 specification documents.

For the m_kern_min case the implementation is similar, only that in this case the computation
task region include the entire j-loops:

subroutine m_kern_min(k_off, kpart, ib_nd_acc, ibaddr, nbnab, &
ibpart, ibseq, bndim2, a, b, c, ahalo, chalo, &
at, mx_absb, mx_part, mx_iprim, lena, lenb, &
lenc)

use datatypes
use matrix_module
use basic_types, only: primary_set
use primary_module, only: bundle

implicit none

! Passed variables
type(matrix_halo) :: ahalo, chalo
type(matrix_trans) :: at
integer :: mx_absb, mx_part, mx_iprim, lena, lenb, lenc
integer :: kpart, k_off
! Remember that a is a local transpose
real(double) :: a(lena)
real(double) :: b(lenb)
real(double) :: c(lenc)
! dimension declarations
integer :: ibaddr(mx_part)
integer :: ib_nd_acc(mx_part)
integer :: nbnab(mx_part)
integer :: ibpart(mx_part*mx_absb)
integer :: ibseq(mx_part*mx_absb)
integer :: bndim2(mx_part*mx_absb)
! Local variables
integer :: k, k_in_part, k_in_halo, nbkbeg, j, jpart, jseq
integer :: i, nabeg, i_in_prim, icad, nbbeg, j_in_halo, ncbeg
integer :: n1, n2, n3, nb_nd_kbeg
integer :: nd1, nd2, nd3
integer :: naaddr, nbaddr, ncaddr
! The OpenMP firstprivate clause for some reason crashes (at least
! for gcc) whenever there is automatic arrays in its

28

7 FURTHER IMPROVEMENTS

! list. Everthing works fine with allocatable arrays. The
! allocation of allocatable arrays may be slightly slower than
! automatic arrays, but it is the only option at the moment.
integer, dimension(:), allocatable :: nd1_1st, nd2_1st, jbnab2ch

allocate(nd1_1st(at%mx_halo), nd2_1st(mx_absb), jbnab2ch(mx_absb))

!$omp parallel default(none) &
!$omp shared(kpart, ibaddr, ib_nd_acc, nbnab, ibpart, ibseq, &
!$omp k_off, bndim2, mx_absb, mx_part, at, ahalo, chalo, &
!$omp a, b, c) &
!$omp private(i, j, k, j_in_halo, k_in_halo, k_in_part, nbkbeg, &
!$omp nb_nd_kbeg, nd1, nd2, nd3, jpart, jseq, jbnab2ch, &
!$omp nabeg, nbbeg, ncbeg, i_in_prim, icad, naaddr, &
!$omp nbaddr, ncaddr, n1, n2, n3, nd1_1st, nd2_1st)

! run on single thread for generating tasks
!$omp single

! task for generating computation tasks
!$omp task untied &
!$omp default(none) &
!$omp shared(kpart, ibaddr, ib_nd_acc, nbnab, ibpart, ibseq, &
!$omp k_off, bndim2, mx_absb, mx_part, at, ahalo, chalo, &
!$omp a, b, c) &
!$omp private(i, j, k, j_in_halo, k_in_halo, k_in_part, nbkbeg, &
!$omp nb_nd_kbeg, nd1, nd2, nd3, jpart, jseq, jbnab2ch, &
!$omp nabeg, nbbeg, ncbeg, i_in_prim, icad, naaddr, &
!$omp nbaddr, ncaddr, n1, n2, n3, nd1_1st, nd2_1st)

! Loop over atoms k in current A-halo partn
do k = 1, ahalo%nh_part(kpart)

k_in_halo = ahalo%j_beg(kpart) + k - 1
k_in_part = ahalo%j_seq(k_in_halo)
nbkbeg = ibaddr(k_in_part)
nb_nd_kbeg = ib_nd_acc(k_in_part)
nd3 = ahalo%ndimj(k_in_halo)
! for OpenMP sub-array indexing
nd1_1st(1) = 0
do i = 2, at%n_hnab(k_in_halo)

i_in_prim = at%i_prim(at%i_beg(k_in_halo)+i-2)
nd1_1st(i) = nd1_1st(i-1) + nd3 * ahalo%ndimi(i_in_prim)

end do
nd2_1st(1) = 0
do j = 2, nbnab(k_in_part)

nd2_1st(j) = nd2_1st(j-1) + nd3 * bndim2(nbkbeg+j-2)
end do
! transcription of j from partition to C-halo labelling
do j = 1, nbnab(k_in_part)

jpart = ibpart(nbkbeg+j-1) + k_off
jseq = ibseq(nbkbeg+j-1)
jbnab2ch(j) = chalo%i_halo(chalo%i_hbeg(jpart)+jseq-1)

end do
! Loop over primary-set A-neighbours of k

29

7 FURTHER IMPROVEMENTS

do i = 1, at%n_hnab(k_in_halo)
i_in_prim = at%i_prim(at%i_beg(k_in_halo)+i-1)
nd1 = ahalo%ndimi(i_in_prim)
icad = (i_in_prim-1) * chalo%ni_in_halo
nabeg = at%i_nd_beg(k_in_halo) + nd1_1st(i)

!$omp task default(none) &
!$omp shared(nbnab, bndim2, chalo, a, b, c) &
!$omp firstprivate(nd1, nd3, nbkbeg, nb_nd_kbeg, nd2_1st, &
!$omp jbnab2ch, nabeg, icad, k_in_part) &
!$omp private(j, nd2, nbbeg, j_in_halo, ncbeg, n1, n2, n3, &
!$omp naaddr, nbaddr, ncaddr)

! Loop over B-neighbours of atom k
do j = 1, nbnab(k_in_part)

nd2 = bndim2(nbkbeg+j-1)
nbbeg = nb_nd_kbeg + nd2_1st(j)
j_in_halo = jbnab2ch(j)
if (j_in_halo /= 0) then

ncbeg = chalo%i_h2d(icad+j_in_halo)
if (ncbeg /= 0) then ! multiplication of ndim x ndim blocks

do n2=1, nd2
nbaddr = nbbeg + nd3 * (n2 - 1)
ncaddr = ncbeg + nd1 * (n2 - 1)
do n1 = 1, nd1

naaddr = nabeg + nd3 * (n1 - 1)
do n3 = 1, nd3

a(naaddr+n3-1) = a(naaddr+n3-1) + &
c(ncaddr+n1-1) * b(nbaddr+n3-1)

end do
end do

end do
end if

end if
end do

!$omp end task
end do

end do
! need to wait for all the computation tasks to finish before the
! generating task is to end.

!$omp taskwait
!$omp end task
!$omp end single
!$omp end parallel

deallocate(nd1_1st, nd2_1st, jbnab2ch)

return
end subroutine m_kern_min

The new implementations were first tested on a Sun Microsystems work-station with a single
AMD Opteron quad-core processor before being used on HECToR. While the new implementa-
tion produced similar or better performances for both bulk Si and ice compared to the original

30

7 FURTHER IMPROVEMENTS

!$omp do implementation on the work-station using a single MPI process with 2 or 4 threads, on
HECToR the task implementations performed significantly worse (using the same strong scaling
set-up as for the calculations described in previous sections in this report). I tested calculations
with PSC_OMP_AFFINITY=TRUE or PSC_OMP_AFFINITY=FALSE but in all cases the calculations went
beyond 4 hours limit, which were significantly longer than the !$omp do implementations. There-
fore I concluded that the new implementations using OpenMP tasks is not successful on HECToR.
Never-the-less I cannot rule out the possibility that the implementation would work on other HPC
systems.

7.2 Implementation of OpenMP+DGEMM

As one might notice from section 4 that the single threaded DGEMM version of the matrix multipli-
cation kernels is actually faster than the vanilla version. For 512 atoms bulk Si calculation with
SZ basis, the vanilla pure MPI Conquest finished after 855.039 seconds (see section 2), while the
DGEMM version finished in 796.822 seconds (see section 4.1). I therefore looked at the possibility of
implementing an OpenMP multi-threaded version of the matrix multiplication kernels using DGEMM.

The original implementation of the DGEMM version of multiplication kernels had memory alloca-
tion and deallocation calls inside loops, this was done because the array sizes has to be determined
during run-time and changes for each iteration. I improved this by first calculating the upper limit
of each array, and allocating the required arrays at the start of the subroutines. This avoided
allocation and deallocation inside loops at the expense of slightly larger memory foot-print. This
increase in memory usage is only temporary however, since the arrays are deallocated at the end of
the subroutine anyway.

The source code is given as follows:
For m_kern_max:

subroutine m_kern_max(k_off, kpart, ib_nd_acc, ibaddr, nbnab, &
ibpart, ibseq, bndim2, a, b, c, ahalo, chalo, &
at, mx_absb, mx_part, mx_iprim, lena, lenb, &
lenc, debug)

use datatypes
use matrix_module
use basic_types, only: primary_set
use primary_module, only: bundle
use numbers, only: zero, one

implicit none

! Passed variables
type(matrix_halo) :: ahalo, chalo
type(matrix_trans) :: at
integer :: mx_absb, mx_part, mx_iprim, lena, lenb, lenc
integer :: kpart, k_off
real(double) :: a(lena)
real(double) :: b(lenb)
real(double) :: c(lenc)
integer, optional :: debug
! Remote indices
integer(integ) :: ib_nd_acc(mx_part)

31

7 FURTHER IMPROVEMENTS

integer(integ) :: ibaddr(mx_part)
integer(integ) :: nbnab(mx_part)
integer(integ) :: ibpart(mx_part*mx_absb)
integer(integ) :: ibseq(mx_part*mx_absb)
integer(integ) :: bndim2(mx_part*mx_absb)
! Local variables
integer :: jbnab2ch(mx_absb) ! Automatic array
integer :: nbkbeg, k, k_in_part, k_in_halo, j, jpart, jseq
integer :: i, nabeg, i_in_prim, icad, nbbeg, j_in_halo, ncbeg
integer :: n1, n2, n3, nb_nd_kbeg
integer :: nd1, nd2, nd3
integer :: naaddr, nbaddr, ncaddr
real(double), allocatable, dimension(:,:) :: tempb, tempa, tempc
integer :: sofar, maxnd1, maxnd2, maxnd3, maxlen
external :: dgemm
! OpenMP required indexing variables
integer :: nd1_1st(at%mx_halo), nd2_1st(mx_absb)

!$omp parallel default(none) &
!$omp shared(kpart, ibaddr, ib_nd_acc, nbnab, ibpart, ibseq, &
!$omp k_off, bndim2, mx_absb, mx_part, at, ahalo, chalo, &
!$omp a, b, c) &
!$omp private(i, j, k, j_in_halo, k_in_halo, k_in_part, nbkbeg, &
!$omp nb_nd_kbeg, nd1, nd2, nd3, jpart, jseq, jbnab2ch, &
!$omp nabeg, nbbeg, ncbeg, i_in_prim, icad, naaddr, &
!$omp nbaddr, ncaddr, n1, n2, n3, nd1_1st, nd2_1st, &
!$omp tempa, tempb, tempc, maxnd1, maxnd2, maxnd3, &
!$omp maxlen, sofar)

maxnd1 = maxval(ahalo%ndimi)
maxnd2 = maxval(bndim2)
maxnd3 = maxval(ahalo%ndimj)
maxlen = maxval(nbnab) * maxnd2
allocate(tempa(maxnd1,maxnd3), tempc(maxnd1,maxlen), tempb(maxnd3,maxlen))
tempa = zero
tempb = zero
tempc = zero
! Loop over atoms k in current A-halo partn
do k = 1, ahalo%nh_part(kpart)

k_in_halo = ahalo%j_beg(kpart) + k - 1
k_in_part = ahalo%j_seq(k_in_halo)
nbkbeg = ibaddr(k_in_part)
nb_nd_kbeg = ib_nd_acc(k_in_part)
nd3 = ahalo%ndimj(k_in_halo)
! for OpenMP sub-array indexing
nd1_1st(1) = 0
do i = 2, at%n_hnab(k_in_halo)

i_in_prim = at%i_prim(at%i_beg(k_in_halo)+i-2)
nd1_1st(i) = nd1_1st(i-1) + nd3 * ahalo%ndimi(i_in_prim)

end do
nd2_1st(1) = 0
do j = 2, nbnab(k_in_part)

32

7 FURTHER IMPROVEMENTS

nd2_1st(j) = nd2_1st(j-1) + nd3 * bndim2(nbkbeg+j-2)
end do
! transcription of j from partition to C-halo labelling
do j = 1, nbnab(k_in_part)

jpart = ibpart(nbkbeg+j-1) + k_off
jseq = ibseq(nbkbeg+j-1)
jbnab2ch(j) = chalo%i_halo(chalo%i_hbeg(jpart)+jseq-1)

end do
!$omp do schedule(runtime)

! Loop over primary-set A-neighbours of k
do i = 1, at%n_hnab(k_in_halo)

i_in_prim = at%i_prim(at%i_beg(k_in_halo)+i-1)
nd1 = ahalo%ndimi(i_in_prim)
nabeg = at%i_nd_beg(k_in_halo) + nd1_1st(i)
do n1 = 1, nd1

naaddr = nabeg + nd3 * (n1 - 1)
do n3 = 1, nd3

tempa(n1,n3) = a(naaddr+n3-1)
end do

end do
icad = (i_in_prim - 1) * chalo%ni_in_halo
sofar = 0
! Loop over B-neighbours of atom k
do j = 1, nbnab(k_in_part)

nd2 = bndim2(nbkbeg+j-1)
nbbeg = nb_nd_kbeg + nd2_1st(j)
j_in_halo = jbnab2ch(j)
if (j_in_halo /= 0) then

ncbeg = chalo%i_h2d(icad+j_in_halo)
if (ncbeg /= 0) then ! multiplication of ndim x ndim blocks

do n2 = 1, nd2
nbaddr = nbbeg + nd3 * (n2 - 1)
do n3 = 1, nd3

tempb(n3,sofar+n2) = b(nbaddr+n3-1)
end do

end do
sofar = sofar + nd2

end if
end if ! End of if (j_in_halo /= 0)

end do ! End of j = 1, nbnab
if (sofar > 0) then

call dgemm(’n’, ’n’, nd1, sofar, nd3, one, tempa, &
maxnd1, tempb, maxnd3, zero, tempc, maxnd1)

end if
sofar = 0
! Loop over B-neighbours of atom k
do j = 1, nbnab(k_in_part)

nd2 = bndim2(nbkbeg+j-1)
j_in_halo = jbnab2ch(j)
if (j_in_halo /= 0) then

ncbeg = chalo%i_h2d(icad+j_in_halo)

33

7 FURTHER IMPROVEMENTS

if (ncbeg /= 0) then ! multiplication of ndim x ndim blocks
do n2 = 1, nd2

ncaddr = ncbeg + nd1 * (n2 - 1)
do n1 = 1, nd1

c(ncaddr+n1-1) = c(ncaddr+n1-1) + tempc(n1,sofar+n2)
end do

end do
sofar = sofar + nd2

end if
end if

end do ! end of j = 1, nbnab(k_in_part)
end do ! end of i = 1, at%n_hnab

!$omp end do
end do ! end of k = 1, nahpart
deallocate(tempa, tempb, tempc)

!$omp end parallel
return

end subroutine m_kern_max

And for m_kern_min:

subroutine m_kern_min(k_off, kpart, ib_nd_acc, ibaddr, nbnab, &
ibpart, ibseq, bndim2, a, b, c, ahalo, chalo, &
at, mx_absb, mx_part, mx_iprim, lena, lenb, &
lenc)

use datatypes
use matrix_module
use basic_types, only: primary_set
use primary_module, only: bundle
use numbers, only: one, zero

implicit none

! Passed variables
type(matrix_halo) :: ahalo, chalo
type(matrix_trans) :: at
integer :: mx_absb, mx_part, mx_iprim, lena, lenb, lenc
integer :: kpart, k_off
! Remember that a is a local transpose
real(double) :: a(lena)
real(double) :: b(lenb)
real(double) :: c(lenc)
! dimension declarations
integer :: ibaddr(mx_part)
integer :: ib_nd_acc(mx_part)
integer :: nbnab(mx_part)
integer :: ibpart(mx_part*mx_absb)
integer :: ibseq(mx_part*mx_absb)
integer :: bndim2(mx_part*mx_absb)
! Local variables
integer :: jbnab2ch(mx_absb)

34

7 FURTHER IMPROVEMENTS

integer :: k, k_in_part, k_in_halo, nbkbeg, j, jpart, jseq
integer :: i, nabeg, i_in_prim, icad, nbbeg, j_in_halo, ncbeg
integer :: n1, n2, n3, nb_nd_kbeg
integer :: nd1, nd2, nd3
integer :: naaddr, nbaddr, ncaddr
integer :: sofar, maxnd1, maxnd2, maxnd3, maxlen
real(double), allocatable, dimension(:,:) :: tempb, tempc
external :: dgemm
! OpenMP required indexing variables
integer :: nd1_1st(at%mx_halo), nd2_1st(mx_absb)

!$omp parallel default(none) &
!$omp shared(kpart, ibaddr, ib_nd_acc, nbnab, ibpart, ibseq, &
!$omp k_off, bndim2, mx_absb, mx_part, at, ahalo, chalo, &
!$omp a, b, c) &
!$omp private(i, j, k, j_in_halo, k_in_halo, k_in_part, nbkbeg, &
!$omp nb_nd_kbeg, nd1, nd2, nd3, jpart, jseq, jbnab2ch, &
!$omp nabeg, nbbeg, ncbeg, i_in_prim, icad, naaddr, &
!$omp nbaddr, ncaddr, n1, n2, n3, nd1_1st, nd2_1st, &
!$omp tempb, tempc, maxnd1, maxnd2, maxnd3, maxlen, &
!$omp sofar)

maxnd1 = maxval(ahalo%ndimi)
maxnd2 = maxval(bndim2)
maxnd3 = maxval(ahalo%ndimj)
maxlen = maxval(nbnab) * maxnd2
allocate(tempb(maxnd3,maxlen), tempc(maxlen,maxnd1))
tempb = zero
tempc = zero
! Loop over atoms k in current A-halo partn
do k = 1, ahalo%nh_part(kpart)

k_in_halo = ahalo%j_beg(kpart) + k - 1
k_in_part = ahalo%j_seq(k_in_halo)
nbkbeg = ibaddr(k_in_part)
nb_nd_kbeg = ib_nd_acc(k_in_part)
nd3 = ahalo%ndimj(k_in_halo)
! for OpenMP sub-array indexing
nd1_1st(1) = 0
do i = 2, at%n_hnab(k_in_halo)

i_in_prim = at%i_prim(at%i_beg(k_in_halo)+i-2)
nd1_1st(i) = nd1_1st(i-1) + nd3 * ahalo%ndimi(i_in_prim)

end do
nd2_1st(1) = 0
do j = 2, nbnab(k_in_part)

nd2_1st(j) = nd2_1st(j-1) + nd3 * bndim2(nbkbeg+j-2)
end do
! transcription of j from partition to C-halo labelling
do j = 1, nbnab(k_in_part)

jpart = ibpart(nbkbeg+j-1) + k_off
jseq = ibseq(nbkbeg+j-1)
jbnab2ch(j) = chalo%i_halo(chalo%i_hbeg(jpart)+jseq-1)

end do

35

7 FURTHER IMPROVEMENTS

!$omp do schedule(runtime)
! Loop over primary-set A-neighbours of k
do i = 1, at%n_hnab(k_in_halo)

i_in_prim = at%i_prim(at%i_beg(k_in_halo)+i-1)
nd1 = ahalo%ndimi(i_in_prim)
nabeg = at%i_nd_beg(k_in_halo) + nd1_1st(i)
icad = (i_in_prim-1) * chalo%ni_in_halo
sofar = 0
! Loop over B-neighbours of atom k
do j = 1, nbnab(k_in_part)

nd2 = bndim2(nbkbeg+j-1)
nbbeg = nb_nd_kbeg + nd2_1st(j)
j_in_halo = jbnab2ch(j)
if (j_in_halo /= 0) then

ncbeg = chalo%i_h2d(icad+j_in_halo)
if (ncbeg /= 0) then ! multiplication of ndim x ndim blocks

do n2 = 1, nd2
nbaddr = nbbeg + nd3 * (n2 - 1)
ncaddr = ncbeg + nd1 * (n2 - 1)
do n3 = 1, nd3

tempb(n3,sofar+n2) = b(nbaddr+n3-1)
end do
do n1 = 1, nd1

tempc(sofar+n2,n1) = c(ncaddr+n1-1)
end do

end do
sofar = sofar + nd2

end if
end if

end do
if (sofar > 0) then

call dgemm(’n’, ’n’, nd3, nd1, sofar, one, tempb, &
maxnd3, tempc, maxlen, one, a(nabeg:), nd3)

end if
end do

!$omp end do
end do
deallocate(tempb, tempc)

!$omp end parallel
return

end subroutine m_kern_min

The implementation was tested on HECToR using bulk Si system with 2048 atoms in the
fundamental simulation cell. The code crashed when using Cray compiler (version 4.0.46) and
linking with single-threaded version of the Cray LibSci (version 11.0.06). When linking with multi-
threaded version of LibSci the code did not crash and did finish with correct results. However, the
performance is very poor (see table 7).

Further investigation showed that in fact the performance of the multiplication kernels were
actually better than that of my original OpenMP implementation (see tabel 6), with good scaling
performances as the number of OpenMP threads increase. However the bulk of the time spent

36

8 MISCELLANEOUS CHANGES TO CONQUEST

Table 6: Strong scaling: Bulk Si 2048 atoms with SZ basis, 32 MPI processes, using original OpenMP
(!$omp do at i-loops and no DGEMM) using Cray compiler 4.0.46 and single threaded LibSci 11.0.06

Number of Threads Wall Time (s) Multiplication Time (s)
1 3891.475 3570.430
2 2055.713 1842.980
4 1201.578 1013.300
8 780.665 599.511

Table 7: Strong scaling: Bulk Si 2048 atoms with SZ basis, 32 MPI processes, using Cray compiler
4.0.46 and LibSci 11.0.06

Number of Threads Wall Time (s) Multiplication Time (s)
1 3343.269 3021.270
2 1754.533 1540.130
4 3303.531 850.356
8 5313.146 516.028

in the 4 and 8 threads case was in integration in which there were also BLAS library calls. The
BLAS library call inside an OpenMP parallel region is automatically single threaded by default
behaviour, while outside the region the multi-threaded version is used. It appeared from the tests
that Conquest ran very slow if linked with the multi-threaded version of Cray LibSci, this is
consistent also with the results shown in section 4.

If instead of linking with Cray LibSci but with single threaded version of ACML, then Con-
quest did not crash, and the results (see table 8) showed very good strong-scaling. However, the
ACML library appeared to be significantly slower than the LibSci (when working).

Table 8: Strong scaling: Bulk Si 2048 atoms with SZ basis, 32 MPI processes, using Cray compiler
4.0.46 and single threaded ACML

Number of Threads Wall Time (s) Multiplication Time (s)
1 4283.321 3874.730
2 2272.824 2018.400
4 1355.185 1130.590
8 922.253 707.000

8 Miscellaneous Changes to Conquest

Since the I have written several versions of OpenMP implementations of the matrix multiplication
kernels, and these all required some temporary storage of sub-matrix indices that are not required

37

8 MISCELLANEOUS CHANGES TO CONQUEST

in the vanilla version, it would be wise to implement the OpenMP versions as separate subroutines.
After discussions with the main developer of Conquest, we decided not to use C preprocessors
for switching between the different versions (this would make the code almost unreadable), but
instead moved the matrix multiplication kernel subroutines out of the original multiply_module
and into its own module multiply_kernel_module, and each version of the matrix multiplication
kernel would have its own source code file. The choice of which version of kernel to use would be
made at compilation time through a flag in system.make (the makefile include file).

To implement this, I used a simple method of using variable substitution in makefile. The
source and object file name for the kernel module was defined as multiply_kernel_${MULT_KERN}
and each version of the kernel were given a name according to the following table:

Kernel Type MULT_KERN value File Name
Vanilla default multiply_kernel_default.f90
DGEMM without OMP gemm multiply_kernel_gemm.f90
OMP do, max: i, min: i ompDoii multiply_kernel_ompDoii.f90
OMP do, max: i, min: k ompDoik multiply_kernel_ompDoik.f90
OMP do, max: j, min: i ompDoji multiply_kernel_ompDoji.f90
OMP do, max: j, min: k ompDojk multiply_kernel_ompDojk.f90
OMP with DGEMM ompGemm multiply_kernel_ompGemm.f90
OMP with tasks ompTsk multiply_kernel_ompTsk.f90

Hence the choice of which kernel to use can be made by setting the correct value to MULT_KERN.
MULT_KERN has a default value of default.

To make this selection method to work, I also modified the original automatic dependency
generator script supplied with Conquest to make it only to scan a given list of source files instead
of all files in the source directory. This had to be done because all the different kernel source
files contained the same module name, which would confuse the automatic dependency generation
process if the generator scanned all of the source files.

The new kernel selection method was tested on several different systems with different compilers
and is working. This replaced the original run-time selection method between vanilla kernel and
DGEMM kernel in Conquest (prior this work), and in the process removed the conditional construct
inside the matrix multiplication subroutine associated with making such choices, hence further
improves the efficiency of the subroutine. The Conquest input variable MM.UseGemm for making
the run-time choice is thus obsolete.

Conquest allows the user to replace its matrix diagonalisation module used for non-order-N
calculations with a dummy module if the user only wishes to do calculations using linear ordering
method and does not have Scalapack on his/er system. This originally had to be done manually,
by renaming the appropriate dummy module file and moving the original diagonalisation module
to somewhere else. The developer and I realised the method of choosing the multiplication kernels
could also be applied to this case, and hence implemented a new makefile variable DIAG_DUMMY so
that if DIAG_DUMMY is set to DUMMY then the dummy file, named DiagModuleDUMMY.f90 is used, and
if left undefined, then the original DiagModule.f90 is used.

I have also added a Conquest input flag IO.DumpL to control whether the auxiliary (density)
matrix should be dumped to files after every self-consistent step. The vanilla Conquest always
dumps the matrix to files, and if running on thousands of MPI processes this would produce thou-
sands of large files (several or even dozens of MBs each), slowing the code down and clogging the IO

38

9 SUMMARY AND FUTURE WORK

of the system significantly. The dumped auxiliary matrix is there to allow a follow-up calculation
starting using to start results from previous calculation.

9 Summary and Future Work

In this dCSE project I have successfully implemented several versions of MPI-OpenMP hybrid
architecture in Conquest. The original Conquest was profiled and the hottest part of the code
was found to be in the matrix multiplication kernels. It followed that the OpenMP implementations
were implemented in the corresponding multiplication kernels. The main objective of this dCSE
project is to restore the linear weak-scaling of Conquest running on HECToR Phase 3, and this
has being achieved through the OpenMP implementations.

Six versions of OpenMP implementation in the matrix multiplication kernels were implemented,
which could be chosen by the user through defining an appropriate variable in the makefile input
system.make. Four of the versions implemented correspond to work-sharing the different levels of
do loops in the two matrix kernels (ompDoii, ompDoji, ompDoik and ompDojk), one version corre-
sponds to OpenMP implementation using DGEMM for the support-function block level multiplications
(ompGemm) and one corresponds to using OpenMP Tasks instead of do loop work-sharing (ompTsk).

The ompGemm version should be the fastest, however due to the issue of Conquest not working
well with multi-threaded BLAS libraries (both Cray LibSci and ACML) on HECToR, the single
threaded version of Cray LibSci not working when called inside a parallel region with more than
2 threads, and the fact that ACML library seems to be less optimised than LibSci, the DGEMM
version did not work as well as it should have in practice on HECToR. The problems associated
with the libraries are not well understood. The ompTsk version did not work well on HECToR at
all. This may be caused by too much overhead associated with task creation and assignment, and
also because the threads take up the computation tasks in an unpredictive manner cache re-usage
may be poor. The current OpenMP task implementation should therefore be avoided when running
Conquest on HECToR Phase 3. It follows therefore the best OpenMP implementations to use
on HECToR Phase 3 at the moment are the do loop work-sharing versions. There are two main
factors affecting performance: the neighbour-lists corresponding to the i, j and k atoms and the
overhead associated with work-sharing the inner loops. The user may need to run some tests to
find out which loop work-sharing version is the most optimum.

I found for the particular test systems used (bulk silicon and bulk ice) the static scheduling
gave the best performances for the OpenMP implementation. In any case the user should be able to
change scheduling and chunk sizes through the environment variable OMP_SCHEDULE without needing
to modify or recompile the source code.

A mechanism allowing the user to choose a particular version of a source code file at compilation
time has been implemented in Conquest. This was done without relying on any C-preprocessors,
which was an explicit requirement by the Conquest developers.

For future work, it may be beneficial to achieve a better understanding of why Conquest
performs poorly when linked with multi-threaded BLAS libraries available on HECToR Phase 3.
Load-balancing in the MPI processes will be a major factor in the actual scaling performance of
the code, and in the next dCSE project starting following the completion of the current work, I will
be looking at ways to improve the work distribution algorithms (space filling curves and weighted
distribution of partitions) that are used to automatically balance the work-load on each MPI process.

39

REFERENCES

10 Acknowledgment

This project was funded under the HECToR Distributed Computational Science and Engineering
(CSE) Service operated by NAG Ltd. HECToR—A Research Councils UK High End Computing
Service—is the UK’s national supercomputing service, managed by EPSRC on behalf of the par-
ticipating Research Councils. Its mission is to support capability science and engineering in UK
academia. The HECToR supercomputers are managed by UoE HPCx Ltd and the CSE Support
Service is provided by NAG Ltd. http://www.hector.ac.uk

References

[1] http://www.order-n.org.

[2] D. R. Bowler. Linear-scaling density matrix minimisation and electron number conservation.
Technical report, University College London, 2005.

[3] D. R. Bowler, T. Miyazaki, and M. J. Gillan. Parallel sparse matrix multiplication for linear
scaling electronic structure calculations. Comput. Phys. Commun., 137(2):255–273, June 2001.

[4] H. Hotelling. Some new methods in matrix calculation. Ann. Math. Stat., 14(1):1–34, 1943.

[5] R. M. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge University
Press, 2004.

[6] T. Miyazaki, D. R. Bowler, M. J. Gillan, and T. Ohno. The energetics of hut-cluster self-assembly
in ge/si(001) from linear-scaling dft calculations. J. Phys. Soc. Jpn., 77:123706, 2008.

[7] A. H. R. Palser and D. E. Manolopoulos. Canonical purification of the density matrix in
electronic-structure theory. Phys. Rev. B, 58(19):12704–12711, Nov 1998.

40

http://www.hector.ac.uk

	Introduction
	Scaling Properties of Vanilla Conquest on HECToR Phase 3
	Structure of Conquest Matrix Multiplication Subroutines
	Conquest Matrix Data Structure
	Matrix multiplication

	Linking Multi-Threaded BLAS Library Using DGEMM
	Test Results

	Implementing OpenMP in Matrix Multiplication Kernels
	Maximum Case
	Minimum Case

	Scaling Properties of Conquest After OpenMP Implementation
	Scaling Properties for Calculations of Ice
	Strong Scaling of Work-Sharing on Different Loops in Multiplication Kernel
	Weak Scaling

	Further Improvements
	Attempt at using OpenMP Tasks
	Implementation of OpenMP+DGEMM

	Miscellaneous Changes to Conquest
	Summary and Future Work
	Acknowledgment

